
ACS Poster Collection (2018) 289–302 Published 12/2018; Paper 18

Learning to Recognize A-Life Behaviours

Everton Schumacker Soares SCHUMACK@UALBERTA.CA

Vadim Bulitko BULITKO@UALBERTA.CA

Kacy Doucet KJDOUCET@UALBERTA.CA

Department of Computing Science, University of Alberta, Edmonton, Alberta, T6G 2E8, CANADA

Morgan Cselinacz CSELINAC@UALBERTA.CA

Department of Psychology, University of Alberta, Edmonton, Alberta, T6G 2E9, CANADA

Terence Soule TSOULE@UIDAHO.EDU

Samantha Heck HECK9873@VANDALS.UIDAHO.EDU

Landon Wright WRIG8396@VANDALS.UIDAHO.EDU

Polymorphic Games, University of Idaho, Moscow, Idaho 83844, USA

Abstract
The ability to recognize and reason about cognitive behaviours of intelligent agents is a fundamen-
tal cognitive ability of humans. In this paper we take a step towards using machine learning to
acquire a simple form of such an ability. Artificial life (A-life) is a framework to study the emer-
gence of novel multi-agent behaviours during simulated evolution. As evolution runs can sparsely
result in such novel behaviour, we propose the use of machine-learned methods to detect behaviours
automatically. While traditional machine-learning methods depend on predefined features describ-
ing the input, deep learning can automatically organize low-level inputs into higher-level features.
We show that an off-the-shelf deep neural network can be trained to robustly recognize a novel
leader-follower behaviour in a predator-prey A-life model. In doing so, this network substantially
outperforms density-based and clustering-based detectors. We then demonstrate portability of the
approach by training the same network on images from a commercial evolution-based video game.
The network is able to robustly distinguish between two modes of gameplay.

1. Introduction

Advances in the field of Artificial Intelligence (AI) have transformed the way humans perceive arti-
ficial agents, raising the question whether machines can in fact achieve human-like cognitive levels,
and at which point machine behaviors go beyond expertise in a particular narrow task to proficiency
in broad and complex cognitive tasks. Recent high-profile advances in AI have come from the use
of machine learning and, in particular, from the reduction of human knowledge given to the sys-
tem (Silver et al., 2016, 2017). We conjecture that even further advances in cognitive abilities of
machine intelligence can come from evolving such intelligence in Artificial Life (A-life) environ-
ments. Early work by Ackley & Littman (1991) demonstrated a potential of even simple evolved
agents showing cognitively interesting interactions. Unfortunately, many runs of such a simulated

c© 2018 Cognitive Systems Foundation. All rights reserved.



SOARES, BULITKO, DOUCET, CSELINACZ, SOULE, HECK, WRIGHT

evolution within such an A-life environment may not result in emergence of interesting cognitive be-
haviours. The ability to recognize and reason about cognitive behaviours is a fundamental cognitive
ability of humans. However, it would be intractable for human observers to sift through numerous
evolution runs in search of an interesting one. Thus, it becomes important to complement an evo-
lution within an A-life environment with automatic detection of cognitively interesting behaviours.
Ideally such a detector should work with data readily observable in an A-life environment. In this
paper we demonstrate how an off-the-shelf deep neural network can be trained to detect emergent
behaviour from a simple pixel-level visualization of a predator-prey A-life environment. In doing
so, the network demonstrates a cognitive ability to recognize a behaviour of other (simple) cognitive
agents. We hope that future work will increase the cognitive capabilities of the underlying A-life
agents as well as the cognitive ability of the detector accordingly.

Another application of behaviour detection is in video games. To reduce development costs,
game companies have turned to procedural content generation methods such as simulated evolution
for level design, animation, and behaviours for non-playable characters (NPCs) (Yannakakis & To-
gelius, 2018). Such methods can lead to emergence of behaviours unexpected by game developers.
For instance, the video game Darwin’s Demons (Soule et al., 2017) used player-influenced evolution
to evolve space-invader-like NPCs. An unexpected phenomenon that emerged was the separation
of the evolved NPCs into two groups; while the player was attacking one group on one side of the
screen, the group on the other side would rush to the bottom of the screen thereby winning the
round. In doing so, NPCs in the first group would sacrifice themselves to distract the player. While
interesting from an AI perspective, such unexpected behaviour may clash with the game design, dis-
couraging use of simulated evolution among commercial game developers. We propose automatic
behaviour detectors as a quality assurance tool. Unusual emergent behaviour flagged by machine-
learned classifiers and anomaly detectors can then be inspected by game developers. Such detection
can take place during the development cycle and/or with telemetry data from the player base.

