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Abstract
Standard probabilistic models face fundamental challenges such as data scarcity, a large hypothesis
space, and poor data transparency. To address these challenges, we propose a novel probabilistic
model of data-driven temporal propositional reasoning. Unlike conventional probabilistic models
where data is a product of domain knowledge encoded in the probabilistic model, we explore the
reverse direction where domain knowledge is a product of data encoded in the probabilistic model.
This more data-driven perspective suggests no distinction between maximum likelihood parameter
learning and temporal propositional reasoning. We show that our probabilistic model is equivalent
to a highest-order, i.e., full-memory, Markov chain, and it can also be viewed as a hidden Markov
model requiring no distinction between hidden and observable variables. We discuss that limits
provide a natural and mathematically rigorous way to handle data scarcity, including the zero-
frequency problem. We also discuss that a probability distribution over data generated by our
probabilistic model helps data transparency by revealing influential data used in predictions. The
reproducibility of this theoretical work is fully demonstrated by the included proofs.

1. Introduction

Probability theory underlies modern AI (Russell & Norvig, 2020). Probabilistic modelling has
led to various successful AI applications, such as computer vision, speech recognition, and natural
language processing (Pearl, 1988; Bishop, 2006). However, it inherently involves fundamental chal-
lenges such as data scarcity, an exponentially growing hypothesis space, and poor data transparency.
To illustrate these challenges, let us consider the following simple, discrete-time, discrete-state lo-
calisation problem.

Example 1. The left-hand side of Figure 1 shows a building with ten rooms. The room number is
shown in the northwest corner of each room. The two arrows indicate the tracks of a robot, and
dk denotes the data collected by the robot in the room, for all k ∈ {1, 2, ..., 12}. Using the twelve
data, we want to find the location of the robot exploring the building. Suppose that the robot moved
through Rooms 2, 3, and 8. Where is the robot likely to be two time steps after Room 8?

The standard approaches to this problem are probabilistic modelling (Bishop, 2006; Russell &
Norvig, 2020) such as Markov chains and hidden Markov models (Rabiner, 1989; Mor et al., 2021).
However, they are not fundamentally free from the following issues.
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H. KIDO

Figure 1. Left: Twelve data collected by a robot exploring a building with ten rooms. Right (used in Section
2.5): p(x5

10|x1
2, x

2
3, x

3
8) as a function of µ. The case of µ = 1, which corresponds to the semantics of

propositional logic, results in an undefined probability. This singularity can be resolved by taking the limit as
µ→ 1.

The first issue is data scarcity. Since the robot does not experience Room 3, a probabilistic
model naively trained with the twelve data cannot predict the robot location due to zero frequency.
While data smoothing (Murphy & Bach, 2012; Russell & Norvig, 2020) mitigates the problem, it is
effective only when the number of parameters in the probabilistic model is sufficiently small.

The second issue is an exponentially growing hypothesis space. The three data beginning with
d2 best match the known past robot locations. Indeed, assuming d2 corresponds to time step 1,
denoted by Time 1, the series of data correctly explains the robot locations at Time 1 and 3. The
robot is then predicted to be in Room 10 at Time 5. While this idea seems promising, it cannot be
easily generalised using probabilistic models. The number of parameters in an nth-order Markov
chain with r states is (r − 1)× rn. Thus, even this simple problem requires 90, 000 (i.e., 9× 104)
parameters in a 4th-order Markov chain, which takes into account all the past four time steps to
predict the next one.

The third issue is data transparency. The three data beginning with d8 next best match the
known past robot locations. Indeed, assuming d8 corresponds to Time 1, the series of data correctly
explains the robot location at Time 3. The robot is then predicted to be in Room 4, rather than Room
10, at Time 5. Now, the probability of Room 4 should be lower than that of Room 10, considering
the consistency with the known robot locations. However, what if the series of data beginning with
d8 occurs repeatedly? At some point, consistency in quantity may surpass consistency in quality.
To the best of our knowledge, however, standard probabilistic models cannot justify this result with
reference to actual data such as d2 and d8. This is because learning is typically the process of
exploiting data to adjust the parameters of probabilistic models, whereas reasoning is the process of
using the parameters, not the data itself, to make predictions.

In this paper, we propose a novel data-transparent probabilistic model as a simple yet unconven-
tional approach to addressing the aforementioned issues. The key components of the probabilistic
model are data, models (i.e., valuations) in propositional logic and propositional formulas X being
true, for each time step t, denoted by dt, mt and xt, respectively. We will argue that the probability
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of xt, denoted by p(xt), should be given as follows.

p(xt) =
∑
mt

∑
d1

∑
d2

· · ·
∑
dt

p(xt,mt, d1, d2, ..., dt) where

p(xt,mt, d1, d2, ..., dt) = p(xt|mt)p(mt|dt)p(dt|dt−1)p(dt−1|dt−2) · · · p(d1) (1)

Here, the first line is an application of a valid rule of probability theory. The second line is an
application of the probabilistic model we formulate in this paper. We will define p(xt|mt) based on
whether the propositional formula X is true in the model mt at Time t, p(mt|dt) based on whether
the data dt supports the model mt at Time t, and p(dt|dt−1) based on whether the data dt−1 changes
to dt at the next time step. In a nutshell, Equation (1) states that the probability of a formula being
true depends on whether time-dependent data support a model in which the formula is true. We
significantly simplify Equation (1) under the natural assumption that both the data trajectory and the
support relation from data to models are deterministic (see Figure 2 for an intuitive understanding).

The contributions of this paper are summarised as follows. First, this study is inspired by the
inference of abstraction (Kido, 2025a,b), which suggests logical, statistical, and probabilistic justifi-
cations for symbolic reasoning grounded in data. Our probabilistic model additionally incorporates
a transition relation between data while maintaining the theoretical justifications and having essen-
tially linear time complexity with respect to the number of data (see Section 2).

Second, we show that our probabilistic model can be viewed as a highest-order, i.e., most ex-
pressive, Markov chain, in which all the past states are used to predict the current state (see Sections
3.1 and 3.4). One advantage of our model over Markov chains is data transparency. In our model,
propositional reasoning is fully grounded in data as it always occurs between data and formulas, not
between formulas and other formulas (see Section 3.2). Our model can also be viewed as a hidden
Markov model that requires no distinction between observable and hidden states (see Section 3.3).

