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Abstract
The stochastic gradient descent algorithm for training neural networks is widely used in many
machine learning tasks. In typical practice, this algorithm operates by choosing a small fraction
of the training data, called a mini-batch, at each iteration to compute an approximation of the
gradient of the objective function to be optimized. Researchers tend to use small batch sizes, where
each mini-batch is selected uniformly across the underlying distribution of categories present in
the training data. While these choices of training procedures are common and often based on
empirical observations, i.e., trial-and-error experiments to aid in hyperparameter selection, there are
few formal investigations into the question of how the order and composition of training data would
affect the training efficiency and generalizability of the neural network. To gain more insight into
this problem, we have investigated effects of training order and the composition of a mini-batch by
conducting a series of controlled experiments. In our experiments, we retrained an existing neural
network model for object recognition with images from the ImageNet data set and from a newly-
collected data set called the Toybox data set. Here, we present initial results from our experiments,
and discuss implications for future work.

1. Introduction

How does an intelligent agent actively learn from its environment? In other words, if a learning
agent can play an active role in selecting its own training data to learn from, what mechanisms
might guide the selection process?

This question has been asked in AI at many times in many different forms, from work in distin-
guishing relevant features and examples from irrelevant ones (Blum & Langley, 1997) to selecting
which examples from an unlabeled data set to label, i.e., active learning (Settles, 2012), for example.

A parallel line of research, curriculum learning, assumes the existence of a “teacher” who can
provide the learner with certain orderings of training data. In one well known study of curriculum
learning, researchers compared the speed of training a network for classifying geometric shapes with
and without the curriculum learning technique. The result of the experiment showed that by feeding
in the basic shapes first and then feeding in the more complex shapes, researchers could achieve
a significantly higher training efficiency, compared to feeding in both kinds of shapes randomly
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(regardless of the complexity) (Bengio et al., 2009). Some following experiments also illustrated
the possibility of automating the curriculum learning process (with LSTM) (Graves et al., 2017).

Additional related work in AI and cognitive science includes research on information foraging
(Pirolli & Card, 1999), ordering in clustering algorithms (Fisher, 1996), and other various types and
levels of information ordering during learning (Langley, 1995; Nerb et al., 2007).

Here, we frame the problem of a learner selecting its own training data in the context of the
stochastic gradient descent algorithm, currently used to train neural networks in many different task
domains. In current practice, each iteration of the training process involves selecting a mini-batch of
examples randomly from the training set, without replacement, and using error estimates summed
over this mini-batch of examples to compute the gradient. The size of the mini-batch, one of many
hyperparameters that must be specified by the system designer, is often determined empirically
through trial-and-error. Many different mini-batch sizes might be evaluated to find the one that
yields the best performance over some validation data set. Random and uniform selection of each
mini-batch is the approach currently used in many neural network applications, including visual
object recognition, which is the task domain we focus on in this paper (Krizhevsky et al., 2012).

However, if we compare neural network learning to human learning, for the task of visual object
recognition, many differences in the “training process” emerge. Human infants learning to recognize
objects do not receive uniform, random selections of all possible object categories to learn from at
a time. Instead, infants receive coherent sequences of inputs covering just one or a few categories
at a time, often through object play (Clerkin et al., 2017). Learning experiments conducted with
people across a variety of ages likewise emphasize the importance of similarities and differences
(and orderings thereof) within a sequence of training experiences (Carvalho & Goldstone, 2014).

Some computational experiments have shown convergence speed difference when using dif-
ferent methods for randomizing the training data in a mini-batch (Bottou, 2009). However, no
experiments have been done (that we are aware of) to systematically investigate the effects of not
using randomization for mini-batch selection in the stochastic gradient descent algorithm.

