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Abstract
An important open question in AI is what simple and natural principle enables a machine to ground
logical reasoning in data for meaningful abstraction. This paper explores a conceptually new ap-
proach to combining probabilistic reasoning and predicative symbolic reasoning over data. We
return to the era of reasoning with a full joint distribution before the advent of Bayesian networks.
We then discuss that a full joint distribution over models of exponential size in propositional logic
and of infinite size in predicate logic should be simply derived from a full joint distribution over
data of linear size. We show that the same process is not only enough to generalise the logical con-
sequence relation of predicate logic but also to provide a new perspective to rethink well-known
limitations such as the undecidability of predicate logic, the symbol grounding problem and the
principle of explosion. The reproducibility of this theoretical work is fully demonstrated by the
included proofs.

1. Introduction

The current artificial intelligence (AI) systems such as large language models (LLMs) (OpenAI,
2025; DeepSeek-AI, 2025) demonstrate a surprising linguistic ability in both what they know and
how they articulate it. However, the common view is that they are still not as capable as ordinary
people in several areas such as logical reasoning and abstract reasoning. For logical reasoning, it
is unclear how the statistical patterns an AI algorithm extracts from finite training data can capture
the infinite set of rules of valid inference studied in formal logic. Moreover, it is unlikely that statis-
tical AI modelling how people tend to think can replace formal logic modelling how people ought
to think. For abstract reasoning, it is still unclear how a machine should explore and discover ab-
stract concepts and principles from the real world in its own way. Consider the following problems
requiring both abstract reasoning and logical reasoning skills.

Example 1. Carol remembers the following three scenes.

• Alice and Bob did not blame each other.

• One day Alice blamed Bob, and she blamed herself afterwards.

• Alice and Bob blamed each other on another day.

One day Carol wanted to blame Bob. She hesitated because she learnt that someone will blame
those who blame anyone, which can be expressed in a predicate language as follows.

∀x(∃y(Blames(x, y)) → ∃z(Blames(z, x)))
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Example 2. Consider the following three data. What number fits in the blank?

The correct number could be 18 as the following predicate knowledge can be extracted.

top × left + right = bottom

Interestingly, the current AI systems such as ChatGPT (OpenAI, 2025) and DeepSeek (DeepSeek-
AI, 2025) often answer them incorrectly due to a lack of abstract or logical reasoning skills. Ab-
straction and Reasoning Corpus (ARC) (Chollet, 2019) is a benchmark test designed to evaluate
a machine’s ability to extract visual patterns from images. However, the more analytical patterns
shown above are beyond its scope.

In this paper, we ask how reasoning in predicate logic should be grounded in data. The underly-
ing idea discussed in this paper is abstraction. Roughly speaking, it is about an inferential process of
deriving intrinsically abstract symbols from intrinsically concrete data through selective ignorance.
It is not about generalisation where typical inferential procedures, e.g., deductive reasoning, are
used backward for general rules from specific examples or facts. This type of reasoning is inten-
sively studied as inverse resolution (Muggleton & Buntine, 1988; Nienhuys-Cheng & Wolf, 1997),
inverse deduction (Russell & Norvig, 2020) and inverse entailment (Muggleton, 1995) mainly in
inductive logic programming (ILP) (Nienhuys-Cheng & Wolf, 1997). It is also not about parametric
learning where intrinsically concrete data are assumed to be generated from probability distributions
characterised by their parameters. This idea is prevalent in various applications of machine learn-
ing and statistics, e.g., (Bishop, 2006; Tenenbaum et al., 2006; Dasgupta et al., 2020; Lake et al.,
2015, 2017). Abstraction is rather relevant to top-down (memory/experience-driven) and bottom-up
(sensory-driven) information processing used by neuroscientists and AI researchers as a metaphor
for the cognitive process of biological brains, e.g., (Pearl & Russell, 2003; Harnad, 1990; Lee &
Mumford, 2003; Hawkins, 2021; Gregory, 1997; Rao & Ballard, 1999; Friston, 2010).

In this paper, we extend the inference of propositional abstraction (Kido, 2025a,b) to the infer-
ence of predicative abstraction towards enhanced human-like machine intelligence. The key idea is
to use the property of predicate logic and expand the joint probability distribution over data, models
of predicate logic and predicate formula, denoted by D, M and α, respectively, as follows.

p(D,M,α) = p(α|M,D)p(M |D)p(D) = p(α|M)p(M |D)p(D).

Here, the second expression can be derived by applying a valid rule of probability theory. The third
expression is an application of the property of formal logic that the truth values of formulas are
determined given a model. Probabilistically speaking, the truth values of formulas are conditionally
independent of data given a model. The third expression realises the idea that intrinsically abstract
knowledge is derived from intrinsically concrete data through abstraction, i.e., selective ignorance.

We show that the inference of predicative abstraction serves as a solution to simple yet impor-
tant problems such as Examples 1 and 2. The research is not as straightforward as we think because
the semantics of predicate logic needs a reformulation in accordance with abstraction. Our theory
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Figure 1. The hierarchy shown on the left is our illustration of the existing work on the inference of proposi-
tional abstraction (Kido, 2025a,b). The one shown on the right is an illustration of our work on the inference
of predicative abstraction. The top layers are both distributions of data. The middle layer on the left is a
distribution of models in propositional logic, i.e., valuations. The one on the right is a distribution of models
in predicate logic, i.e., pairs of domains of discourse and valuation functions. The bottom layer on the left is
a distribution of the truth values of the propositional formula, whereas the one on the right is the same type
of distribution for the predicate formula.

assumes only closed formulas, i.e., predicate formulas without free variables, to balance the expres-
siveness and simplicity of the theory. The contributions of this paper are summarised as follows.

• We introduce a simple theory of inference that opens up the possibility of combining proba-
bility theory and predicate logic in a data-driven manner. Predicate reasoning in our theory
always proceeds between data and predicate formulas. This suggests a shift in the traditional
view that predicate reasoning proceeds between predicate formulas via rules of inference (see
Section 2).

• The theory allows us to see the traditional model-based predicate reasoning as a special case
of data-based predicate reasoning studied in this paper. The data-based perspective provides
a new opportunity to rethink some existing limitations such as the undecidability of predicate
logic, the symbol grounding problem (Harnad, 1990; Russell & Norvig, 2020) and common-
sense reasoning (Brewka, 1991; Davis & Marcus, 2015) (see Sections 3.1, 3.2 and 3.3).