Third, we challenge the conventional view prevailing across AI, cognitive science, and neu-
roscience that data are assumed to be generated from domain knowledge encoded in probabilistic
models, e.g., (Lee & Mumford, 2003; Itti & Baldi, 2009; Hohwy et al., 2008; Smith et al., 2022;
Tenenbaum et al., 2006; Lake et al., 2015; Dasgupta et al., 2020). Instead, we explore the reverse
direction and investigate how domain knowledge can be generated from data, moving toward fully
data-driven temporal probabilistic reasoning (see Section 2).

2. Temporal propositional abstraction

2.1 Random variables

Let Data = {d1, d2, ..., dK} be a non-empty set of K data. This set is a multiset, where elements
may occur multiple times. For any discrete time t ∈ {1, 2, ..., T}, we assume that Dt is a random
variable taking values in Data. This allows us to handle data that changes over time.

Let V ariables be the set of propositional variables, V alues = {1, 0} be the set of truth values
meaning true and false, respectively, and Models = {m1,m2, ...,mL} be the set of L models, i.e.,
valuations, in propositional logic. As usual, each model is a function, V ariables → V alues, that
maps each propositional variable to a truth value. For any discrete time t, we assume that M t is a
random variable taking values in Models.
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Let L be a propositional language. As usual, formulas are constructed from propositional vari-
ables using the usual logical connectives such as ¬, ∧, ∨, →, ←, and ↔. For any discrete time t
and propositional formula Xi ∈ L, Xt

i is a random variable taking values in V alues. This allows
us to handle the truth values of formulas that vary over time.

In the following sections, we will define the probability distributions over Dt, M t and Xt
i ,

denoted by p(Dt), p(M t) and p(Xt
i ).

Example 2 (Continued from Example 1). The problem illustrated in Figure 1 results in Data =
{d1, d2, ..., d12}. Let Xi be a propositional variable representing that the robot is in Room i, for
all i ∈ {1, 2, ..., 10}. Models then has 210 elements, and each model assigns truth values to the
ten propositional variables differently. X1 → ¬X2

3 is a formula representing that ‘at Time 3, if the
robot is in Room 1 then it is not in Room 2.’ X3

1 → ¬X2 is not a formula as logical connectives can
only connect formulas, not time-indexed random variables.

We introduce some abbreviations for readability. Dt1:t2 denotes the sequence (Dt1 , Dt1+1, ..., Dt2).
The lowercase letter dt denotes a realisation of the random variable Dt. We often write Dt = dt as
dt when it is clear from the context. dt1:t2 denotes the realisation sequence (dt1 , dt1+1, ..., dt2). The
same argument is applied to the other random variables M t and Xt

i and their realisations mt and
xti. In addition, Xt1:t2

i1:i2
denotes the sequence (Xt1:t2

i1
, Xt1:t2

i1+1, ..., Xt1:t2
i2

), and xt1:t2i1:i2
is the sequence of

their realisations. If t1 > t2 or i1 > i2 then the sequence is regarded as being empty, and omitted.
For example, p(X1

1 |D1:1,M1:1, X1:0
1:I , X

1
1:0) = p(X1

1 |D1,M1).
Now, the full joint distribution over all the introduced random variables can be written as follows

using the product rule (Bishop, 2006) of probability theory.

p(D1:T ,M1:T , X1:T
1:I ) =

T∏
t=1

[
p(Dt|D1:t−1,M1:t−1, X1:t−1

1:I )

p(M t|D1:t,M1:t−1, X1:t−1
1:I )

I∏
i=1

p(Xt
i |D1:t,M1:t, X1:t−1

1:I , Xt
1:i−1)

]
(2)

In many cases, we are interested in the marginal distribution over formulas. It can be derived from
the full joint distribution using the sum rule (Bishop, 2006) of probability theory.

p(X1:T
1:I ) =

∑
d1:T∈DataT

∑
m1:T∈ModelsT

p(d1:T ,m1:T , X1:T
1:I )

=
∑

d1:T∈DataT

∑
m1:T∈ModelsT

T∏
t=1

[
p(dt|d1:t−1,m1:t−1, X1:t−1

1:I )

p(mt|d1:t,m1:t−1, X1:t−1
1:I )

I∏
i=1

p(Xt
i |d1:t,m1:t, X1:t−1

1:I , Xt
1:i−1)

]
(3)

In Figure 2, the leftmost graph represents Equation (3) with T = 3 and I = 2. There is an arrow
from each element of the condition to the outcome, for each conditional probability appearing in
Equation (3). Since the graph is a complete directed graph, Equation (3) states that each random
variable can influence each other.
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Figure 2. We show that the three graphical models are equivalent for temporal propositional reasoning.

Example 3 (Continued from Example 2). What is the probability that the robot is in Room 10 at
Time 5 given that it is in Room 2 at Time 1, i.e., p(X5

10 = 1|X1
2 = 1)? We simply write it as

p(x510|x12). Using Equation (3), we have

p(x510|x12) =
p(x12, x

5
10)

p(x12)
=

∑
d1:5∈Data5

∑
m1:5∈Models5

∑
x1:5
1:10\{x1

2,x
5
10}∈V alues48 Z∑

d1:5∈Data5
∑

m1:5∈Models5
∑

x1:5
1:10\{x1

2}∈V alues49 Z

where Z is given as follows.

Z = p(d1:5,m1:5, x1:51:10) =
5∏

t=1

[
p(dt|d1:t−1,m1:t−1, x1:t−1

1:10 )

p(mt|d1:t,m1:t−1, x1:t−1
1:10 )

10∏
i=1

p(xti|d1:t,m1:t, x1:t−1
1:10 , xt1:i−1)

]
In the next section, we discuss how to simplify the result (see Figure 2).

2.2 Data distributions

We have not yet defined any conditional probabilities appearing in Equation (2) or (3). In this
section, we define and use the conditional probability of data to simply those equations. To express
how data changes over time, we assume a function, n : Data→ Data, that maps data at the current
time step to data at the next. |Data| denotes the cardinality of Data.

Definition 1. Let t ∈ {1, 2, ..., T}. The conditional probability of dt given d1:t−1, m1:t−1 and
x1:t−1
1:I is defined as follows.

p(dt|d1:t−1,m1:t−1, x1:t−1
1:I ) =


1

|Data| if t = 1

1 if t ̸= 1 and dt = n(dt−1)

0 otherwise

We derive the following property from Definition 1.