We envision the learning problem faced by active intelligent agents operating in real, unstruc-
tured environments as a cost-reward tradeoff. For most intelligent agents, like humans, that have
limited attentional bandwidth, the choice of attending to any particular stimulus at any given time
incurs a cost, in that other sources of information are not being attended to at that time. The reward
comes in whatever can be learned from that stimulus at that time. Repeated exposure to the same
stimulus may enhance learning of that stimulus, though comparisons to other stimuli are likely nec-
essary to learn differentiating characteristics, like category boundaries. Do these principles play
a role in human learning, e.g., have infant play behaviors evolved to produce “good” sequences
of training inputs? And could these principles be used to design intelligent agents that self-select
“good” sequences of training inputs that optimize long-term learning outcomes? These are the
primary questions motivating our work.

Our research is not yet at the point where we have defined strategies that learners can use to
optimize the learning value of the training inputs they select. However, our initial experiments
presented here focus on exploring different distributions of training data, and observing what kinds
of differences (if any) might emerge from the training process under these different input conditions.
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In this paper, we design various compositions of mini-batches and examine how different com-
positions of mini-batches could affect the training efficiency for various data sets, where training
efficiency is defined as a measure of network convergence and accuracy. In addition, we explore if
the different compositions of the training data set, which would explicitly affect the composition of
a mini-batch, would indirectly affect the training efficiency.

As mentioned above, we focus on stochastic gradient descent for neural networks, though sim-
ilar experiments will be valuable to conduct using other learning frameworks as well. As found in
many other studies on the ordering of learning experiences, in both AI and cognitive science, we
expect that themes of similarity versus difference, and redundancy versus uniqueness, will emerge
as important factors in how the learning algorithm captures incoming information and deploys it to
deal with new, previously unseen experiences.

2. Experiments, Results and Analysis

2.1 Data Sets

We used two data sets for a series of experiments. One was a subset of the ImageNet data set, a
large-scale hierarchical image database for artificial intelligence research (Deng et al., 2009). The
other one was a newly collected data set called Toybox that has been created by our research team at
Vanderbilt University. The Toybox data set, which contains a collection of first-person views, is used
to learn how the human beings would observe objects for image recognition tasks. Researchers used
wearable cameras to record videos in first-person views that contain different objects and gathered
them into this new data set (Wang et al., 2017). With different frequencies of capturing frames from
videos, researchers could get various numbers of images per object. Different from the images in the
ImageNet data set, which contains various objects with utterly different backgrounds, the Toybox
data set may contain many images of the same object in similar backgrounds. Both data sets contain
12 categories of objects. However, the Toybox data set contains only 30 objects per category, while
the ImageNet data set we used contains 1000 objects per category.

2.2 Three Different Compositions of Mini-Batch

To test how compositions of mini-batches would affect the training efficiency, we designed three
different modes to form a mini-batch. These three modes were selected purely as examples of modes
we thought were likely to lead to different learning outcomes. There are many other interesting
modes that we will explore in future work, including modes that more closely match the types of
sequences experienced by human infants.

The first mode is called uniform mode. In each mini-batch, we will select the same number
of images from each category, either sorting them based on particular criteria or keeping the order
inside a mini-batch randomized, as shown in Figure 1 (left); a specific color denotes a specific
category of objects. For example, if the size of a mini-batch is 100, and we have 10 categories of
objects, then we will select 10 objects from each category for each mini-batch. To make sure that
every single image in the training data set will be used in the training process for the same number
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Figure 1. Illustration of three modes used to investigate different compositions of mini-batches: uniform
mode (left), alternate mode (center), and sequential mode (right). Different colors are used to indicate training
examples from different object categories (e.g., cup, spoon, truck, horse, etc.).

of times, we will at first randomize the order of images for each category, and sequentially select
the same number of images from each category.

The second mode is called alternate mode. Images inside a mini-batch are of the same category.
However, we will change to another category of objects in the subsequent mini-batch, as shown in
Figure 1 (center). For example, if the size of a mini-batch is 100, then at the first step of training, we
will feed in 100 images of category A; at the second step, we will feed in 100 images of category B,
and so on. For this kind of composition, we also have to apply similar method mentioned above to
make sure that every single image in the training data set will be used for the same number of times.