In our approach, we take a common and readily available off-the-shelf deep neural network,
AlexNet (Krizhevsky et al., 2012), and train it in a supervised fashion to distinguish between two
non-trivial multi-agent behaviours that emerge in our predator-prey A-life model. We intentionally
remove information from the images fed to AlexNet, reducing the content to only spatial locations,
shapes, and orientations; yet AlexNet is able to robustly classify behaviours from a single simplified
screenshot. We compare its performance to two other non-deep-learning classifiers and demonstrate
that the information-sparse inputs present more of a challenge to them. Finally, we apply this
approach to a commercial video game, Project Hastur, and show that AlexNet is able to robustly
classify behaviours of evolved NPCs from simplified screenshots as well. This contribution supports
the portability of our approach and indicates a potential for using deep-learning for video game
monitoring and automated quality assurance.

2. Problem Formulation

The problem we consider in this paper is multi-agent behaviour detection in an A-life-like envi-
ronment. The solution for this problem needs to work well with readily available input, such as

290



LEARNING TO RECOGNIZE A-LIFE BEHAVIOURS

screenshots captured from an A-life simulation or a video game.∗ The machine learning process
should be data and time efficient (i.e., affordable to individual researchers or game developers). We
frame the problem as a binary classification of information-sparse images taken from an A-life sim-
ulation and a commercial video game. Our performance measure is the classification accuracy on
previously unseen data.

The task is challenging for several reasons. First, the input to such a classifier is low-level (e.g.,
pixels on the screen) and lacks higher-level semantic features. For instance, the classifier does not
know a priori which part of the image represents an agent and which is the environment. Second,
a novel behaviour can arise from interaction between otherwise uninteresting agents. The classifier
has no a priori notion of agent interaction. Third, agent behaviours unfold over multiple time steps
but the classifier has to make its decision on the basis of a single image.

The problem, as framed above, involves several types of cognition. First, the agents themselves
can be arbitrarily complex. For instance, non-playable characters in video games are often con-
trolled by large human-crafted behaviour trees and involve reasoning about resources, threats, other
agents, changes over time, memory of interactions with the player, etc. Second, the inference em-
ployed by the behaviour detector can involve a hierarchy of semantic information. Indeed, deep
neural networks such as the ones we use in this paper are believed to learn to extract and reason
over higher-level semantic features from low-level input data.

2.1 A-life Environment

To evaluate our approach we needed an A-life environment where artificial evolution will sometimes
lead to emergence of interesting behaviours. We extended our previous A-life environment (Bulitko
et al., 2017), a simple artificial evolution of prey (rabbits) and predators (wolves) developed from a
published Netlogo model (Wilensky, 1997).

In the model, a population of rabbits and wolves co-evolve over time. Visualized in Figure 1,
rabbits (orange and purple triangles) move around a rectangular grid and eat grass (green patches;
the intensity of green indicates the amount of grass in the grid cell). Consumed grass regrows.
Wolves (blue triangles) move around and eat rabbits. On each time tick, each agent (i) perceives
all other agents and grass levels within a genetically-encoded radius, (ii) computes scalar utilities
of all grid cells within the radius and (iii) moves a certain distance toward the cell with the highest
utility (or stays put if the agent is already there). Each agent has an energy level which is increased
by eating and is decreased by perceiving (proportional to number of grid cells perceived), moving
(faster-moving agents burn more energy), and simply existing. If energy drops below a certain
threshold, the agent dies. Agents do not make any decisions except where to move next.

The evolution is asynchronous and does not have either discrete generations or an explicit fitness
function. Instead, each agent above a minimum reproduction age with sufficient energy compul-
sively has a single offspring who receives half of the parent’s energy at birth. The parent continues
to live and may give birth to other agents in the future. We do not enforce a minimum or maximum
number of agents through agent injection or culling. The simulation is stopped when all wolves or
all rabbits die, or a certain number of time ticks is reached.

∗Note that while game developers also have access to their agents’ AI code, the players do not. Thus attempting to
detect novel behaviour by detecting novel code has the danger of detecting something that the player does not see.