Proposition 1. Let t ∈ {1, 2, ..., T}. Dt is conditionally independent of D1:t−2, M1:t−1 and X1:t−1
1:I

given Dt−1, i.e. p(Dt|D1:t−1,M1:t−1, X1:t−1
1:I ) = p(Dt|Dt−1).
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Figure 3. Left: The data transition. Right: The support relations among data, models in propositional logic,
and propositional formulas over time. There is an arrow from a data point to a model if the data point
evidences the model, which illustrates the function m. There is an arrow from a model to a formula if the
formula is true in the model.

Proof. See Appendix.

Example 4 (Continued from Example 3). It is clear from Figure 1 that the probability distribu-
tion over data can be directly observed from the environment. For k ∈ {1, 2, ..., 12} and t ∈
{2, 3, ..., 12},

p(D1 = dk) =
1

12

p(Dt = dj |Dt−1 = di) =


1 if (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 6),
(7, 1), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12), (12, 12)}

0 otherwise.

The left-hand side of Figure 3 illustrates this result. The arrows are illustrations of the function n
that maps each realisation of Dt−1 to the corresponding realisation of Dt.

From Proposition 1, Equation (2) can be simplified as follows.

p(D1:T ,M1:T , X1:T
1:I ) =

T∏
t=1

[
p(Dt|Dt−1)p(M t|D1:t,M1:t−1, X1:t−1

1:I )

I∏
i=1

p(Xt
i |D1:t,M1:t, X1:t−1

1:I , Xt
1:i−1)

]
(4)

2.3 Model distributions

In this section, we define the conditional probability of models, which appears in Equation (4), and
then analyse its property to further simply the equation. Each model in propositional logic is meant
to represent a state of the world. It is thus natural to think that each model is supported or evidenced
by data observed from the environment. We assume a function, m : Data → Models, that maps
each data point to the corresponding model supported by the data.
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Definition 2. For t ∈ {1, 2, ..., T}, the conditional probability of mt given d1:t, m1:t−1 and x1:t−1
1:I

is defined as follows.

p(mt|d1:t,m1:t−1, x1:t−1
1:I ) =

{
1 if mt = m(dt)

0 otherwise

We derive the following property from Definition 2

Proposition 2. Let t ∈ {1, 2, ..., T}. M t is conditionally independent of D1:t−1, M1:t−1 and
X1:t−1

1:I given Dt, i.e., p(M t|D1:t,M1:t−1, X1:t−1
1:I ) = p(M t|Dt).

Proof. See Appendix.

From Proposition 2, Equation (4) can be simplified as follows.

p(D1:T ,M1:T , X1:T
1:I ) =

T∏
t=1

[
p(Dt|Dt−1)p(M t|Dt)

I∏
i=1

p(Xt
i |D1:t,M1:t, X1:t−1

1:I , Xt
1:i−1)

]
(5)

2.4 Knowledge distributions

In this section, we define the conditional probability of formulas, which appears in Equation (5),
and then analyse its property to further simply the equation. As usual, the truth value of a formula
is determined solely in light of a model based on the semantics of propositional logic. We use the
symbol [[Xi]]ml

to denote the truth value of the formula Xi ∈ L in the model ml ∈Models.

Definition 3. Let µ ∈ [0.5, 1] and t ∈ {1, 2, ..., T}. The conditional probability of xti given d1:t,
m1:t, x1:t−1

1:I and xt1:i−1 is defined as follows.

p(xti|d1:t,m1:t, x1:t−1
1:I , xt1:i−1) =

{
µ if xti = [[Xi]]mt

1− µ otherwise

Namely, the truth value of a formula at a time step depends only on the model at the same time
step. We derive the following property from Definition 3.

Proposition 3. Let t ∈ {1, 2, ..., T} and i ∈ {1, 2, ..., I}. Xt
i is conditionally independent of D1:t,

M1:t−1, X1:t−1
1:I and Xt

1:i−1 given M t, i.e., p(Xt
i |D1:t,M1:t, X1:t−1

1:I , Xt
1:i−1) = p(Xt

i |M t).

Proof. See Appendix.

Example 5 (Continued from Example 4). The data shown in Figure 1 give rise to the following
results regardless of the value of t.

p(Xt
i = 1|M t = m(dk)) =


µ if (k, i) ∈ {(1, 1), (2, 2), (3, 7), (4, 8), (5, 9),
(6, 10), (7, 1), (8, 6), (9, 7), (10, 8), (11, 9), (12, 4)}

1− µ otherwise
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Here, recall that m(dk) is the model supported by data dk. The right-hand side of Figure 3 illus-
trates this result. Note that the hierarchy represents an abstraction relation in the sense that an
element on each layer is selective ignorance of elements of its left layer. In fact, the truth value of
each formula is determined once a model is given, but not vice versa. Each model is determined
once a data point is given, but not vice versa.

From Proposition 3, Equation (5) can be simplified as follows.

Theorem 1. The full joint distribution over D1:T , M1:T and X1:T
1:I is given as follows.

p(D1:T ,M1:T , X1:T
1:I ) =

T∏
t=1

[
p(Dt|Dt−1)p(M t|Dt)

I∏
i=1

p(Xt
i |M t)

]
(6)

Proof. Applications of Propositions 1, 2 and 3.

Equation (6) is the simplest form of the full joint distribution. The centre graph of Figure 2
illustrates the equation, where there are arrows from each of the conditions to the outcome, for all
the conditional probabilities appearing in the equation.

In many cases, we are interested in reasoning over formulas. Obviously, the marginal distribu-
tion over formulas, i.e., Equation (3), can be written as follows using Equation (6).

p(X1:T
1:I ) =

∑
d1:T∈DataT

∑
m1:T∈ModelsT

T∏
t=1

[
p(dt|dt−1)p(mt|dt)

I∏
i=1

p(Xt
i |mt)

]
(7)

Interestingly, Equation (7) can be further simplified. Let nt(dk) denote the data obtained by apply-
ing the function n to the data dk t times.

Theorem 2. The marginal distribution over X1:T
1:I is given as follows.

p(X1:T
1:I ) =

1

K

K∑
k=1

T∏
t=1

I∏
i=1

p(Xt
i |m(nt−1(dk))) (8)

Proof. See Appendix.

