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Abstract 

Deep deductive reasoning is a critical problem for cognitive systems. Very large knowledge bases 

have millions of axioms, of which relatively few are relevant for answering any given goal query. 

A large number of irrelevant axioms overwhelm theorem provers, and even simple queries cannot 

be answered in reasonable time. Therefore, heuristics which help in identifying useful inference 

paths are an essential component of cognitive systems. In this paper, we learn search control 

knowledge by taking random samples in the search space and evaluating the quality of resulting 

paths. These random probes help us to identify relevant inference paths for queries. Experimental 

results on difficult queries from the Cyc KB show that this approach can be applied effectively to 

reduce inference time.  

1.  Introduction and Motivation 

Many knowledge-based systems (KBS) rely on deductive reasoning capabilities for various 

reasoning tasks. However, deduction in large expressive knowledge bases (KBs) is intractable. 

Very large knowledge-based systems contain several million ground atomic formulas (GAFs) and 

axioms. Only a few of these GAFs and axioms are relevant for answering any goal query. 

Irrelevant axioms increase search space, and traditional resolution-based theorem provers are 

overwhelmed by irrelevant paths [Hoder & Voronkov 2011]. Therefore, many AI systems use 

only small to medium-sized KBs for efficient query processing. Such systems cannot perform 

well in realistic situations because cognitive systems need large bodies of general knowledge to 

perform real-world tasks robustly [Lenat & Feigenbaum 1991, Forbus et al. 2007]. Therefore, the 

development of fast deductive reasoning algorithms is critical to create realistic cognitive 

systems. 

Deductive reasoning algorithms in expressive knowledge-based systems (KBS) typically 

represent the search space as a graph, whose structure is determined by the rules that apply to 

nodes. Generally, hundreds of rules simultaneously apply to nodes, and the order of node and rule 

expansion has a significant effect on efficiency [Tsarkov & Horrocks 2005, Sharma et al. 2016]. 

Therefore, research in ordering heuristics plays an important role in improving the efficiency of 

deductive reasoning algorithms.  
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In this paper, we examine whether randomized exploration of search space can be used to 

predict the most promising inference step. An agent starts at a root node, and chooses a path. The 

path is expanded, and the number of answers obtained by the path is an indicator of its quality. 

Very little can be learned from a single path. However, we show that useful search control 

knowledge can be gleaned from a multitude of random path explorations. At the end of this 

process, we learn a function that would map the features of search paths to the number of answers 

resulting from them. This function is then used to assess and order search paths during inference. 

Experimental results show that this approach leads to significant reduction in inference time. 

This paper is organized as follows: We start by discussing relevant work. In Section 3, we 

discuss the basics of Cyc representation language and its inference engine. Our approach of 

learning by randomized exploration is discussed next. We conclude by discussing experimental 

results and future work. 

    

2.  Related Work 

In the last decade, there has been interest in reasoning with expressive languages like OWL 

description logic (DL) and the Semantic Web Rule Language (SWRL). Researchers have used 

first-order theorem provers with these languages because reasoning with them is beyond the 

scope of existing DL algorithms or because the language does not correspond to any decidable 

fragment of first-order logic (FOL) [Tsarkov et al 2004, Horrocks & Voronkov 2006]. The work 

in the field of optimizing inference in large expressive knowledge bases can be divided into three 

types: (i) axiom selection or premise selection algorithms, where researchers have focused on 

selecting a small set of axioms/lemmas that is most useful for answering a set of queries [Sharma 

& Forbus 2013, Kaliszyk et al. 2015, Kaliszyk and Urban 2015, Alama et al. 2014]; others have 

used co-occurrence-based analysis to design a symbol-based axiom selection scheme [Hoder & 

Voronkov 2011]. (ii) Learning of ordering heuristic:  recently, researchers have used machine 

learning techniques (e.g., decision trees and regression-based models) to  control searches 

[Sharma et al. 2016], and (iii) offline search; in [Sharma & Goolsbey 2017], the authors have 

proposed an offline procedure that performs an exhaustive breadth-first search to generate 

sequences of useful action sequences. Our approach is mainly inspired by the work in 

reinforcement learning and the Monte Carlo tree search community, where researchers have 

shown that tree search and random sampling can be combined to learn search policies that 

perform well in computationally difficult problems [Browne et al. 2012]. We are not aware of any 

work in the AI community that has addressed these issues1. Work in other communities 

[Chaudhuri 1998, Hutter et al. 2014, Brewka et al. 2011] is less relevant because these do not 

address the complexity of reasoning with expressive languages in large knowledge bases. 