• We demonstrate a solution to simple yet essential problems that are often difficult to solve by
existing established approaches (see Section 3.4).

2. Proposals

2.1 Data support models

The inference of abstraction for propositional logic (Kido, 2025a,b) is insufficient to handle prob-
lems like Examples 1 and 2. We thus propose the inference of abstraction for predicate logic in this
section. Let {d1, d2, ..., dK} be a multiset of K data and D be a random variable for data taking
values from {d1, d2, ..., dK}.
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Definition 1. Let dk ∈ {d1, d2, ..., dK}. The probability of dk, denoted by p(D = dk), is defined as
follows.

p(D = dk) =
1

K
(1)

Namely, p(D) is a uniform distribution. Let C, V , F and P be the sets of constants, variables,
function symbols and predicate symbols, respectively, and L be the predicate language built with
these vocabularies.

Example 3. Consider the following vocabularies of a predicate language.

• Constants: C = {alice, bob}

• Variables: V = {x, y}

• Function symbols: F = {mentor}

• Predicate symbols: P = {Blames}

The following is a predicate formula meaning that Alice’s mentor blames everyone who blames
someone.

∀x(∃y(Blames(x, y)) → Blames(mentor(alice), x))

In this paper, we assume that the predicate language includes only formulas without free vari-
ables, i.e., closed formulas.1 We exclude open formulas for the following reasons. First, it is
inappropriate to view an assignment in predicate logic as an abstraction, or selective ignorance, of
data or observations. Its inclusion thus does not fit the underlying idea of the inference of abstrac-
tion. Second, a lot of cases such as Examples 1 and 2 do not need open formulas. Its inclusion thus
makes our formalism unnecessarily complicated.

As usual, a model in predicate logic is a pair of a domain of discourse and valuation function.
The domain of discourse, denoted by u, is a non-empty set of a finite or countably infinite number
of entities. The valuation function, denoted by v, is a function that associates constants, function
symbols and predicate symbols with u. We use the symbol ar(x) to denote the arity of the function
or predicate symbol x. Specifically,

• v maps each constant c ∈ C to an entity of u, i.e., v(c) ∈ u.2

• v maps each function symbol f ∈ F to an ar(f)-ary function from u to uar(f), i.e., v(f) :
uar(f) → u.

• v maps each predicate symbol P ∈ P to a subset of uar(P ), i.e., v(P ) ⊆ uar(P ).

1. The truth values of closed formulas depend only on a model, whereas the truth values of open formulas, i.e., formulas
with free variables, depend additionally on an assignment, a function mapping each variable to an entity in the domain
of discourse.

2. We assume that v is surjective with respect to C, meaning that there is constant c ∈ C such that v(c) = e, for all
entities e ∈ u. This assumption allows us to apply simple semantics of predicate logic.
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From the viewpoint of the inference of abstraction, it is important to adopt the perspective that
each model represents a different state of the world. For any function symbol f ∈ F , we write
v(f)(v(t1), ..., v(tar(f))) as v(f(t1, ..., tar(f))), where t1, t2, ...tar(f) are the arguments of f called
terms referring to constants, variables or functions.

Let {m1,m2, ...,mN} be the set of models of the predicate language L. This set is finite or
countably infinite. Let M be a random variable for the models taking values from {m1,m2, ...,mN}.
We assume that each data point supports a single model. We thus assume a function m : {d1, d2, ..., dK} →
{m1,m2, ...,mN} such that m(dk) denotes the model supported by data dk.

Definition 2. Let dk ∈ {d1, d2, ..., dK} and mn ∈ {m1,m2, ...,mN}. The probability of mn given
dk, denoted by p(M = mn|D = dk), is defined as follows.

p(M = mn|D = dk) =

{
1 if mn = m(dk)

0 otherwise
(2)

We use the symbols u(mn) and v(mn) to denote the domain of discourse and the valuation
function of the model mn, i.e., mn = ⟨u(mn), v(mn)⟩. Thus, the model supported by data dk can
be written as m(dk) = ⟨u(m(dk)), v(m(dk))⟩.

Example 4. Consider the predicate language L built with the following vocabularies.

• Constants: C = {alice, bob}

• Variables: V = {x, y}

• Function symbols: F = ∅

• Predicate symbols: P = {Blames}

The top layer of the hierarchy shown on the right in Figure 1 shows twenty data. Given u = {⊙,⊕},
the middle layer shows all the thirty two models ⟨u, v⟩ of the language L. The depth of the middle
layer shows how the valuation function v associates the constants alice and bob with u. Its width
shows how v associates the predicate symbol Blames to u, where an arrow from x to y represents
that x blames y. Each blank cell in the middle layer is not a model due to the assumption we
made in Footnote 2. The arrow from the top to middle layers represent a function m. The twenty
data dk commonly say that there are two people ⊙ and ⊕ named Alice and Bob, respectively , i.e.,
u(m(dk)) = {⊙,⊕}, v(m(dk))(alice) = ⊙ and v(m(dk))(bob) = ⊕. Each data point, however,
supports a different situation. Specifically, the functions m and v are given as follows, for all data
dk.

m(dk) =



m1 if k ∈ {1-7}
m4 if k ∈ {8-11}
m7 if k ∈ {12-17}
m11 if k ∈ {18}
m13 if k ∈ {19, 20}

v(m(dk))(Blames) =



∅ if k ∈ {1-7}
{(⊙,⊕), (⊕,⊙)} if k ∈ {8-11}
{(⊙,⊙), (⊙,⊕)} if k ∈ {12-17}
{(⊙,⊕), (⊕,⊕)} if k ∈ {18}
{(⊙,⊙), (⊕,⊕)} if k ∈ {19, 20}
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2.2 Models support formulas

We are interested in the probability of predicate formula α ∈ L being true or false. We thus assume
that each formula is a random variable taking values from {0, 1}. For any truth values v ∈ {0, 1},
we use the symbol [[α = v]] to denote the set of models where α has the truth value v. We often
write [[α = v]]mn = 1 if mn ∈ [[α = v]] and [[α = v]]mn = 0 otherwise for the membership of the
model. We call formulas with neither logical connectives, such as ¬, ∨, ∧ and →, nor quantifiers,
such as ∀ and ∃, atomic formulas. Let mn = ⟨u, v⟩ be a model. As usual, the truth value of an
atomic formula without variables is defined as follows.