Theorem 2 shows the simplest form of the marginal distribution over formulas. The right-hand
side of Figure 2 illustrates the result. There are arrows from the condition to the outcome, for all
the conditional probabilities appearing in Equation (8). Theorem 2 is computationally important as
the omitted summation multiplication

∑
d2
∑

d3 · · ·
∑

dT
∑

m1

∑
m2 · · ·

∑
mT does not change the

result but is computationally intractable. For example, since |Data| = 12 and |Models| = 210 in
Figure 1, Theorem 2 allows us to skip (12× 210)T steps.

Let α and ∆ be an element and a subset of {xti|xti ∈ x1:T1:I }, respectively. Using the sum rule and
Theorem 2, the conditional probability of α given ∆ can be written as follows.

p(α|∆) =
p(α,∆)

p(∆)
=

∑
x1:T
1:I (/∈∆∪{α}) p(x

1:T
1:I )∑

x1:T
1:I (/∈∆) p(x

1:T
1:I )

=

∑K
k=1

∑
x1:T
1:I (/∈∆∪{α})

∏T
t=1

∏I
i=1 p(x

t
i|m(nt−1(dk)))∑K

k=1

∑
x1:T
1:I (/∈∆)

∏T
t=1

∏I
i=1 p(x

t
i|m(nt−1(dk)))

8
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For all xti /∈ ∆ ∪ {α},
∑

xt
i
p(xti|m(nt−1(dk))) = µ+ (1− µ) = 1. Therefore,

=

∑K
k=1

∏
xt
i∈∆∪{α} p(x

t
i|m(nt−1(dk)))∑K

k=1

∏
xt
i∈∆

p(xti|m(nt−1(dk)))
. (9)

The following property regarding the negation connective is useful.

Proposition 4. Let Xi ∈ L and t ∈ {1, 2, ..., T}. p(Xt
i = 0) = p(¬Xt

i = 1).

Proof. See Appendix.

In what follows, we write Xt
i = 0 as ¬Xt

i = 1, and then abbreviate this as ¬xti.

2.5 Examples

This section discusses examples of the probabilistic model we defined and then simplified in the
previous section. To explain the role of µ introduced in Definition 3, we consider the three situations:
µ substituted by 1, µ approaching 1, and µ strictly less than 1, i.e., µ = 1, µ→ 1, and µ ∈ [0.5, 1),
respectively.

Example 6 (Continued from Example 5). Let µ = 1. What is the probability that the robot is
in Room 10 at Time 5 given that it is in Room 2 at Time 1? Using Equation (9) and Data =
{d1, d2, ..., d12}, we have

p(x510|x12) =

∑12
k=1 p(x

1
2|m(dk))p(x

5
10|m(n4(dk)))∑12

k=1 p(x
1
2|m(dk))

=

∑
k∈{2} µ

2 +
∑

k∈{3-6} µ(1− µ) +
∑

k∈{1,7-12}(1− µ)2∑
k∈{2} µ+

∑
k∈{1,3-12}(1− µ)

=
µ2 + 4(1− µ)2 + 7(1− µ)2

µ+ 11(1− µ)
=

1

1
.

This result is natural because there exists data showing that the robot was in Room 10 four time
steps after being in Room 2.

Example 7 (Continued from Example 5). Suppose that the robot was in Rooms 2, 3 and 8 at
Time 1, 2 and 3, respectively. What is the probability that the robot is in Room 10 at Time 5, i.e.,
p(x510|x12, x23, x38). Let µ = 1. Using Equation (9), we have

p(x510|x12, x23, x38)

=

∑12
k=1 p(x

1
2|m(dk))p(x

2
3|m(n(dk)))p(x

3
8|m(n2(dk)))p(x

5
10|m(n4(dk)))∑12

k=1 p(x
1
2|m(dk))p(x

2
3|m(n(dk)))p(x

3
8|m(n2(dk)))

(10)

=

∑
k∈{2} µ

3(1− µ) +
∑

k∈{3-6,8} µ(1− µ)3 +
∑

k∈{1,7,9-12}(1− µ)4∑
k∈{2} µ

2(1− µ) +
∑

k∈{8} µ(1− µ)2 +
∑

k∈{1,3-7,9-12}(1− µ)3

=
µ3(1− µ) + 5µ(1− µ)3 + 6(1− µ)4

µ2(1− µ) + µ(1− µ)2 + 10(1− µ)3
=

0

0
.
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In contrast to Example 6, the probability is not defined due to division by zero. This is because the
twelve data indicate that the robot has never been in Rooms 2, 3 and 8 in this order. Now, let µ
approaching 1, i.e., µ→ 1. We then have

p(x510|x12, x23, x38) = lim
µ→1

µ3(1− µ) + 5µ(1− µ)3 + 6(1− µ)4

µ2(1− µ) + µ(1− µ)2 + 10(1− µ)3

= lim
µ→1

µ3 + 5µ(1− µ)2 + 6(1− µ)3

µ2 + µ(1− µ) + 10(1− µ)2
=

1

1
. (11)

In Equation (10), the summation in the denominator runs over all sequences of three consecutive
data points (i.e., a sliding window of size 3), whereas the summation in the numerator runs over all
sequences of five consecutive data points. In Equation (11), we can cancel (1−µ) that corresponds
to the inconsistency between the condition (x12, x

2
3, x

3
8) and the formulas satisfied by the best three

consecutive data (d2, d3, d4), where x2 and x8 are true in the models supported by d2 and d4,
respectively. The numerator turns out to be the number of five consecutive data points in which x2,
x8 and x10 are true in the models supported by the first, third, and fifth data points, respectively. The
right-hand side of Figure 1 shows the probability as a function of µ. The probability is undefined
due to division by zero when µ is substituted by 1, whereas the limit resolves the singularity by
assigning a reasonable value as µ approaches 1.