291



SOARES, BULITKO, DOUCET, CSELINACZ, SOULE, HECK, WRIGHT

Each agent has seven genes: sight radius r, affinity to grass αgrass, affinity to rabbits αrabbit and
affinity to wolves αwolf. It also has three second-order affinities: affinity to other agents’ affinity to
grass ααgrass , affinity to other agents’ affinity to rabbits ααrabbit and affinity to other agents’ affinity
to wolves ααwolf . The agent with sight radius r perceives all grid cells whose coordinates are at
most r cells away from the agent N = {(x, y) | |x − xagent| ≤ r & |y − yagent| ≤ r}. For each
cell n in the neighborhood N the agent computes the cell’s utility using its first-order affinities as
U(n) = αgrass · ]grass(n) + αwolf · ]wolf(n) + αrabbit · ρ(n) where ]grass(n) is the amount of grass
in cell n, ]wolf(n) is the number of wolves in cell n and ρ(n) is the weighted attraction/repulsion
of all rabbits in cell n, computed as ρ(n) =

∑
x∈n

(
ααgrass · αxgrass + ααwolf · αxwolf + ααrabbit · αxrabbit

)
which evaluates each rabbit x present in the cell n with respect to x’s affinity to grass (denoted by
αxgrass), x’s affinity to wolves (αxwolf) and x’s affinity to rabbits (αxrabbit).

To illustrate, a rabbit with the genes r = 1, αgrass = 1, αwolf = −1, αrabbit = 1, ααgrass =
ααrabbit = ααwolf = 0 sees its own cell and its immediate 8 neighbors, likes grass, dislikes wolves and
is indifferent to other rabbits. On the other hand, a rabbit with the genes r = 1, αgrass = −1, αwolf =
−1, αrabbit = 1, ααgrass = 0, ααrabbit = 1, ααwolf = 0 dislikes grass but likes rabbits who like grass.

In Figure 1 rabbits with αgrass > 0 are coloured orange and rabbits with αgrass < 0 are coloured
purple. The magnitude of αgrass determines the intensity of the color.

Figure 1: Representative images for the dataset extracted from our A-life simulation. The first
image on the left represents a frame with more leaders (orange triangles), the second with more
followers (purple triangles); wolves are shown as blue triangles, and the shade of green indicates
the amount of grass. The two images on the right are simplified images given to our deep artificial
neural network.

2.2 Interesting and Non-interesting Behaviours

The behaviour that we are detecting pertains to leader and follower interactions. Strandburg-Peshkin
et al. (2018) define animal leadership in terms of the influence that a group member has over other
group members. The A-life environment described above occasionally yields emergence of leader
and follower behaviour among rabbits. While initially all genes are random, two types of rabbits
will sometimes emerge during evolution. First are rabbits who, as expected, like grass: αgrass > 0.
The second type are rabbits who surprisingly dislike grass: αgrass < 0. On their own, the latter
would die of starvation, preferring to stay put in their own cell where the grass has been eaten.
Remarkably, they can survive for a long time in the presence of the grass-liking rabbits if they also

292



LEARNING TO RECOGNIZE A-LIFE BEHAVIOURS

happen to like such rabbits: αrabbit > 0 & ααrabbit > 0. When their attraction to grass-liking
rabbits overcomes their repulsion to grass, grass-disliking rabbits follow them into grass-rich cells,
compulsively eating and eventually reproducing. Thus, we call the grass-liking rabbits leaders and
the grass-disliking rabbits followers.†

With this phenomenon in mind, we define two types of behaviours: non-interesting, where most
of the rabbits in the environment are regular grass-liking rabbits, and interesting, where most of
the rabbits are grass-disliking. By “most,” we mean at least twice as many. For instance, the first
coloured screenshot in Figure 1 has at least twice as many leaders as followers and thus constitutes
an example of non-interesting behaviour. The second coloured screenshot has at least twice as many
followers as leaders and thus constitutes an example of interesting behaviour.

Note that in this paper we do not distinguish between properties of the environment (e.g., that
majority of rabbits are grass-disliking) and behaviours of the agents within the environment (e.g.,
that grass-disliking rabbits survive by following grass-liking rabbits). Indeed, in a fixed environ-
ment, emergence of a new agent behaviour is likely to change the environment’s properties. Fu-
ture work will attempt to decouple behaviours and the resulting properties of the environment by
attempting to detect a behaviour (e.g., grass-disliking rabbits following grass-liking rabbits) in a
variety of substantially different environments. Since behaviours unfold over time, we expect to
have to upgrade our behaviour detectors with memory (e.g., by having them inspect a sequence of
environmental states).