[[P (t1, ..., tar(P ))]]mn =

{
1 if (v(t1), ..., v(tar(P ))) ∈ v(P )

0 otherwise

Let α, β ∈ L be formulas and mn = ⟨u, v⟩ be a model. As usual, the truth values of compound
formulas with logical connectives are defined as follows.

[[¬α]]mn = 1 ⇔ [[α]]mn = 0

[[α ∧ β]]mn = 1 ⇔ [[α]]mn = 1 and [[β]]mn = 1 ⇔ min{[[α]]mn , [[β]]mn}
[[α ∨ β]]mn = 1 ⇔ [[α]]mn = 1 or [[β]]mn = 1 ⇔ max{[[α]]mn , [[β]]mn}
[[α → β]]mn = 1 ⇔ [[α]]mn = 0 or [[β]]mn = 1 ⇔ max{1− [[α]]mn , [[β]]mn}

Let us use the symbol α[c/x] to denote the formula replacing all the free variables x ∈ V in the
formula α by the constant c ∈ C. Here, a variable x is free if there is no quantifier bounding x or
x is outside the scope of such quantifiers. As usual, the truth values of compound formulas with
quantifiers are defined as follows.3

[[∀x α]]mn = 1 ⇔ [[α[c/x]]]mn = 1, for all c ∈ C ⇔ min
c∈C

{[[α[c/x]]]mn}

[[∃x α]]mn = 1 ⇔ [[α[c/x]]]mn = 1, for some c ∈ C ⇔ max
c∈C

{[[α[c/x]]]mn}

We say that a formula α ∈ L is true in a model mn or mn satisfies, or supports, α if [[α]]mn = 1.
We also write [[α]]mn = 1 as mn ∈ [[α]].

Example 5 (Continued). Let us find the models where everyone blames someone, i.e., ∀x∃y Blames(x, y),
is true. Each atomic formula has the following truth value (see Figure 1).

[[Blames(alice, alice)]] = {mn|n ∈ {5-8, 13-16, 25-32}}
[[Blames(alice, bob)]] = {mn|n ∈ {3, 4, 7, 8, 11, 12, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32}}
[[Blames(bob, alice)]] = {mn|n ∈ {2, 4, 6, 8, 10, 12, 14, 16, 19, 20, 23, 24, 27, 28, 31, 32}}
[[Blames(bob, bob)]] = {mn|n ∈ {9-16, 21-24, 29-32}}

3. This definition is based on the assumption we made in Footnote 2. With this assumption, we can define the truth
solely in terms of constants, without referring to the domain of discourse.
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The compound formula, ∀x∃y Blames(x, y), thus has the following truth value.

[[∀x∃y Blames(x, y)]]mn = min
c1∈C

{
[[∃y Blames(c1, y)]]mn

}
= min

c1∈C

{
max
c2∈C

{
[[Blames(c1, c2)]]mn

}}
= min

{
max

{
[[Blames(alice, alice)]]mn , [[Blames(alice, bob)]]mn

}
,

max
{
[[Blames(bob, alice)]]mn , [[Blames(bob, bob)]]mn

} }

=


1 if n ∈ {3-8, 11-16, 18, 20, 22, 24-32} ∩ {2, 4, 6, 8-16, 19-24, 27-32}, i.e.,

if n ∈ {4, 6, 8, 11-16, 20, 22, 24, 27-32}
0 otherwise

The probability of the truth of a formula is defined using the semantics of predicate logic.

Definition 3. Let µ ∈ [0.5, 1], dk ∈ {d1, d2, ..., dK}, mn ∈ {m1,m2, ...,mN}, α1, α2, ..., αI ∈ L
and v1, v2, ..., vI ∈ {0, 1}. The probability of α1 = v1 given α2 = v2, ..., αI = vI , M = mn and
D = dk, denoted by p(α1 = v1|α2 = v2, ..., αI = vI ,M = mn, D = dk), is defined as follows.

p(α1 = v1|α2 = v2, ..., αI = vI ,M = mn, D = dk) =

{
µ if mn ∈ [[α1 = v1]]

1− µ otherwise

If we adopt the convention that 00 = 1 then Definition 3 can be expressed as a Bernoulli
distribution with parameter µ.

p(α1 = v1|α2 = v2, ..., αI = vI ,M = mn, D = dk) = µ[[α1=v1]]mn (1− µ)1−[[α1=v1]]mn

In Figure 1, the arrows from the middle to the bottom layer of the hierarchy shown on the right
indicate that the predicate formula is true in these models. The following probabilistic property of
conditional independence comes directly from the property of predicate logic.

Proposition 1. Let α1, α2 ∈ L. α1 is conditionally independent of α2 and D given M , i.e.,
p(α1|α2,M,D) = p(α1|M).

Proof. See Appendix.

From the equation in Proposition 1, we can simplify Definition 3 as follows.

p(α1 = v1|M = mn) = µ[[α1=v1]](1− µ)1−[[α1=v1]] (3)

The following example shows why we need to assume µ ∈ [0.5, 1], rather than simply µ = 1.

Example 6 (Continued.). Let µ = 1 and α = Blames(alice, bob) ∧ ¬Blames(alice, bob). Using
the definition of conditional probability, the sum rule, the product rule and Proposition 1, we have

p(M = m4|α) =
p(M = m4, α)

p(α)
=

p(M = m4, α)∑32
n=1 p(M = mn, α)

=
p(α|M = m4)p(M = m4)∑32

n=1 p(α|M = mn)p(M = mn)
=

(1− µ)p(M = m4)∑32
n=1(1− µ)p(M = mn)

=
0

0
.
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Namely, the value is undefined due to division by zero. However, given µ ̸= 1 such as µ approaches
one, denoted by µ → 1, the undefined value can be replaced by a reasonable one.

p(M = m4|α) = lim
µ→1

(1− µ)p(M = m4)∑32
n=1(1− µ)p(M = mn)

=
p(M = m4)∑32
n=1 p(M = mn)

= p(M = m4)

Here,
∑32

n=1 p(M = mn) = 1 as p(M) is the probability distribution over all the models.

In Section 3, we will discuss that µ = 1 corresponds to the logical consequence relation and
µ → 1 corresponds to its natural generalisations. In Figure 1, each arrow between the middle and
bottom layers of the hierarchy shown on the right shows that the model satisfies or supports the
formula, ∀x(∃y(Blames(x, y)) → Blames(alice, x)).

2.3 Predicate reasoning

We can now discuss probabilistic reasoning with predicate language. The following property is
useful to simply our notation.