Example 8 (Continued from Example 5). We show that µ ∈ [0.5, 1) plays an important role that
cannot be fulfilled when µ = 1 or µ → 1. Consider the data shown on the left-hand side in Figure
4. Using Equation (10), we have

p(x510|x12, x23, x38) =

dk s.t. k∈{2}︷ ︸︸ ︷
µ3(1− µ) +

k∈{3-7,9,12,14}︷ ︸︸ ︷
8µ(1− µ)3 +

k∈{1,8,10,11,13,15,16}︷ ︸︸ ︷
7(1− µ)4

µ2(1− µ)︸ ︷︷ ︸
k∈{2}

+ 4µ(1− µ)2︸ ︷︷ ︸
k∈{7,9,12,14}

+ 11(1− µ)3︸ ︷︷ ︸
k∈{1,3-6,8,10,11,13,15,16}

p(x54|x12, x23, x38) =

dk s.t. k∈{2,7,9,12,14}︷ ︸︸ ︷
5µ2(1− µ)2 +

k∈{8,10,11,13,15,16}︷ ︸︸ ︷
6µ(1− µ)3 +

k∈{1,3-6}︷ ︸︸ ︷
5(1− µ)4

µ2(1− µ)︸ ︷︷ ︸
k∈{2}

+ 4µ(1− µ)2︸ ︷︷ ︸
k∈{7,9,12,14}

+ 11(1− µ)3︸ ︷︷ ︸
k∈{1,3-6,8,10,11,13,15,16}

.

The right-hand side of Figure 4 shows these probabilities as functions of µ. The three consecutive
data starting from d2 best match the condition, i.e., x12, x23 and x38. Specifically, d2 supports the
model in which the robot is in Room 2 at Time 1, and the data two time steps later, d4, supports the
model in which the robot is in Room 8 at Time 3. This leads to the prediction that the robot will be
in Room 10 at Time 5. µ ≳ 0.8 reflects this fact.

Meanwhile, the three consecutive data starting from d7, d9, d12 and d14 all next best match the
same condition. Specifically, d7 implies that d9 supports the model in which the robot is in Room
8 at Time 3, and d9 implies that d10 supports the model in which the robot is in Room 3 at Time 2.
These lead to the different prediction that the robot will be in Room 4 at Time 5. µ ≲ 0.8 reflects
the situation where the matching quantity surpasses the matching quality.
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Figure 4. Left: Data = {d1, d2, ..., d16} collected in the same environment as shown in Figure 1. Right: The
matching quantity is favoured over the matching quality when µ ≲ 0.8.

Note that µ ∈ [0.5, 1) admits a chance that a formula is true in a model where it is actually
false. However, this does not imply an opposition to the semantics of propositional logic. Rather,
we use and extend the semantics to handle formulas concerning unfounded information, such as
unknown and even false information that cannot be made true in light of available data. The paper
(Kido, 2025a) provides the logical justification of this aspect in terms of paraconsistent logic. The
paper (Kido, 2025b) further provides statistical and probabilistic justifications in terms of maximum
likelihood estimation and Bayesian networks.

3. Evaluations

3.1 Markov chains

In this section, we compare the probabilistic model of abstraction with the nth-order, discrete-time,
time-homogeneous Markov chains and hidden Markov models. Let States = {1, 2, ..., N} be the
set of natural numbers for N states. For any discrete time t ∈ {1, 2, ..., T}, St is a random variable
taking values in States. St = i represents that the state is i at Time t. The nth-order Markov chain
defines the full joint distribution as follows.

p(S1:T ) =
T∏
t=1

p(St|St−n:t−1) (12)

Here, we ignore states with time zero or negative times. For example, p(S2|S−1:1) = p(S2|S1).
Maximum likelihood estimation is the statistical method most commonly used to estimate the pa-
rameters of probabilistic models solely from data. It is known that the maximum likelihood estimate
for a categorical distribution is relative frequency (Russell & Norvig, 2020). Equation (12) can then
be written as follows.

p(S1:T ) =
T∏
t=1

|St−n:t|
|St−n:t−1|

(13)
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Here, |Si:j | denotes the number of sequences of consecutive data satisfying Si:j . Let ∆ ⊆ {st|st ∈
s1:T }. Using the sum rule and Equation (13),

p(∆) =
∑

s1:T (/∈∆)

p(s1:T ) =
∑

s1:T (/∈∆)

T∏
t=1

|st−n:t|
|st−n:t−1|

=


∑

s1:T (/∈∆)
��|s

1|
|()|

|s1:2|

��|s
1|

|s2:3|
|s2|

|s3:4|
|s3| · · ·

|sT−2:T−1|
|sT−2|

|sT−1:T |
|sT−1| if n = 1∑

s1:T (/∈∆)
��|s

1|
|()|

���|s1:2|

��|s
1|

|s1:3|
���|s1:2|

|s2:4|
|s2:3| · · ·

|sT−3:T−1|
|sT−3:T−2|

|sT−2:T |
|sT−2:T−1| if n = 2 · · ·∑

s1:T (/∈∆)
��|s

1|
|()|

�
��|s1:2|

��|s
1|

�
��|s1:3|

�
��|s1:2|

�
��|s1:4|

�
��|s1:3| · · ·

����|s1:T−1|
����|s1:T−2|

|s1:T |
����|s1:T−1| if n = T − 1.

(14)

Here, |()| denotes the number of data satisfying no constraints, and thus represents the total number
of data.

We discuss the relationship between Markov chains and the probabilistic model of abstraction.
To relate the propositional language to Markov chains, we use the propositional variable St

i , which
denotes that state S has value i at time t in the Markov chain, i.e., sti (or St

i = 1) iff St = i.
For random variables or their realisations z, we assume that p(z;n) and p(z;µ) represent the

probability p(z) obtained with an nth-order Markov model and with our probabilistic model with
µ, respectively. The symbol ‘;’ denotes that its right-hand side is a variable, but not a random
variable. We can show that our probabilistic model with µ = 1 and µ → 1 and the highest-order,
i.e., full-memory, Markov model trained using maximum likelihood estimation give the same joint
distribution.

Theorem 3. The following relation holds.

p(s1h, s
2
i , ..., s

T
j ;µ = 1) = p(s1h, s

2
i , ..., s

T
j ;µ→ 1)

= p(S1 = h, S2 = i, ..., ST = j;n = T − 1)

Proof. See Appendix.

Any marginal distributions and conditional distributions can be derived from the joint distribu-
tion using valid rules of probability theory. Theorem 3 thus establishes the equivalence between our
probabilistic model and the highest-order Markov chain trained via maximum likelihood estimation.