3. Related Work

Our main approach is adapted from our previous work in which AlexNet classified single image
frames from A-life simulations with two different agent mutation rates (Bulitko et al., 2017). We
extend that research in two ways: first, our previous work only classified the mutation rate that was
used in evolving the population, which does not necessarily provide information about the agents’
behaviour. Second, we use pixel-balanced images so that AlexNet can not merely rely on aggregate
statistics such as the number of agents or pixels in the input image.

The problem of automatically detecting different types of group behaviour in a population is
also of interest in biology. For example, Pu et al. (2018) identified flocking behaviour in chickens
using a convolutional neural network with three convolutional layers and a fully connected layer
that processes single colour and depth frames generated with a Kinect sensor. This model was
specifically created for confined poultry flocking behaviour and requires depth sensors. Although
their proposed method achieved good results, their approach depends on depth frames, which may
not be readily available in A-life simulations or video games. Machine learning methods for image-
based identification of animal behaviour have also been applied to ecology research and laboratory
environments. For example, Berman et al. (2014) proposed a machine-learning approach to map
behaviours of flies according to motion patterns in images. They used principal component anal-
ysis to decompose a preprocessed image sequence of flies in order to generate spectrograms later

†Note that grass-disliking rabbits may or may not like following other rabbits. However, if they happen not to like
other rabbits then they will not follow them and thus will likely quickly die of starvation and not reproduce. Thus we
abuse the terminology and call any rabbit who likes grass a leader and any rabbit who dislikes grass a follower regardless
of whether leading or following actually takes place at a given time.

293



SOARES, BULITKO, DOUCET, CSELINACZ, SOULE, HECK, WRIGHT

mapped through the T-distributed Stochastic Neighbor Embedding algorithm. Their method is for
single-agent behaviours whereas we are interested in emergent group behaviours. Dell et al. (2014)
proposed the use of supervised and unsupervised learning to automatically detect and track specific
behaviours in real-life animals. In line with their proposal, the approach presented in this paper
trains a deep neural network to detect behaviours in simple simulated predator-prey organisms.

4. Our Approach

Our previous work on behaviour detection (Bulitko et al., 2017) had similar desiderata so in this
paper we build on our previous approach of training common off-the-shelf deep neural networks.
Their wide availability and low hardware/software requirements make the approach affordable to
individual researchers or game developers. One of the strengths of deep learning lies with its ability
to form a feature representation automatically, thereby removing the need for human researchers
to design a domain specific representation. In particular, common deep neural networks such as
AlexNet were designed to run on standard colour images which are easy to collect in an A-life
environment or a video game.

Our deep neural network classifier is trained using stochastic gradient descent with static learn-
ing rate on the training set. We took a common off-the-shelf deep network, AlexNet, and modified it
to have 2 outputs (more leaders and more followers) instead of the usual 1000.‡ We determined the
training hyperparameters — learning rate, batch size, and number of epochs — by first conducting
a sweep of the parameter space using all combinations of learning rate in {10−5, 10−6}, batch size
in {5, 10, 25} and number of epochs in {10, 25, 50, 75}. For each combination of hyperparameters,
we split the data into training and testing 4 times, fine-tunning an independent AlexNet on each one
of the 4 splits. The best test accuracy averaged over the 4 trials was achieved with the batch size of
25, 75 epochs, and the learning rate of 10−6. We fixed the hyperparameters at those values and used
them to train AlexNet on 30 trials, as explained in details in Section 5.3.

5. Experimental Evaluation

Our hypothesis is that a deep neural network can be trained to reliably recognize interesting and non-
interesting group behaviours from a single image captured in an A-life environment. To evaluate this
hypothesis we will implement the approach and compare the resulting performance to classification
methods based on agent density and clustering.

5.1 Data Collection

An evolution run starts with random genes in the population so in order for any rich multi-agent
behaviours to emerge, the evolution needs to run long enough. Since we did not have agent culling
or injection, we needed to have world parameters, or physics (e.g., the rate of grass re-growth, the
initial population of wolves, the rabbit movement speed, etc.) that support long-running evolutions.
Our environment was developed as a Netlogo model, so we used the built-in Behaviour Search

‡In all of our experiments we used AlexNet pre-trained on an ImageNet database as available for download with
MATLAB’s neural-network toolbox (R2018a).