Proposition 2. Let α ∈ L. p(α = 1) = p(¬α = 0).

Proof. See Appendix.

Therefore, we can write ¬α = 0 as α = 1 and abbreviate α = 1 as α, for all α ∈ L. We also
abbreviate M = mn and D = dk as mn and dk, respectively.

Now, using the sum rule, the product rule and the conditional independence, i.e., Proposition 1,
the probability of α, β ∈ L can be expressed as follows.

p(α, β) =
K∑
k

N∑
n

p(α, β,mn, dk) =
K∑
k

N∑
n

p(α|β,mn, dk)p(β|mn, dk)p(mn|dk)p(dk)

=
K∑
k

N∑
n

p(α|mn)p(β|mn)p(mn|dk)p(dk)

Since p(dk) = 1/K, i.e., Definition 1, and our assumption that each data point supports a single
model, we finally have

p(α, β) =
1

K

K∑
k

N∑
n

p(α|mn)p(β|mn)p(mn|dk) =
1

K

K∑
k

p(α|m(dk))p(β|m(dk)). (4)

We here used
∑N

n p(α|mn)p(β|mn)p(mn|dk) = p(α|m(dk))p(β|m(dk)). This fact is crucially
important in terms of decidability and computational complexity since N can be countably infinite.
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Example 7. Let α be ∀x(∃y(Blames(x, y)) → Blames(alice, x)) shown in Figure 1. The prob-
ability of the formula being true can be evaluated using Equation (4).

p(α) =
1

20

20∑
k=1

p(α|m(dk)) =
1

20

20∑
k=1

µ[[α]]m(dk)(1− µ)1−[[α]]m(dk)

=
1

20

{ ∑
k∈{1-17}

µ1(1− µ)0 +
∑

k∈{18-20}

µ0(1− µ)1
}

=
1

20

{ ∑
k∈{1-17}

µ+
∑

k∈{18-20}

(1− µ)
}
=

17µ+ 3(1− µ)

20

Therefore, p(α) = 17/20 when µ = 1. This result is intuitive as it is the number of data supporting
models where α is true, out of all the twenty data.

3. Evaluations

3.1 Reasoning as learning

The common view in statistics is that observed data are generated from probability distributions
characterised by their parameters. Maximum likelihood estimation (MLE) is the most commonly
used statistical method to estimate the values of unobserved parameters only from observed data.
MLE is defined as Θ̂ = argmaxΘ p(d1, d2, ..., dK |Θ), where each dk is an observed data point and
Θ is the set of parameters of a probability distribution.

Proposition 3. Let {d1, d2, ..., dK} be a multiset of K data and Θ be the parameters of a cat-
egorical distribution. p(M) = Θ̂ if and only if Θ̂ maximises the likelihood of data, i.e., Θ̂ =
argmaxΘ p(d1, d2, ..., dK |Θ).

Proof. See Appendix.

Example 8. Consider the twenty data and thirty two models shown on the top layers of the both
hierarchies in Figure 1. Let K be the total number of data, and Kn be the number of data in the
nth model. We then have p(m1) =

7
20 , p(m4) =

4
20 , p(m7) =

6
20 , p(m11) =

1
20 , p(m13) =

2
20 and

p(mn) = 0, for all the remaining models mn.

3.2 Reasoning from possible information

This section aims to logically characterise the inference of predicative abstraction with µ = 1.
We focus on the relation between models and formulas by marginalising out data, i.e., p(α,M) =∑

k p(α,M,D = dk). As usual, we use the symbol [[∆]] to denote the set of models where all the
formulas in ∆ ⊆ L are true, i.e., [[∆]] =

⋂
α∈∆[[α]]. A model with a non-zero probability is called

possible. We use the symbol [[[∆]]] to denote the set of possible models where all the formulas in
∆ ⊆ L are true, i.e., [[[∆]]] = {mn ∈ [[∆]]|p(mn) ̸= 0}. We write mn ∈ [[∆]] and mn ∈ [[[∆]]] as
[[∆]]mn = 1 and [[[∆]]]mn = 1, respectively. Note that [[∅]] and [[[∅]]] are the sets of all models and

9
221



H. KIDO

all possible models, respectively. We use the empirical consequence relation originally defined for
propositional logic.

Definition 4 ((Kido, 2025a)). Let α ∈ L and ∆ ⊆ L. α is an empirical consequence of ∆, denoted
by ∆ p≡ α, if [[[∆]]] ⊆ [[[α]]].

As usual, α is a logical consequence of ∆, denoted by ∆ p= α, if [[∆]] ⊆ [[α]]. The empirical
consequence relation p≡ is thus a probabilistic generalisation of the logical consequence relation p=.

We write pµ=1(α) and pµ→1(α) when we want to specify the value of µ used in the evaluation.
We often omit it when the value of µ is obvious from the context. We can now logically characterise
the inference of predicative abstraction with µ = 1.

Theorem 1. Let α ∈ L and ∆ ⊆ L such that [[[∆]]] ̸= ∅.

pµ=1(α|∆) =

∑
n[[α]]mn [[[∆]]]mnp(mn)∑

n[[[∆]]]mnp(mn)

Proof. See Appendix.

The assumption of [[[∆]]] ̸= ∅ guarantees that pµ=1(α|∆) involves no division by zero, which
causes an undefined value.

Example 9 (Continued.). Given that everyone blames someone and that everyone is blamed by
someone, what is the probability that Alice blames Bob? Each model determines the truth value of
each atomic formula as follows (see Figure 1).

[[[Blames(alice, alice)]]] = {m7,m13}
[[[Blames(alice, bob)]]] = {m4,m7,m11}
[[[Blames(bob, alice)]]] = {m4}
[[[Blames(bob, bob)]]] = {m11,m13}

Thus, each compound formula has the following truth value.