3.2 Transparency

Probabilistic modelling, including Markov chains, generally exhibits higher transparency compared
to other modern machine learning paradigms such as deep learning and reinforcement learning.
This is mainly because random variables and their dependencies are made explicit in probabilistic
models. However, probabilistic modelling is not highly transparent from the data perspective. This
is because reasoning operates using parameters rather than data. Indeed, learning is the process to
exploit data to adjust the parameters of probabilistic models, whereas reasoning is the process to
exploit the parameters, not the data itself, to make predictions. The following proposition states that
the probabilistic model of abstraction over formulas always refers to data.
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Figure 5. The conditional data distributions make the data reference transparent. Left: Data =
{d1, d2, ..., d12} from Figure 1. Right: Data = {d1, d2, ..., d16} from Figure 4.

Proposition 5. Let α ∈ {xti|xti ∈ x1:T1:I } and ∆ ⊆ {xti|xti ∈ x1:T1:I }. The following relation holds.

p(α|∆) =
∑
dk

p(α|D1 = dk)p(D
1 = dk|∆)

Proof. See Appendix.

Proposition 5 implies that reasoning over formulas is a sort of Bayesian learning (Russell &
Norvig, 2020). In Proposition 5, it is data that are marginalised out to infer formulas from given
formulas. This is in contrast to conventional probabilistic models, in which it is parameters that
are marginalised out to infer data from given data. The former represents more of a data-driven
perspective, while the latter represents a model-driven perspective.

Example 9 (Continued from Examples 7 and 8). Consider the left-hand side in Figure 1 where
Data = {d1, d2, ..., d12}. By definition, d2:T and m1:T are fully determined given d1. The summa-
tions over these values thus can be omitted using nt(d1) and m(nt(d1)), for t ∈ {1, 2, ..., T − 1}.
Let dk ∈ Data. Similar to Equation (11), we have

p(D1 = dk|x12, x23, x38) =
p(D1 = dk, x

1
2, x

2
3, x

3
8)

p(x12, x
2
3, x

3
8)

=
p(x12|m(dk))p(x

2
3|m(n(dk)))p(x

3
8|m(n2(dk)))∑

k∈{2} µ
2(1− µ) +

∑
k∈{8} µ(1− µ)2 +

∑
k∈{1,3-7,9-12}(1− µ)3

=


µ2(1−µ)2

µ2(1−µ)+µ(1−µ)2+10(1−µ)3
if k ∈ {2}

µ(1−µ)2

µ2(1−µ)+µ(1−µ)2+10(1−µ)3
if k ∈ {8}

(1−µ)3

µ2(1−µ)+µ(1−µ)2+10(1−µ)3
if k ∈ {1, 3-7, 9-12}.

The left-hand side of Figure 5 shows the conditional distribution over Data = {d1, d2, ..., d12}.
The right-hand side shows the same type of distribution over Data = {d1, d2, ..., d16} we discussed
in Example 8.
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3.3 Hidden states

In Markov chains, it is typically assumed that the states of interest, often referred to as latent or
hidden variables, are observable from the environment. The assumption does not hold in hidden
Markov models, which instead assume that only effects, often referred to as observable variables,
caused by these states are observable. The hidden and observable variables are clearly distinguished
in the graphical models of hidden Markov models. In this section, we show that such a distinction
is unnecessary for the probabilistic model of abstraction.

Example 10 (Continued from Example 6). Let us revisit Example 6 and assume that the robot
location is a hidden variable. Namely, the robot cannot detect its location from the environment
using its own sensors. Instead, the robot is assumed to be able to perceive the presence of an
obstacle in each direction. Let N , E, S, and W be random variables representing the presence
(denoted, e.g., by N = 1 or n) and the absence (denoted, e.g., by N = 0 or ¬n) of an obstacle
to north, east, south, and west, respectively. The graphical model of the probabilistic model of
abstraction we need to handle this problem is depicted on the left-hand side in Figure 6, where
there is no structural distinction between the hidden and observable variables, i.e., the locations of
robot and the presence of obstacles, respectively.

Now, suppose that the robot was in Rooms 2, 3, and 8 at Time 1, 2, and 3, respectively. By the
assumption, the robot only perceived n, ¬e, ¬s, and ¬w in Room 2, n, ¬e, ¬s, and ¬w in Room 3,
and ¬n, ¬e, s, and ¬w in Room 8. The probability of the robot being in Room 10 at Time 5 is given
as follows.

p(x510|n1,¬e1,¬s1,¬w1, n2,¬e2,¬s2,¬w2,¬n3,¬e3, s3,¬w3)

=

∑12
k=1 p(x

5
10|m(n4(dk)))

∏
a∈{n,¬e,¬s,¬w}A

∏
b∈{n,¬e,¬s,¬w}B

∏
c∈{¬n,¬e,s,¬w}C∑12

k=1

∏
a∈{n,¬e,¬s,¬w}A

∏
b∈{n,¬e,¬s,¬w}B

∏
c∈{¬n,¬e,s,¬w}C

where A = p(a1|m(dk)), B = p(b2|m(n(dk))) and C = p(c3|m(n2(dk))). Using Equation (9),

=

d1,d2︷ ︸︸ ︷
2µ11(1− µ)2 +

d12︷ ︸︸ ︷
µ10(1− µ)3 +

d3︷ ︸︸ ︷
µ9(1− µ)4 +

d4,d7,d9,d11︷ ︸︸ ︷
4µ8(1− µ)5 +

d5,d8︷ ︸︸ ︷
2µ7(1− µ)6 +

d6,d10︷ ︸︸ ︷
2µ6(1− µ)7

µ11(1− µ)︸ ︷︷ ︸
d1

+2µ10(1− µ)2︸ ︷︷ ︸
d2,d12

+4µ8(1− µ)4︸ ︷︷ ︸
d3,d7,d9,d11

+2µ7(1− µ)5︸ ︷︷ ︸
d4,d8

+2µ6(1− µ)6︸ ︷︷ ︸
d5,d10

+µ5(1− µ)7︸ ︷︷ ︸
d6

.

µ = 1 results in undefined values, whereas µ ∈ [0.5, 1) allows us to cancel µ5(1−µ). In particular,
as µ→ 1, we have

= lim
µ→1

2µ6(1− µ) + µ5(1− µ)2 + µ4(1− µ)3 + 4µ3(1− µ)4 + 2µ2(1− µ)5 + 2µ(1− µ)6

µ6 + 2µ5(1− µ) + 4µ3(1− µ)3 + 2µ2(1− µ)4 + 2µ(1− µ)5 + (1− µ)6
= 0.