The third mode is called sequential mode. Images inside a mini-batch are of the same category,
and we will sequentially pick images from a particular category before we start to use images from
the subsequent categories, as shown in Figure 1 (right). For example, if the size of a mini-batch
is 100, and each category contains 1000 images, we will keep using 100 different images of the
category A at each step, until we have used all images from the category A (which will take 10
iterations). Then we will start to use images from category B, and so on. For the third kind of
composition, we also have to make sure that every single image in the training data set will be used
for the same number of times during the training process.

2.3 Effects of Mini-Batch Composition

In our experiments for exploring how the composition of a mini-batch would affect the training
efficiency, we will train the Inception-v3 model on selected images from the Toybox data set, and
evaluate on both selected images from the Toybox data set and ImageNet data set. Specifically,
for the training data set, we will select 1080 images per category from the Toybox data set. Each
category will contain 12 different objects, and each object will appear in 90 different images in the
training data set. For each category, 3 objects, other than those 12 objects used for training, will
be used for evaluating the network model. We will make sure that the number of images in the
evaluation set to be 100 per category, and keep the number of images for each object in a category
roughly the same (about 33 images per object).

For the training process, we will use a batch size of 45, a learning rate of 0.01, and 3600 training
iterations in total, so that in every experiment to be completed, every single image in the training
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Figure 2. Measures of training and testing error using mini-batches selected using the uniform mode, across
3600 training iterations.

data set will be used for the same number of times. Besides, during each training step, we will
calculate the training error right before we feed a mini-batch of data into the network model to train
so that we could know how the current model would perform on the current batch of data before the
model is overfitting after the current step of training.

We plot curves of the training error, evaluation error (from both the Toybox and ImageNet data
set), and the cross-entropy for each mode of mini-batch composition in Figure 2, Figure 4 and
Figure 6. For each mode, we also trained for another 240 iterations, so that we can get three extra
plots to show more detailed trends of curves at the beginning of the training process, as shown in
Figure 3, Figure 5 and Figure 7.

Figure 2 and Figure 3 show training process when we were using the uniform mode for the
batch composition. We can see that the training error, evaluation error, and the cross-entropy drop
quickly during the first few iterations, and then slowly decrease, until the evaluation error of both
the Toybox and ImageNet data set reach 0.4 and 0.3 respectively. The convergence of the evaluation
curves is quite chaotic, and it seems that at the later part our training process, the training accuracy
of the network model is not further improved, or the improvement is too small to be visible from
the plot.

Figure 4 and Figure 5 show training process when we were using the alternate mode for the
batch composition. During the first few training iterations, the training error is pretty high. The
reason is that we calculate the training error right before we train the network model, and the model
is overfitting after each step since we would feed in the model with images of the same category
every mini-batch.

Alternating the category of objects and the overfitting problems are also reflected in the sus-
tained and substantial fluctuation of the cross-entropy, which is an indication that the way we feed
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Figure 3. Measures of training and testing error using mini-batches selected using the uniform mode, across
first 240 training iterations.

in the training images is problematic. We can see that the cross-entropy, training error and evaluation
error dropped the most in the first 1000 iterations, yet failed to maintain this trend later on.

Figure 4. Measures of training and testing error using mini-batches selected using the alternate mode, across
3600 training iterations.

Figure 6 and Figure 7 show training process when we were using the sequential mode for the
batch composition. Both plots show apparent periodical patterns on both the training error and
cross-entropy curves. Peaks of both curves are corresponding to the first batches of each category
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Figure 5. Measures of training and testing error using mini-batches selected using the alternate mode, across
first 240 training iterations.

used for training. In this mode, we also feed in the model images of the same category at each
step. However, when we start to feed in a batch of images from a new category, the current network
model is highly likely to categorize these images to be of the previous category, which might cause
an extremely high training error and cross-entropy. The network model then quickly learn from the
new category of objects and start to be overfitting again.

Comparing to the cross-entropy in the previous experiment, cross-entropy we got using the
sequential mode showed even more substantial fluctuation, and it had a severe impact on the training
efficiency. We can see that with the same number of training iterations, the network model could
not even achieve the same evaluation error comparing to models we trained using two other modes.