[[[∀x∃y Blames(x, y)]]]mn = min
c1∈C

{
max
c2∈C

{
[[[Blames(c1, c2)]]]mn

}}
= min

{
max

{
[[[Blames(alice, alice)]]]mn , [[[Blames(alice, bob)]]]mn

}
,

max
{
[[[Blames(bob, alice)]]]mn , [[[Blames(bob, bob)]]]mn

} }
=

{
1 if n ∈ {4, 11, 13}
0 otherwise

[[[∀y∃x Blames(x, y)]]]mn = min
c1∈C

{
max
c2∈C

{
[[[Blames(c2, c1)]]]mn

}}
= min

{
max

{
[[[Blames(alice, alice)]]]mn , [[[Blames(bob, alice)]]]mn

}
,

max
{
[[[Blames(alice, bob)]]]mn , [[[Blames(bob, bob)]]]mn

} }
=

{
1 if n ∈ {4, 7, 13}
0 otherwise

10
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Now, we can apply Theorem 1 to find the probability.

p(Blames(alice, bob)|∀x∃y Blames(x, y),∀y∃x Blames(x, y))

=

∑
n[[Blames(alice, bob)]]mn [[[∀x∃y Blames(x, y),∀y∃x Blames(x, y)]]]mnp(mn)∑

n[[[∀x∃y Blames(x, y),∀y∃x Blames(x, y)]]]mnp(mn)

=

∑
n∈{4} p(mn)∑

n∈{4,13} p(mn)
=

∑
k p(m4|dk)∑

k{p(m4|dk) + p(m13|dk)}
=

4

4 + 2
=

2

3

We added the marginalised data in the last line. p(dk) is canceled out due to its uniformity.

The following fact shows that Theorem 1 is a generalisation of the empirical consequence rela-
tion. The proof can be found in Appendix A.

Corollary 1. Let α ∈ L and ∆ ⊆ L such that [[[∆]]] ̸= ∅. pµ=1(α|∆) = 1 if and only if ∆ p≡ α.

3.3 Reasoning from impossible information

This section aims to logically characterise the inference of predicative abstraction with µ → 1. We
use the maximal possible set originally defined for propositional logic.

Definition 5 ((Kido, 2025a)). Let ∆ ⊆ L. S ⊆ ∆ is a maximal possible subset of ∆ if [[[S]]] ̸= ∅
and [[[S ∪ {α}]]] = ∅, for all α ∈ ∆ \ S.

As usual, S ⊆ ∆ is a maximal consistent subset of ∆ if [[S]] ̸= ∅ and [[S ∪ {α}]] = ∅, for all
α ∈ ∆\S. A maximal possible set is thus a probabilistic generalisation of a maximal consistent set.
We use the symbol MPS(∆) and MCS(∆) to denote the set of the cardinality-maximal possible
subsets of ∆ and the set of cardinality-maximal consistent subsets of ∆, respectively.

Example 10. Let us discuss examples of maximal consistent sets and maximal possible sets in
propositional logic. Consider the hierarchy shown on the left in Figure 1. Let ∆ = {rain,
sprinkler, sprinkler → wet, hot, wet, ¬wet}. The set of the maximal consistent subsets of
∆ is {S1, S2, S3} given as follows.

• S1 = {rain, sprinkler, sprinkler → wet, hot, wet} where [[S1]] = {m6,m8}

• S2 = {rain, sprinkler, hot,¬wet} where [[S2]] = {m14,m16}

• S3 = {rain, sprinkler → wet, hot,¬wet} where [[S3]] = {m10,m12}

Therefore, the set of the cardinality-maximal consistent subsets of ∆ is {S1}, i.e., MCS(∆) =
{S1}. Meanwhile, the set of the maximal possible subsets of ∆ is {S4, S5, S6} given as follows.

• S4 = {rain, sprinkler → wet, hot, wet} where [[[S4]]] = {m4}

• S5 = {sprinkler, sprinkler → wet, hot, wet} where [[[S5]]] = {m24}

• S6 = {sprinkler → wet, hot,¬wet} where [[[S6]]] = {m26,m28}

11
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Therefore, the set of the cardinality-maximal possible subsets of ∆ is {S4, S5}, i.e., MPS(∆) =
{S4, S5}.

We often use the symbol (((∆))) to denote the set of possible models where all the formulas in a
cardinality-maximal possible subset of ∆ are true, i.e., (((∆))) =

⋃
S∈MPS(∆)[[[S]]]. We also use the

symbol ((∆)) to denote the set of models where all the formulas in a cardinality-maximal consistent
subset of ∆ are true, i.e., ((∆)) =

⋃
S∈MCS(∆)[[S]].

Theorem 2. Let α ∈ L and ∆ ⊆ L.

pµ→1(α|∆) =

∑
n[[α]]mn(

⋃
S∈MPS(∆)[[[S]]])mnp(mn)∑

n(
⋃

S∈MPS(∆)[[[S]]])mnp(mn)

Proof. See Appendix.

The denominator of Theorem 2 cannot be zero. For example, (((∅))) =
⋃

S∈MPS(∅)[[[S]]] = [[[∅]]],
where [[[∅]]] is the set of all possible models. All models cannot be impossible by definition.

Example 11 (Continued.). Given that everyone blames someone, everyone is blamed by someone,
and someone blames everyone, what is the probability that Alice blames Bob? Let us use α to denote
Blames(x, y). Each compound formula has the following truth value.

[[[∀x∃y α]]] = {m4,m11,m13} (See Example 9.)

[[[∀y∃x α]]] = {m4,m7,m13} (See Example 9.)

[[[∃x∀y α]]]mn = max
c1∈C

{
[[[∀y Blames(c1, y)]]]mn

}
= max

c1∈C

{
min
c2∈C

{
[[[Blames(c1, c2)]]]mn

}}
= max

{
min

{
[[[Blames(alice, alice)]]]mn , [[[Blames(alice, bob)]]]mn

}
,

min
{
[[[Blames(bob, alice)]]]mn , [[[Blames(bob, bob)]]]mn

} }
=

{
1 if n ∈ {7}
0 otherwise

Now, we can apply Theorem 2 to find the probability.

p(Blames(alice, bob)|∀x∃y α,∀y∃x α,∃x∀y α)

=

∑
n[[Blames(alice, bob)]]mn(((∀x∃y α,∀y∃x α,∃x∀y α)))mnp(mn)∑

n(((∀x∃y α,∀y∃x α,∃x∀y α)))mnp(mn)

=

∑
n[[Blames(alice, bob)]]mn([[[∀x∃y α,∀y∃x α]]] ∪ [[[∀y∃x α,∃x∀y α]]])mnp(mn)∑

n([[[∀x∃y α,∀y∃x α]]] ∪ [[[∀y∃x α,∃x∀y α]]])mnp(mn)

=

∑
n∈{4,7} p(mn)∑

n∈{4,7,13} p(mn)
=

∑
k{p(m4|dk) + p(m7|dk)}∑

k{p(m4|dk) + p(m7|dk) + p(m13|dk)}
=

4 + 6

4 + 6 + 2
=

5

6

We added the marginalised data in the last line. p(dk) is canceled out due to its uniformity.