The right-hand side of Figure 6 illustrates this result, along with the probability of the robot being
in Room 9 at Time 5. Similar to Example 9, the data distribution explains why this is the case.

p(D1 = d1|n1,¬e1,¬s1,¬w1, n2,¬e2,¬s2,¬w2,¬n3,¬e3, s3,¬w3)

= lim
µ→1

µ6

µ6 + 2µ5(1− µ) + 4µ3(1− µ)3 + 2µ2(1− µ)4 + 2µ(1− µ)5 + (1− µ)6
= 1

14
206



A DATA-TRANSPARENT PROBABILISTIC MODEL

Figure 6. p(x5
i |n1,¬e1,¬s1,¬w1, n2,¬e2,¬s2,¬w2,¬n3,¬e3, s3,¬w3), for i ∈ {9, 10} as a function of µ.

Undefined values at µ = 1 can be resolved by the limit as µ→ 1.

Namely, only the three consecutive data from d1 best explain the given presence of obstacles. This
leads to the prediction that the robot location at Time 5 is Room 9, not Room 10.

3.4 Experiments

We consider a discrete-time, discrete-space localisation problem in which a robot moves around a
building with 7×7 locations, identified by coordinates (x, y) with x, y ∈ {1, 2, ..., 7}. All locations
are accessible except those with x, y ∈ {2, 4, 6}, which together constitute a grid-like structure with
40 accessible and 9 inaccessible locations. The robot has a memory that stores the locations visited
for the past ten time steps. We assume that the robot moves around the building at random, but
it avoids entering into any locations stored in the memory. Only exception is that the robot keeps
staying in the same location if all the accessible adjacent locations are in its memory.

The training and test datasets consist of time-series of 1000 and 200 locations actually explored
by the robot, respectively. Figure 7 shows scatter plots comparing temporal abstraction and Markov
chains with different memory size and order. Given µ = 1 and zero smoothing, the first row shows
that both models behave identically, even for states with zero frequency in the training data. Note
that the models shown in the first column experience no zero frequency as the models are simple
enough. Given µ→ 1 and tiny smoothing 10−5, the second row shows that states are predicted very
differently if and only if the states are undefined in the first row. The Markov chain assigns equal
probability, i.e., 1/49(≃ 0.02) to these states. Meanwhile, as discussed in Example 7, the limit
µ→ 1 allows us to make a prediction based on the training data that satisfy the specified past states
as many as possible. Given µ = 0.9 and moderate smoothing 10−1, the third row shows that the
temporal abstraction tends to correctly predict states in the training data with higher probabilities,
especially as the models become more flexible.

The leaning curves depicted on the left in Figure 8 shows that n-memory temporal abstraction
and nth-order Markov chains converge into the same top-1 accuracies when enough training data
is provided. When the number of training data is small with respect to the model flexibility, the
temporal abstraction tends to outperform the Markov chains. The learning curves depicted on the
centre shows that the performance is not very sensitive to the value of µ compared to the memory
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Figure 7. Scatter plots comparing temporal abstraction and Markov chains with different memory size and
order. In each graph, each of the 200 points represents the conditional probability of each state given its past
states. These states are sequentially extracted from the 200 test data, and the probability is calculated using
1000 training data. The ideal model thus assigns probability one to each of the conditional probabilities.
The red circle points plotted outside the probability range are states in the test data that cannot be assigned a
probability due to zero frequency in the training data.

size. The heat map suggests that there is a peak of the top-1 accuracy around memory size 4 and
µ = 0.9.

4. Conclusions

Data is typically a product of domain knowledge encoded in a probabilistic model. We flipped this
long-standing convention and pursued the view that domain knowledge is a product of data encoded
in a probabilistic model. This view allowed us to develop a novel probabilistic model grounding
temporal propositional reasoning in data. The probabilistic model is equivalent to a highest-order
Markov chain trained using maximum likelihood estimation. We discussed how the probabilistic
model dissolves the issues of a huge hypothesis space, data scarcity, and data transparency.
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Figure 8. Left: Learning curves of TA (temporal abstraction) with different memory sizes. We assumed
µ → 1. The baselines are nth-order MCs (Markov chains). One of the highest-probability states is chosen
at random for the top-1 accuracy in case of ties. Centre: Learning curves of 8-memory temporal abstraction
with different µ values. Right: A heat map visualising top-1 accuracies of temporal abstraction with different
combinations of µ values and memory sizes. We assumed 1600 training data. All the results shown in Figure
8 were averaged over the 200 test data.

The importance of world models is widely discussed in AI research. From the logic perspective,
each valuation in propositional logic, or simply each row of a truth table, corresponds to a simple,
static version of the world model. We argued that deriving the world model from data constitutes
abstraction, i.e., selective ignorance. This can be viewed as a sort of a deductive process as it
extracts information contained within the given data. This contrasts with the prevailing view that
deriving the world model from data is an inductive process, which extracts information beyond
the given data. Our view is supported by the fact that it not only provides a simple and unifying
framework for logical reasoning over data, models, and knowledge, but also reduces reasoning with
exponentially growing world models to reasoning that scales linearly with data.
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Appendix A. Proofs

Proposition 1. When t = 1, both the left- and right-hand sides are p(D1). When t ̸= 1, the right
hand side can be expanded as follows for all its realisations.

p(dt|dt−1) =
p(dt−1, dt)

p(dt−1)
=

∑
d1:t−2

∑
m1:t−1

∑
x1:t−1
1:I

p(d1:t,m1:t−1, x1:t−1
1:I )

p(dt−1)

=

∑
d1:t−2

∑
m1:t−1

∑
x1:t−1
1:I

p(dt|d1:t−1,m1:t−1, x1:t−1
1:I )p(d1:t−1,m1:t−1, x1:t−1

1:I )

p(dt−1)

Here, the first line is an application of the sum rule, and the second line is an application of the prod-
uct rule. By definition, the value of p(dt|d1:t−1,m1:t−1, x1:t−1

1:I ) does not depend on d1:t−2, m1:t−1

or x1:t−1
1:I . Therefore, the conditional probability can be moved to the outside of the summations.