294



LEARNING TO RECOGNIZE A-LIFE BEHAVIOURS

module to find physics that maximize population extinction time. This was done by running a meta
evolution on the physics for approximately one day, using median extinction time as a measure of
fitness to produce a set of physics that reliably yielded long-living populations.

Using these physics, we ran 1000 agent evolutions. Each frame of each evolution was analyzed
for having at least twice as many leaders or at least twice as many followers (or neither). In the
former two cases, the screenshot was then saved into the more leaders or more followers set. Other
screenshots were discarded. All rabbits and wolves in the saved images were displayed as triangles
of the same size and shade of gray, and the grass visualization was disabled (two right panels in
Figure 1). This process recorded 8732517 images in the more leaders class and 47123 images in the
more followers class.

5.2 Data Pre-processing

There are two problems with the data set collected above. First, it is notably unbalanced with
many more images in more leaders class. Second, there may be a systematic bias in the number of
agent pixels which would make classification easier. We addressed the first problem by randomly
sampling 47123 images out of 8732517 images in the more leaders class. We addressed the second
problem by balancing the remaining images on the colour of the agent (gray) pixels. The pixel-
colour balancing process ensured that each more leaders image with n gray pixels has a unique
corresponding image in the more followers class with exactly n gray pixels. This resulted in 13349
images in each of the two classes that were identically distributed in terms of the number of agent
(gray) pixels.

5.3 Performing Multiple Trials

We then ran 30 trials with the data set. Each trial split the images into a training set and test set.
Because images from the same evolution run are likely to be correlated, we partitioned the set at
the level of evolution runs. Images from approximately 75% of the evolution runs in each of the
two classes were put into the training set. Images from the remaining runs were put into the test
set. As different evolution runs vary in duration, they contribute varying numbers of images to each
class which may create unequal representations of the two classes. On each trial we used all data in
the trial’s training set to train three classifiers: density-based classifier, cluster-based classifier, and
deep neural network classifier.

5.4 Clustering Classifiers

Since follower rabbits tend to form clusters around the leaders, as shown in Figure 1, we compared
our deep neural network to two classifiers that rely solely on clustering measures to distinguish
between leader-centric and follower-centric images. Such measures are commonly used in biology
and A-life research. For example, Sanvicente-Añorve et al. (2017) used the Morisita index of
aggregation to classify the level of clumping in populations of sea cucumber. Biswas et al. (2014)
also used a clumping measure to study the impact of the dilution effect in artificial populations of
prey and predator in an A-life simulation.

295



SOARES, BULITKO, DOUCET, CSELINACZ, SOULE, HECK, WRIGHT

0 20 40 60 80 100
Density (%)

0

20

40

60
Fr

eq
ue

nc
y 

(%
)

more followers
more leaders

0 2 4 6 8 10
k*

0

50

100

Fr
eq

ue
nc

y 
(%

)

more followers
more leaders

Figure 2: Distribution of rabbit densities in the training set (left), and the distribution of estimated
number of clusters of rabbits in the training set (right).

5.4.1 Density-based classifier

Since our A-life simulation allows several agents to occupy a single grid cell, a higher degree of
clustering in a population will likely lead to cells with a higher density of agents. Our density
measure is taken from work by Biswas et al. (2014) where it was called clumping and defined as
1 − n

p (n is the number of occupied cells and p is the population size).§ Our classifier builds a
histogram of density values for each class in the training set (Figure 2, left). Each frame in the
test set can then be classified by computing its density and assigning it to the class with the higher
histogram value for the corresponding bin (we used 10 bins to partition the density range).

5.4.2 Cluster-based classifier

This classifier is similar but uses an estimate of the number of agent clusters in a frame to assign
it to one of the two classes (more followers or more leaders). To do so, we first build a histogram
of the number of clusters estimated for frames in the training data. To compute such estimates, we
use the gap method (Tibshirani et al., 2002) with the uniform random distribution of points from
a bounding box around agents in a frame as the null-reference distribution. The distance between
agents is the squared Euclidean distance. The range of cluster numbers was from 1 to 10; we used
B = 100 samples and we repeated k-means within the gap method 4 times to average Wk.

The right plot in Figure 2 shows distributions of estimated number of clusters in the training data
for each class. Given a new simulation frame the cluster-based classifier first estimates the number
of rabbit clusters in the image (k∗) and then assigns the frame to class with the higher histogram
value (i.e., the more likely class).