Theorem 2 implies the following properties, and their proofs can be found in Appendix A. The
certain reasoning, i.e., reasoning with a probability of one, can be characterised in terms of the
empirical consequence relation and its application to cardinality-maximal possible sets.
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Corollary 2. Let α ∈ L and ∆ ⊆ L. pµ→1(α|∆) = 1 if and only if S p≡ α, for all cardinality-
maximal possible subsets S of ∆.

Let us assume (((∆))) = ((∆)). This is the case when all the models satisfying S are possible,
for all cardinality-maximal consistent subsets S of ∆, i.e., [[[S]]] = [[S]], for all S ∈ MCS(∆).
Then, the certain reasoning can be characterised in terms of the logical consequence relation and its
application to cardinality-maximal consistent sets.

Corollary 3. Let α ∈ L and ∆ ⊆ L such that (((∆))) = ((∆)). pµ→1(α|∆) = 1 if and only if
S p= α, for all cardinality-maximal consistent subsets S of ∆.

Let us assume that there is a possible model satisfying ∆, i.e., [[[∆]]] ̸= ∅. Then, the certain
reasoning can be characterised in terms of the empirical consequence relation.

Corollary 4. Let α ∈ L and ∆ ⊆ L such that [[[∆]]] ̸= ∅. pµ→1(α|∆) = 1 if and only if ∆ p≡ α.

Let us assume (((∆))) = ((∆)) and [[[∆]]] ̸= ∅. The certain reasoning can then be characterised in
terms of the logical consequence relation.

Corollary 5. Let α ∈ L and ∆ ⊆ L such that (((∆))) = ((∆)) and [[[∆]]] ̸= ∅. pµ→1(α|∆) = 1 if
and only if ∆ p= α.

The following fact shows that the assumption of [[[∆]]] ̸= ∅ makes µ = 1 and µ → 1 equivalent.

Corollary 6. Let α ∈ L and ∆ ⊆ L such that [[[∆]]] ̸= ∅. pµ→1(α|∆) = pµ=1(α|∆).

The following is the summary of Sections 3.2 and 3.3. There is an arrow from property x to
property y when x is more general than y. Each arrow specifies the assumption of y that makes it
less general than x.

Theorem 1
p(α|∆)=1−−−−−−→ Corollary 1

Theorem 2
p(α|∆)=1−−−−−−→ Corollary 2

(((∆)))=((∆))−−−−−−−→ Corollary 3
[[[∆]]]̸=∅−−−−→ Corollary 5

Corollary 2
[[[∆]]] ̸=∅−−−−→ Corollary 4

(((∆)))=((∆))−−−−−−−→ Corollary 5

3.4 Applicability

This section aims to show the applicability of the inference of predicative abstraction. We discuss a
solution to a simple example, similar to Examples 1 and 2, that is often difficult to solve by existing
AI approaches. Consider the following simple arithmetic quiz for testing one’s abstract and logical
thinking skills.

Example 12. Which one of the following data d3, d4 and d5 is a companion of d1 and d2?
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The correct answer could be d4. Only d1, d2 and d4 satisfy the following arithmetic rule.

top × left + right = bottom

We assume the following vocabularies for the usual arithmetic operations.

C = {‘i’, left, right, top, bottom|i ∈ R}
F = {‘ + ’, ‘ − ’, ‘ × ’, ‘ ÷ ’}, where ar(·) = 2, for all ‘ · ’ ∈ F
P = {‘ = ’}, where ar(‘ = ’) = 2

C comprises the constants for the real numbers i ∈ R and for the four numbers located to the left,
right, top and bottom. We assume no variables, i.e., V = ∅. Here, left, right, top, bottom are not
variables since each of them has a single value for each data point. We omit the symbol ‘’ when
it is obvious that its inside is a vocabulary of a predicate language. We use the infix notation for
readability. Let w, x, y and z be the numbers on the left, right, top and bottom of a data point,
respectively. Since we are interested in the usual arithmetic operations, we assume the function m
that maps each dk to the model m(dk) = ⟨u(m(dk)), v(m(dk))⟩ given as follows.

u(m(dk)) = R
v(m(dk))(‘i’) = i, for all i ∈ u(m(dk))

v(m(dk))(left) = w

v(m(dk))(right) = x

v(m(dk))(top) = y

v(m(dk))(bottom) = z

v(m(dk))(‘ · ’)(i, j) = i · j, for all ‘ · ’ ∈ F
v(m(dk))(‘=’) = {(i, i)|i ∈ u(m(dk))}

Note that only the assignments to left, right, top, bottom depend on individual data, and the other
assignments depend only on the arithmetic rule.

Our solution is based on two modes of the inference of abstraction. The first mode is the
inference over d1 and d2, which aims to extract an abstract rule from the concrete data using the
following equation.

α̂ = argmax
α∈L

p(α) (5)

The second mode is the inference over d3, d4 and d5, which aims to apply the extracted abstract rule
to the concrete data using the following equation.

β̂ = argmax
β∈L

p(β|α̂) (6)

Equations (5) and (6) are computationally intractable, since the predicate language generally has
the infinite number of formulas. It is beyond the scope of this paper to fully discuss how to explore

14
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the infinite language space. We here simply search for a formula with a small number of logical
connectives for a simple explanation, which conforms to Occam’s razor. Now, let µ = 1. α̂ =
(top × left + right = bottom) satisfies Equation (5).

p(α̂) =
∞∑
n=1

2∑
k=1

p(α̂,mn, dk) =
∞∑
n=1

2∑
k=1

p(α̂|mn)p(mn|dk)p(dk)

=

2∑
k=1

p(α̂|m(dk))p(dk) =
1

2

2∑
k=1

[[α̂]]m(dk) = 1

Now, β̂ = (bottom = 18) satisfies Equation (6).

p(β̂|α̂) =

∑∞
n=1

∑5
k=3 p(β̂, α̂,mn, dk)∑∞

n=1

∑5
k=3 p(α̂,mn, dk)

=

∑∞
n=1

∑5
k=3 p(β̂|mn)p(α̂|mn)p(mn|dk)p(dk)∑∞

n=1

∑5
k=3 p(α̂|mn)p(mn|dk)p(dk)

=

∑5
k=3 p(β̂|m(dk))p(α̂|m(dk))∑5

k=3 p(α̂|m(dk))
=

∑5
k=3[[β̂]]m(dk)[[α̂]]m(dk)∑5

k=3[[α̂]]m(dk)

=
1

1

4. Conclusions and Future Work

In this paper, we asked how predicate reasoning should be grounded in data for meaningful abstrac-
tion. We proposed the inference of abstraction by simply modelling the idea that an intrinsically
abstract predicate formula is a selective ignorance of the models of a predicate language and each of
the models is a selective ignorance of intrinsically concrete observed data. We showed that the idea
is not only enough to characterise the logical consequence relation of predicate logic but also to gen-
eralise it for the empirical consequence relation and its application to cardinality-maximal possible
sets. The simple yet unconventional idea suggests a fresh perspective to rethink various impor-
tant issues such as symbol grounding, computationally tractable predicate reasoning, commonsense
reasoning, and reasoning from an inconsistent and impossible source of information.