To more directly compare the training efficiency between three different modes, for each mode,
we completed the training process 50 trials using 1080 images per category from the Toybox data
set, with a batch size of 45 and ran 240 iterations of the training process. For reference, we also
ran another 50 trials using the random mode in which we randomly selected training images for
every mini-batch. Then we plotted probability density estimation curves of average evaluation er-
rors (computed using the evaluation errors against Toybox validation data set) for all four modes.
Distributions of average evaluation errors are shown in Figure 8.

Just as reflected in the previous plots, for a training process of only 240 iterations, we got the
largest average evaluation errors with the sequential mode, followed by the alternate mode. We
got the smallest average evaluation errors with the uniform mode and random mode. Surprisingly,
comparing to the random mode, we got even smaller average evaluation errors on average using the
uniform mode. The reason uniform mode could outperform random mode is that it is guaranteed
in the uniform mode our network model could learn from each category equally at each step so
that the network model could more easily overcome the initial overfitting problem, while it is not
guaranteed when using the random mode. Thus, with our current hyperparameter settings, it is not
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Figure 6. Measures of training and testing error using mini-batches selected using the sequential mode, across
3600 training iterations.

Figure 7. Measures of training and testing error using mini-batches selected using the sequential mode, across
first 240 training iterations.

difficult to observe that the more uniformly training data of each category we distribute within and
across mini-batches, the higher training efficiency we can get.

It is an interesting question to consider whether uniform selection would continue to outperform
random selection in additional experiments and/or task domains. Considering that the network
model (Inception-v3 model in our case) has a considerable amount of neurons, the model may
end up learning something about uniformly distributed batches, just as it may pick up other trivial
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Figure 8. Probability density estimations of average evaluation errors for training regimes using four different
modes.

information (i.e., overfitting) in various ways. Additional experiments are needed to better elucidate
the differences we have identified between uniform and random training data selection methods.

2.4 Effects of Training Data Composition

Besides the way we form a mini-batch, to explore factors that may affect the training efficiency, we
also have to take into account the overall composition of the training data set. In previous experi-
ments, we used 12 objects per category for training and got a reasonably good training accuracy and
efficiency (using the random mode or uniform mode) considering that the diversity of our training
data set is much worse than that of the ImageNet data set. In the following experiments, we will
explore how the diversity of objects (number of different objects in the training data set) and the
number of different images per object in the training data set would affect the training efficiency.

To explore the effects of objects’ diversity, we will keep the number of images per category to
be 1080, and change the number of objects each category contains in the training data set. We will
use the random mode (randomly select training images from the entire training data set) to form
the mini-batch, with a batch size of 45, and run the training for 2880 iterations. We will investigate
how the training accuracy and efficiency would change when there are 2, 4, 6, ..., 12 objects per
category (so that each object would appear in roughly 540, 270, 180, ..., 90 different images) in the
training data set. For each experiment, we ran 50 trials and plotted all the probability density curves
of average evaluation errors (computed using the evaluation errors against ImageNet validation data
set) in Figure 9.
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Figure 9. Probability density estimations of average evaluation errors for training regimes using different
distributions of object diversity.

We can see from the plot that when the diversity of objects in our training data set is relatively
large, with the same number of iterations in our extended training process, the network model will
reach lower average evaluation error, an indication of higher training efficiency. However, this
result is corresponding to the training process with our current settings, which has a large number of
training iterations, and we also want to know how the average evaluation error would change when
we change the length of the training process (number of training iterations).

We plot the change of average evaluation error up to a specific training step in our training
process. From Figure 10, we can see that the relationship of average evaluation errors in the first
300 training iterations for various numbers of objects in the training data set is not stable. Especially
in the first 100 iterations, all curves intertwine with each other. However, after a certain number of
training iterations (1500 iterations in our case), as shown in Figure 11, we know that the relationship
of average evaluation errors becomes stable. The more different objects we use in our training data
set, the smaller average evaluation errors we could achieve in the long run.