§This measure requires knowing coordinates of the agents, so we augmented our A-life model to output this infor-
mation for each simulation frame image.

296



LEARNING TO RECOGNIZE A-LIFE BEHAVIOURS

5.5 Results & Discussion

We compared the average test accuracy over 30 trials for the three classifiers described above. Be-
fore we present the results we observe that the density and cluster-based classifiers were based on
the rabbit coordinates for each simulation frame (with wolves excluded) whereas the deep network
assessed downsampled images containing both rabbits and wolves visualized as the same gray tri-
angles. The difference in inputs is a necessary consequence of selecting the different classifier
approaches and may affect the results. Furthermore, grass-liking rabbits may also like to follow
other rabbits while grass-disliking rabbits may also dislike following other rabbits. The disconnect
between leading and following behaviours (which affects frame appearance) and liking and dislik-
ing grass as given by the agents’ genes (which affects frame class label) may have reduced the test
accuracy for all classifiers.

Table 1: The three classifiers compared on the more-leaders versus more-followers data set. Means
and standard deviations over 30 trials are listed.

Classifier Test accuracy

density-based 70.4± 4.8%
cluster-based 74.1± 2.3%
deep learning 90.9± 2.2%

Test accuracies averaged over 30 trials are listed in Table 1. AlexNet has the strongest per-
formance, followed by the cluster-based classifier, while the density-based classifier exhibited the
worst performance. Using paired sample t-tests, we found that the mean accuracy of AlexNet was
significantly higher than the mean accuracy of the density-based classifier (p ≤ 10−18), and also
significantly higher than the mean accuracy of the cluster-based classifier (p ≤ 10−24).

We speculate that AlexNet has a significantly higher classification accuracy than the other two
classifiers due to the fact that it is able to use the shape of the agent formations in addition to frame-
level aggregate statistics such as the density or the number of clusters in making its classification
decisions. AlexNet also had access to the agent orientation (as each agent is visualized as a triangle)
which the other two classifiers did not. On the other hand, the density- and cluster-based classifiers
had access to each agent coordinates whereas AlexNet did not in the case of overlapping triangles.

5.6 Case Study: A Commercial Video Game

In this section we present a case study which tests the portability of our deep learning method of
behaviour detection by training AlexNet on behaviours of evolved NPCs in a commercial video
game, Project Hastur. This is a hybrid real-time strategy tower-defense game currently under de-
velopment by Polymorphic Games, the developer of Darwin’s Demons (Soule et al., 2017). The
player places auto-fire turrets to defend against generations of evolving NPC enemies, known as the
Protean Swarm (Figure 3, left), that are trying to overwhelm the player’s defenses. Proteans have
a digital genome that determines their morphology (body size, limb size, shape, colour, etc.), traits
(sight range, resistances, speed, attack rate and damage, etc.), behaviour (attack preferences) and

297



SOARES, BULITKO, DOUCET, CSELINACZ, SOULE, HECK, WRIGHT

special abilities (swimming or jumping). At the end of each generation (attack wave) Proteans are
selected to reproduce into the next generation according to their fitness scores. Two separate fitness
functions were used for selection, one function was used to select half of the population and the
other fitness function was used to select the other half of the population. The parents of half the
population are selected based on turret damage and the parents of the other half of the population
are selected based on their proximity to the tower.

In addition to reproducing at the end of each generation, Proteans can also reproduce by attack-
ing and consuming civilian NPCs which wander around a map. When a Protean kills a civilian it
immediately creates one or more offspring that join the attacking generation. The number of off-
spring created in this way is inversely proportional to the Protean’s size – smaller Proteans produce
more offspring when they consume a civilian. This creates a secondary fitness function, as Proteans
that evolve to more effectively find and consume civilians have more offspring that become potential
parents at the end of the generation.

Figure 3: The left image represents evolved NPCs in a screenshot taken from a development version
of Project Hastur. Centre and right images are partial overhead images. The centre image shows
seven turrets surrounding a central tower. The Proteans charge to attack either the turrets or the
tower depending on their behavioural preference. The turrets auto-fire at the Proteans. The right
image shows only the Proteans.

To collect training and test data for AlexNet, we set up two experimental conditions by turning
on and off the presence of civilian NPCs (classes civilians and no civilians, respectively).