An interesting direction in future work is to study how to define the function m so that it accu-
rately maps data to models, as depicted by the arrows from the top to middle layers in Figure 1. A
more fundamental question is how an agent should decide which vocabularies to use in its predicate
language for creative abstraction of data.
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Appendix A. Proofs

Proposition 1. Using the definition of conditional probability, the right-hand side can be written as

p(α1|M) =
p(α1,M)

p(M)
.

Using the sum rule (Bishop, 2006) and the product rule (Bishop, 2006) of probability theory, its
numerator can be expanded as

p(α1,M) =
∑
v2

∑
dk

p(α1, α2 = v2,M,D = dk)

=
∑
v2

∑
dk

p(α1|α2 = v2,M,D = dk)p(α2 = v2,M,D = dk).

Now, it is obvious from Definition 3 that neither α2 nor D affects the value of p(α1|α2 = v2,M,D =
dk). We can thus move it outward. Using the sum rule, we have

p(α1,M) = p(α1|α2,M,D)
∑
v2

∑
dk

p(α2 = v2,M,D = dk) = p(α1|α2,M,D)p(M).

Taking into accout the denominator, the original expression can be written as

p(α1|M) =
p(α1|α2,M,D)p(M)

p(M)
= p(α1|α2,M,D).

Proposition 2. α is true in a model iff ¬α is false in the model. Thus, [[α = 1]] = [[¬α = 0]]. Using
the sum rule, the product rule and Proposition 1, we have

p(α = 1) =
∑
mn

p(α = 1|M = mn)p(M = mn) =
∑
mn

µ[[α=1]]mn (1− µ)1−[[α=1]]mnp(M = mn)

=
∑
mn

µ[[¬α=0]]mn (1− µ)1−[[¬α=0]]mnp(M = mn)

=
∑
mn

p(¬α = 0|M = mn)p(M = mn) = p(¬α = 0).

This holds regardless of the value of µ.

Proposition 3. Let K be the total number of data, and Kn be the number of data in the nth category
or model. The maximum likelihood estimate of the parameter θn for a categorical distribution is
simply known as the relative frequency of data, i.e.,

θn =
The number of data in the nth category

The total number of data
=

Kn

K
.
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Therefore, the maximum likelihood estimate is given by

Θ̂ = (
K1

K
,
K2

K
, ....,

KN

K
).

Let mn be a model of predicate logic. Using the sum and product rules, we have

p(mn) =
∑
k

p(mn, dk) =
∑
k

p(mn|dk)p(dk) =
1

K

∑
k

p(mn|dk) =
Kn

K
.

Therefore, we have p(M) = Θ̂.

Theorem 1. Using the definition of conditional probability and the conditional independence we
showed in the previous section, we have

p(α|∆) =
p(α,∆)

p(∆)
=

∑
n p(α,∆,mn)∑
n p(∆,mn)

=

∑
n p(α|mn)p(∆|mn)p(mn)∑

n p(∆|mn)p(mn)
.

Dividing models into possible ones, i.e., [[[∆]]], and the others, we have

p(α|∆) =

∑
mn∈[[[∆]]] p(α|mn)p(∆|mn)p(mn) +

∑
mn /∈[[[∆]]] p(α|mn)p(∆|mn)p(mn)∑

mn∈[[[∆]]] p(∆|mn)p(mn) +
∑

mn /∈[[[∆]]] p(∆|mn)p(mn)
.

Since µ = 1, p(∆|mn) can be expanded as follows.

p(∆|mn) =
∏
β∈∆

p(β|mn) =
∏
β∈∆

1[[β]]mn01−[[β]]mn =

{
1 if mn ∈ [[∆]]

0 otherwise

Thus, p(∆|mn) = 0, for all mn /∈ [[∆]]. Moreover, p(mn) = 0, for all mn ∈ [[∆]] \ [[[∆]]]. These two
facts imply that

∑
mn /∈[[[∆]]] p(∆|mn)p(mn) = 0. Since p(∆|mn) = 1, for all mn ∈ [[[∆]]], we have

p(α|∆) =

∑
mn∈[[[∆]]] p(α|mn)p(mn)∑

mn∈[[[∆]]] p(mn)
=

∑
n[[[∆]]]mnp(α|mn)p(mn)∑

n[[[∆]]]mnp(mn)
.

Since µ = 1, p(α|mn) can be developed as follows.

p(α|mn) = 1[[α]]mn01−[[α]]mn =

{
1 if mn ∈ [[α]]

0 otherwise

Therefore,

p(α|∆) =

∑
n[[α]]mn [[[∆]]]mnp(mn)∑

n[[[∆]]]mnp(mn)
.
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Corollary 1. p(mn) = 0, for all mn ∈ [[α]] \ [[[α]]]. From Theorem 1, we thus have

pµ=1(α|∆) =

∑
n[[α]]mn [[[∆]]]mnp(mn)∑

n[[[∆]]]mnp(mn)
=

∑
n[[[α]]]mn [[[∆]]]mnp(mn)∑

n[[[∆]]]mnp(mn)
.

The above equation turns out to be one if and only if [[[∆]]] ⊆ [[[α]]], i.e., ∆ p≡ α.

Theorem 2. Let the symbols |∆| and |∆|mn denote the number of formulas in ∆ and the number of
formulas in ∆ that are true in the model mn, i.e., |∆|mn =

∑
β∈∆[[β]]mn , respectively. Using the

definition of conditional probability and the conditional independence we showed in the previous
section, we have

p(α|∆) =
p(α,∆)

p(∆)
=

∑
n p(α,∆,mn)∑
n p(∆,mn)

=

∑
n p(α|mn)p(∆|mn)p(mn)∑

n p(∆|mn)p(mn)
.