To explore how the number of images per object would affect the training efficiency, we only
have to keep the total number of images used in the training process the same (batch size times
number of training iterations) and change the number of images per object used in the training data
set. We will still use the random mode (randomly select training images from the entire training
data set) to form the mini-batch, with a batch size of 45, and run the training for 2880 iterations. In
the training data set, there will be 12 objects per category, and we will investigate how the training
efficiency would change when there are 2, 4, 10, 20, 40, 60, 80, and 90 images for each object. For
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Figure 10. Average evaluation errors for training regimes using different distributions of object diversity,
across 300 training iterations.

Figure 11. Average evaluation errors for training regimes using different distributions of object diversity,
across 2880 training iterations.

each experiment, we ran 50 trials and plotted all the probability density curves of average evaluation
errors (computed using the evaluation errors against ImageNet validation data set) in Figure 12.

We can see from the plot that the distribution of average evaluation errors is much fuzzier than
expected. We can still find out, though, when there are more different images per object in a cate-
gory, we will get overall lower average evaluation errors, an indication of higher training efficiency.
However, there are also exceptions. For example, when there are 10 images per object in our train-
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Figure 12. Probability density estimations of average evaluation errors for training regimes using different
distributions of images per object (view diversity).

ing data set, we will get lower average evaluation errors than if there are 20, 40 or even 80 images
per object in the training data set.

Figure 13. Average evaluation errors for training regimes using different distributions of images per object
(view diversity), across 300 training iterations.
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To get more insight into the change of average evaluation errors during the training process,
we plot trends of average evaluation error up to a specific training step for the different number of
images per object in Figure 13 and Figure 14 (for 300 iterations and 2880 iterations respectively).

Figure 14. Average evaluation errors for training regimes using different distributions of images per object
(view diversity), across 2880 training iterations.

From both plots, we can see that when we used at least four images per object in out training
data set, there would be no significant difference regarding the training efficiency. Thus, with our
current hyperparameter settings, the number of different images per object in the training data set
does not have a significant impact on the training efficiency as long as that number is above some
threshold, although it is still unclear what would contribute to that threshold.

One possible reason that increasing the number of images per object may not always help to
improve the training efficiency could be that different images of an object are not distinguished
enough for the network model to learn more features, a problem caused by the nature of the Toybox
data set. We might be able to provide cure to this problem, however, by manually selecting higher
quality images for each object so that each of an object can be much more distinctive.

3. Conclusions

From all experiments we have done, we know that not only the composition of a mini-batch but also
the composition of entire training data set will have a substantial impact on the training efficiency.
Using mini-batches, in which images of all different categories are distributed evenly, we can in
general, achieve higher training efficiency. In fact, all non-uniformly distributed mini-batches can
impair the training efficiency to some extent, depending on how severe the overfitting problems
they can cause in the training process. Specifically, we found that when we ensure that images of all
categories in the data set appear in every single mini-batch during the training process, the network
model will achieve a training efficiency as high as, if not higher than, the training efficiency of
randomly assigning images in a mini-batch.
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Generally speaking, current training approaches suffer from overfitting when we only allow a
single or limited number of categories to be in a mini-batch. The situation gets worse if we further
limit the diversity of categories between every mini-batch of data we feed into the network model.
To ensure that the training efficiency is as high as possible, we have to distribute images of different
categories evenly within and between mini-batches.

These results raise several important research questions for the study of learning, both in humans
and in artificial intelligent agents. Do humans have a “visual learning” algorithm that is drastically
different from stochastic gradient descent, such that extended sequences of exposure to just one or
a few object categories can still support successful learning? If so, what does this algorithm look
like, and does it represent a class of algorithms somehow fundamentally different from stochastic
gradient descent? And could it provide learning advantages to intelligent agents that are exposed to
human-like learning environments? For instance, as we start to move from explicitly designing the
mechanisms of AI systems targeting specific problems towards artificial general intelligence, it may
be well worth exploring not only how agents would react towards human-like input signals but also
how humans’ choices of interaction with agents would affect these cognitive or learning processes.

Our research will continue to investigate these questions using more detailed empirical exper-
iments of the kind presented in this paper, as well as experiments that use automated methods of
selected training input orderings and compositions, instead of relying on manually defined distri-
butions. In the long run, we hope to implement these learning algorithms on real-world systems in
order to study learning under more complex and difficult conditions.
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