In both classes, turrets were placed around a single tower (Figure 3, center). In each generation,
100 Proteans were spawned at a rate of one per second and attacked the defenses. For data-collection
purposes, the turrets and the tower were made indestructible which avoided the issues of the player
losing the game before sufficient data was collected or the need to regularly replace destroyed tur-
rets. However, the Proteans’ fitness was still measured by damage they would have inflicted to the
turrets and the tower. Each trial was run for 30 generations and data was collected in the form of
overhead images recorded once every second that showed only the Proteans (Figure 3, right). The
images were then downsampled to 227× 227 pixels and converted to black and white (Figure 4).

298



LEARNING TO RECOGNIZE A-LIFE BEHAVIOURS

Twelve and eight game runs (each consisting of 30 generations) were recorded in the no civilians
and civilians classes respectively.

Figure 4: Representative images from the classes no civilians (left) and civilians (right) as given to
the deep neural network.

In the no civilians class, the map was empty other than the player’s tower and turrets and the
spawning Proteans (Figure 4, left). In the civilians class, NPCs were added to the map periodically,
until a total of 10 civilians (including any that survived the previous generation) had been added
to map per generation. If there were civilians surviving at the end of a generation, fewer were
spawned on the next generation to ensure the number of civilians on the map did not exceed 10.
They had a specific spawn point (different from the Protean’s spawn point) and four waypoints that
they wandered between unless they were attacked by the Proteans, in which case they ran directly
away from the nearest Protean. Civilians were not visualized in the images and thus AlexNet had to
distinguish between the two classes only on the basis of visualized Proteans (Figure 4).

The generation process produced 59565 images in the no civilians and 58327 images in the
civilians classes. We randomly selected 58327 from the larger class and then balanced the images
on the black pixel colour. After colour balancing, all non-black pixels were replaced with white
pixels. This resulted in 40492 black-and-white images in each class.

We conducted a sweep of the deep-learning hyperparameter space with batch size in {5, 10, 25, 50},
number of epochs in {1, 5, 10, 25}, and learning rate in {10−5, 10−6}. For each of 32 parameter
combinations we ran 8 trials, training AlexNet on a random 75% of the game runs and testing on the
remaining game runs. The best average test accuracy of 83.6 ± 3% was achieved with 10 epochs,
batch size of 10 and the learning rate of 10−5.

We then fixed the hyperparameters to the most successful combination and performed 30 learn-
ing trials. AlexNet achieved an average test accuracy of 81.3± 4.1% and the corresponding confu-
sion matrix is in Table 2.

6. Current Shortcomings and Future Work

The A-life environment used in this paper is basic which likely limits the scope of emergent cog-
nitively interesting agent behaviours possible in it. For instance, agents in our Netlogo simulation
had built-in detection of other agents which removed the need to recognize other agents in the en-

299



SOARES, BULITKO, DOUCET, CSELINACZ, SOULE, HECK, WRIGHT

Table 2: The confusion matrix for Project Hastur data. Means and standard deviations are for 30
learning trials.

Actual
Classified as civilians no civilians

civilians 76± 7.5% 13.2± 7.4%
no civilians 24± 7.5% 86.8± 7.4%

vironment. Furthermore, agents could immediately see each other’s behaviour policy as opposed to
inferring it from low-level observations. Future work will apply the methods of this paper to more
complex environments which will require richer cognitive processes in the agents. For instance,
we are developing a more complex A-life environment where the agents’ brains are represented as
deep neural networks whose topology and weights evolve over time. Such agents perceive the envi-
ronment, including other agents, at the pixel level thereby necessitating various cognitive processes
(e.g., recognizing a nearby agent as a friend or foe) to survive.

Second, the supervised learning approach presented in this paper requires training data from all
classes. This means that the behaviour detector is trained to recognize one or more a priori known
behaviours as opposed to novel (and therefore previously unseen) behaviours. When detecting novel
behaviours in A-life simulations or bugs in video games, training examples for the interesting/buggy
behaviour are not available a priori. Future work will investigate the ability of deep neural autoen-
coders (Ribeiro et al., 2017) trained only on known behaviour to detect unexpected/novel/unknown
behaviour in an A-life simulation or a bug in a video game.

Another direction for future work is incorporating the time information in the input to a machine-
learned behaviour detector. This can be done by using recurrent neural networks or computing a
sliding average of video frames for a feed-forward network. This would allow the network to have
access to changes in behavioural patterns over consecutive frames, possibly facilitating detection of
more temporarily complex behaviours. Eventually such a behaviour detector may be able to reason
about cognitively rich behaviours of the agents being observed, thereby demonstrating a form of
meta-cognition.