=
p(dt|d1:t−1,m1:t−1, x1:t−1

1:I )
∑

d1:t−2

∑
m1:t−1

∑
x1:t−1
1:I

p(d1:t−1,m1:t−1, x1:t−1
1:I )

p(dt−1)

=
p(dt|d1:t−1,m1:t−1, x1:t−1

1:I )p(dt−1)

p(dt−1)
= p(dt|d1:t−1,m1:t−1, x1:t−1

1:I )

The second line is an application of the sum rule for marginalisation.

Proposition 2. The proof has a structure similar to Proposition 1.

p(mt|dt) =

∑
d1:t−1

∑
m1:t−1

∑
x1:t−1
1:I

p(mt|d1:t,m1:t−1, x1:t−1
1:I )p(d1:t,m1:t−1, x1:t−1

1:I )

p(dt)
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By definition, the value of p(mt|d1:t,m1:t−1, x1:t−1
1:I ) depends only on dt. Therefore, the conditional

probability can be moved to the outside of the summations.

=
p(mt|d1:t,m1:t−1, x1:t−1

1:I )
∑

d1:t−1

∑
m1:t−1

∑
x1:t−1
1:I

p(d1:t,m1:t−1, x1:t−1
1:I )

p(dt)

=
p(mt|d1:t,m1:t−1, x1:t−1

1:I )p(dt)

p(dt)
= p(mt|d1:t,m1:t−1, x1:t−1

1:I )

Here, the second line is an application of the sum rule for marginalisation.

Proposition 3. The proof has a structure similar to Propositions 1 and 2.

p(xt
i|mt) =

p(mt, xt
i)

p(mt)
=

∑
d1:t

∑
m1:t−1

∑
x1:t−1
1:I

∑
xt
1:i−1

p(d1:t,m1:t, x1:t−1
1:I , xt

1:i)

p(mt)
=

=

∑
d1:t

∑
m1:t−1

∑
x1:t−1
1:I

∑
xt
1:i−1

p(xt
i|d1:t,m1:t, x1:t−1

1:I , xt
1:i−1)p(d

1:t,m1:t, x1:t−1
1:I , xt

1:i−1)

p(mt)

By definition, the value of p(xti|d1:t,m1:t, x1:t−1
1:I , xt1:i−1) depends only on mt. Therefore, the

conditional probability can be moved to the outside of the summations.

=
p(xt

i|d1:t,m1:t, x1:t−1
1:I , xt

1:i−1)
∑

d1:t

∑
m1:t−1

∑
x1:t−1
1:I

∑
xt
1:i−1

p(d1:t,m1:t, x1:t−1
1:I , xt

1:i−1)

p(mt)

=
p(xt

i|d1:t,m1:t, x1:t−1
1:I , xt

1:i−1)p(m
t)

p(mt)
= p(xt

i|d1:t,m1:t, x1:t−1
1:I , xt

1:i−1)

Here, the second line is an application of the sum rule for marginalisation.

Theorem 2. Equation (7) can be developed as follows by expanding the product over time and the
summations over models.∑

d1:T

∑
m1:T

[
p(d1)p(m1|d1)

I∏
i=1

p(X1
i |m1)...p(dT |dT−1)p(mT |dT )

I∏
i=1

p(XT
i |mT )

]

=
∑
d1:T

[
p(d1)

∑
m1

[
p(m1|d1)

I∏
i=1

p(X1
i |m1)

]
...p(dT |dT−1)

∑
mT

[
p(mT |dT )

I∏
i=1

p(XT
i |mT )

]]
By definition, each data point supports a single model. We can thus remove the model summations.

=
∑
d1:T

[
p(d1)

I∏
i=1

p(X1
i |m(d1))...p(dT |dT−1)

I∏
i=1

p(XT
i |m(dT ))

]
Expanding the summations over data, we have

=
∑
d1

[
p(d1)

I∏
i=1

p(X1
i |m(d1))...

∑
dT

[
p(dT |dT−1)

I∏
i=1

p(XT
i |m(dT ))

]
...

]
.
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By definition, data changes deterministically. We can thus remove the summations over data, for all
time steps except t = 1.

=
∑
d1

[
p(d1)

I∏
i=1

p(X1
i |m(d1))...

I∏
i=1

p(XT
i |m(nT−1(d1)))

]
Here, nT−1(d1) = n(dT−1). Since p(D1) is the uniform distribution over the K data, i.e., Data =
{d1, d2, ..., dK}, we can move p(d1) outwards and then introduce the product over time steps.

Proposition 4. Since the interpretation of Xi conforms to the semantics of propositional logic,
[[Xi]]m(nt−1(dk)) = 0 iff [[¬Xi]]m(nt−1(dk)) = 1. From Theorem 2,

p(Xt
i = 0) =

1

K

K∑
k=1

p(Xt
i = 0|m(nt−1(dk))) =

1

K

K∑
k=1

p(¬Xt
i = 1|m(nt−1(dk))) = p(¬Xt

i = 1).

This holds regardless of the value of µ ∈ [0.5, 1].

Theorem 3. By definition, if formula Si is true in model mt, i.e., [[Si]]mt = 1, then p(sti|mt) = µ =
1, for µ = 1 and µ→ 1. If Si is false in mt, i.e., [[Si]]mt = 0, then p(sti|mt) = 1−µ = 0, for µ = 1
and µ→ 1. We thus have

p(s1h, s
2
i , ..., s

T
j ) =

1

K

K∑
k=1

[
p(s1h|m(dk))p(s

2
i |m(n(dk))) · · · p(sTj |m(nT−1(dk)))

]

=
1

K

K∑
k=1

[
[[Sh]]m(dk)[[Si]]m(n(dk)) · · · [[Sj ]]m(nT−1(dk))

]
.

The expression inside the summation turns out to be one if Sh, Si, ..., Sj are sequentially true in the
models supported by the T consecutive data from dk, and zero otherwise. Since dk ranges from d1
to dK , the summation turns out to be the number of such sequences. From Equation (14),

=
|S1 = h, S2 = i, ..., ST = j|

K
= p(S1 = h, S2 = i, ..., ST = j).

Proposition 5. The left-hand side can be expanded as follows.

p(α|∆) =
p(α,∆)

p(∆)
=

∑
dk

p(α,∆, D1 = dk)

p(∆)

From the the rightmost graph of Figure 2, we have

=

∑
dk

p(α|dk)p(∆|dk)p(dk)
p(∆)

=

∑
dk

p(α|dk)p(dk|∆)p(∆)

p(∆)
=

∑
dk

p(α|dk)p(dk|∆).
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