Dividing models into ones in (((∆))) and the others, we have

p(α|∆) =

∑
m̂n∈(((∆))) p(α|m̂n)p(∆|m̂n)p(m̂n) +

∑
mn /∈(((∆))) p(α|mn)p(∆|mn)p(mn)∑

m̂n∈(((∆))) p(∆|m̂n)p(m̂n) +
∑

mn /∈(((∆))) p(∆|mn)p(mn)
.

p(∆|mn) can be developed as follows, for all models mn.

p(∆|mn) =
∏
β∈∆

p(β|mn) =
∏
β∈∆

µ[[β]]mn (1− µ)1−[[β]]mn

= µ
∑

β∈∆[[β]]mn (1− µ)
∑

β∈∆(1−[[β]]mn ) = µ|∆|mn (1− µ)|∆|−|∆|mn

Therefore, p(α|∆) = limµ→1
W+X
Y+Z where

W =
∑

m̂n∈(((∆))) p(α|m̂n)µ
|∆|m̂n (1− µ)|∆|−|∆|m̂np(m̂n)

X =
∑

mn /∈(((∆))) p(α|mn)µ
|∆|mn (1− µ)|∆|−|∆|mnp(mn)

Y =
∑

m̂n∈(((∆))) µ
|∆|m̂n (1− µ)|∆|−|∆|m̂np(m̂n)

Z =
∑

m/∈(((∆))) µ
|∆|mn (1− µ)|∆|−|∆|mnp(mn).

If mn /∈ (((∆))) then mn is impossible or mn is a possible model of a subset of ∆ that is not a
cardinality-maximal possible subset of ∆. Therefore, p(mn) = 0 or there is m̂n ∈ (((∆))) such
that |∆|mn < |∆|m̂n . |∆|m̂1 = |∆|m̂2 by definition, for all m̂1, m̂2 ∈ (((∆))). The fraction thus
can be simplified by dividing the denominator and numerator by (1 − µ)|∆|−|∆|m̂n . We thus have
p(α|∆) = limµ→1

W ′+X′

Y ′+Z′ where

W ′ =
∑

m̂n∈(((∆))) p(α|m̂n)µ
|∆|m̂np(m̂n)

X ′ =
∑

mn /∈(((∆))) p(α|mn)µ
|∆|mn (1− µ)|∆|m̂n−|∆|mnp(mn)

Y ′ =
∑

m̂n∈(((∆))) µ
|∆|m̂np(m̂n)

Z ′ =
∑

mn /∈(((∆))) µ
|∆|mn (1− µ)|∆|m̂n−|∆|mnp(mn).
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Applying the limit, we can cancel out X ′ and Z ′.

p(α|∆) = lim
µ→1

∑
m̂n∈(((∆))) p(α|m̂n)p(m̂n)∑

m̂n∈(((∆))) p(m̂n)
=

∑
m̂n∈(((∆))) 1

[[α]]m̂01−[[α]]m̂np(m̂n)∑
m̂n∈(((∆))) p(m̂n)

.

By convention, 1[[α]]m̂n01−[[α]]m̂n = 1100 = 1 if m̂n ∈ [[α]] and 1[[α]]m̂n01−[[α]]m̂n = 1001 = 0
otherwise. Therefore,

p(α|∆) =

∑
m̂n∈(((∆)))[[α]]m̂np(m̂n)∑

m̂n∈(((∆))) p(m̂n)
=

∑
n[[α]]mn(((∆)))mnp(mn)∑

n(((∆)))mnp(mn)
. (7)

Corollary 2. Recall that S p≡ α is defined as [[[S]]] ⊆ [[[α]]]. [[[S]]] ⊆ [[[α]]], for all S ∈ MPS(∆) iff⋃
S∈MPS(∆)[[[S]]] ⊆ [[[α]]], i.e., (((∆))) ⊆ [[[α]]]. Since

∑
mn∈(((∆)))[[α]]mnp(mn) =

∑
mn∈(((∆)))[[[α]]]mnp(mn),

Equation (7) can be further expanded as follows, where the resulting value is set to one.

p(α|∆) =

∑
n[[[α]]]mn(((∆)))mnp(mn)∑

n(((∆)))mnp(mn)
= 1 (8)

There is thus no model mn such that mn ∈ [[[α]]] \ (((∆))). Therefore, (((∆))) ⊆ [[[α]]].

Corollary 3. Since (((∆))) = ((∆)), Equation (7) can be expanded as follows, where the resulting
value is set to one.

p(α|∆) =

∑
n[[α]]mn((∆))mnp(mn)∑

n((∆))mnp(mn)
= 1 (9)

Since (((∆))) = ((∆)), p(mn) ̸= 0, for all mn ∈ ((∆)). Thus, Equation (9) holds iff ((∆)) ⊆ [[α]],
i.e.,

⋃
S∈MCS(∆)[[S]] ⊆ [[α]]. This holds iff [[S]] ⊆ [[α]], for all S ∈ MCS(∆).

Corollary 4. Since [[[∆]]] ̸= ∅, MPS(∆) = ∆. Thus, (((∆))) =
⋃

S∈MPS(∆)[[[S]]] = [[[∆]]]. There-
fore, Equation (8) can be written as follows.

p(α|∆) =

∑
n[[[α]]]mn [[[∆]]]mnp(mn)∑

n[[[∆]]]mnp(mn)
= 1 (10)

The denominator cannot be zero because of the assumption of [[[∆]]] ̸= ∅. From Equation (10),
p(α|∆) = 1 iff [[[∆]]] ⊆ [[[α]]].

Corollary 5. Since [[[∆]]] ̸= ∅, MPS(∆) = ∆. Thus, (((∆))) =
⋃

S∈MPS(∆)[[[S]]] = [[[∆]]]. Namely,
there is a possible model where all the elements of ∆ are true. Therefore, there is a model where
all the elements of ∆ are true, i.e., ((∆)) = [[∆]]. Since (((∆))) = ((∆)), we therefore have (((∆))) =
[[[∆]]] = ((∆)) = [[∆]]. From Equation (7), we have

p(α|∆) =

∑
n[[α]]mn [[∆]]mnp(mn)∑

n[[∆]]mnp(mn)
= 1. (11)

The denominator cannot be zero as [[∆]] = [[[∆]]] ̸= ∅. We thus have p(α|∆) = 1 iff [[∆]] ⊆ [[α]].

Corollary 6. This is obvious from Corollary 1 and Corollary 4.
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