7. Conclusions

In this paper we demonstrated the ability of a common, readily available off-the-shelf deep neural
network to reliably distinguish between different behaviours in an A-life simulation and in a com-
mercial video game. We anticipate such automated detectors becoming progressively more valuable
to A-life researchers and video-game developers as the growing computational power enables pro-
cedural generation of cognitively richer AI agents/NPCs. In particular, since a behaviour detector
implemented as a deep neural network is likely to learn and reason over a hierarchy of semantic fea-
tures extracted from its low-level input, one can attempt to gain insights into the cognitive aspects
of behaviour detection by inspecting the detector after training.

300



LEARNING TO RECOGNIZE A-LIFE BEHAVIOURS

Acknowledgements

Devon Sigurdson discovered emergence of follower rabbits in a related Netlogo model. John Simp-
son, Delia Cormier and Shelby Carleton contributed to the Netlogo model used in this study.
We appreciate funding from the National Science and Engineering Council and donations from
Nvidia Corp. Material pertaining to Project Hastur is based in part upon work supported by the
National Science Foundation under Cooperative Agreement No. DBI-0939454, by NSF Grant
DMS-1029485, and by the Idaho Global Entrepreneur Mission (IGEM). Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References

Ackley, D., & Littman, M. (1991). Interactions between learning and evolution. Artificial Life II,
10, 487–509.

Berman, G. J., Choi, D. M., Bialek, W., & Shaevitz, J. W. (2014). Mapping the stereotyped be-
haviour of freely moving fruit flies. Journal of the Royal Society Interface, 11.

Biswas, R., Ofria, C., Bryson, D. M., & Wagner, A. P. (2014). Causes vs benefits in the evolution
of prey grouping. Proceedings of the Fourteenth International Conference on the Synthesis and
Simulation of Living Systems (pp. 641–648).

Bulitko, V., Carleton, S., Cormier, D., Sigurdson, D., & Simpson, J. (2017). Towards positively
surprising non-player characters in video games. Proceedings of the Experimental AI in Games
Workshop at the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(pp. 34–40).

Dell, A. I., et al. (2014). Automated image-based tracking and its application in ecology. Trends in
Ecology & Evolution, 29, 417–428.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convo-
lutional neural networks. Proceedings of the Twenty-Fifth International Conference on Neural
Information Processing Systems (pp. 1097–1105).

Pu, H., Lian, J., & Fan, M. (2018). Automatic recognition of flock behavior of chickens with
convolutional neural network and kinect sensor. International Journal of Pattern Recognition
and Artificial Intelligence, 32.

Ribeiro, M., Eugênio Lazzaretti, A., & Silvério Lopes, H. (2017). A study of deep convolutional
auto-encoders for anomaly detection in videos. Pattern Recognition Letters, 10, 13–22.

Sanvicente-Añorve, L., Solís-Marín, F. A., Solís-Weiss, V., & Lemus-Santana, E. (2017). Pop-
ulation density and spatial arrangement of two holothurian species in a coral reef system: Is
clumping behavior an anti-predatory strategy? Cahiers de Biologie Marine, 58, 307–315.

Silver, D., et al. (2016). Mastering the game of Go with deep neural networks and tree search.
Nature, 529, 484–489.

Silver, D., et al. (2017). Mastering the game of Go without human knowledge. Nature, 550, 354.

301



SOARES, BULITKO, DOUCET, CSELINACZ, SOULE, HECK, WRIGHT

Soule, T., Heck, S., Haynes, T. E., Wood, N., & Robison, B. D. (2017). Darwin’s demons: Does
evolution improve the game? Proceedings of the European Conference on the Applications of
Evolutionary Computation (pp. 435–451). Springer.

Strandburg-Peshkin, A., Papageorgiou, D., Crofoot, M. C., & Farine, D. R. (2018). Inferring influ-
ence and leadership in moving animal groups. Philosophical Transactions of the Royal Society
of London B: Biological Sciences, 373.

Tibshirani, R., Walther, G., & Hastie, T. (2002). Estimating the number of clusters in a data set via
the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63,
411–423.

Wilensky, U. (1997). NetLogo wolf sheep predation model. Center for Connected Learning and
Computer-Based Modeling.

Yannakakis, G. N., & Togelius, J. (2018). Artificial intelligence and games. Springer.

302