3.  Background 

                                                 
1
 The work presented in [Taylor et al 2007] does not address improving deep deductive reasoning. 
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We assume familiarity with the basics of Cyc representation language [Lenat & Guha 1990, 

Matuszek et al. 2006]. In Cyc, concepts are called Collections, and concept hierarchies are 
represented by the “genls” relation. For example, (genls Chair-PieceOfFurniture 
InanimateObject) holds. Similarly, the role and inverse-role hierarchies are represented by the 
“genlPreds” and “genlInvese” relations, respectively (e.g., (genlPreds touches near) and 
(genlInverse lessThan greaterThan) hold). While performing backward inference, the Cyc 
inference engine uses rules to transform goal nodes into logically equivalent child nodes. For 
example, the rule P(x) →Q(x) could be used to transform Q(a) into P(a). The link between Q(a) 
and P(a) is a type of transformation link. Given a multi-literal query of the type (pred1 arg1 arg2 

…) ^ (pred2 …) ^ ..., an inference step involves resolving one of the literals. The literal on which 

the inference engine chooses to backchain is called the focal literal. Cyc estimates and keeps 

track of the generality of all terms (referred to as GeneralityEstimate (term)) in the KB based on 

their position in the ontology. The leaf nodes in the ontology have a generality estimate of zero, 

whereas the most general term (the collection “Thing”) has the highest generality estimate.  

Reasoning with Cyc representation language is difficult due to the sheer size of the KB 
and the expressiveness of the CycL representation language. In its default inference mode, the 
Cyc inference engine uses the following types of axioms/facts during backward inference: (i) 
28,429 role inclusion axioms (e.g., P(x, y) → Q(x, y)); (ii) 3,623 inverse role axioms (e.g., P(x, y) → 
Q (y, x)), (iii) 494,045 concepts and 1.1 million concept inclusion axioms (i.e., ‘genls’ facts); (iv) 

817 transitive roles; (v) 120,547 complex role inclusion axioms (e.g., P(x, y) ∧ Q (y, z) → R (x, z)); 
(vi) 77,170 axioms of the type P(x, …) →Q(w, …) (these axioms are not included in role inclusion, 
complex role inclusion or concept inclusion axioms mentioned above); and (vii) 35,528 binary 
roles and 10,508 roles with arities greater than two. The KB has 27.3 million assertions and 1.14 
million individuals. To control search performance in such a large KBS, inference algorithms 
often use heuristics. They distinguish between a set of clauses known as the set of support, 

which define the important facts about the problem, and a set of usable axioms that are outside 

the set of support (e.g., see the OTTER theorem prover [Russell and Norvig 2003]). At every 

step, a theorem prover would resolve an element of the set of support against one of the usable 

axioms. To perform best-first search, a heuristic control strategy measures the “weight” of each 

clause in the set of support, picks the “best” clause, and adds to the set of support the immediate 

consequences of resolving it with the elements of the usable list [Russell and Norvig 2003]. Cyc 

uses a set of heuristic modules to identify the best clause from the set of support. A heuristic 

module is a tuple hi = (wi, fi), where fi is a function fi: S → ℝ that assesses the quality of a node, 
and wi is the weight of hi. The net score of a node s is given by (1), and the node with the highest 

score is selected for further expansion: 

∑ wifi (s)                                                                        …(1)  

Currently used heuristics by the Cyc inference engine include: (a) success rate of rule, (b) an 

ordering heuristic that uses decision trees [Sharma et al. 2016], (c) an ordering heuristic that uses 

linear regression models [Sharma et al. 2016], and (d) a heuristic that uses a database of useful 
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axiom sequences [Sharma & Goolsbey 2017]. In the next section, we propose a new heuristic to 

control a search.  

4.  Randomized Exploration of Search Space 

 

The basic idea behind this approach is best explained with a few examples. Consider the 

following query:  

 

(performedBy IranOccupiesTumbIslands-1971 ?who)                                                       ..(Q1) 

 

The rule shown below could be used to backchain on Q1. 

 

(isa ?sub-event PhysicalEvent) ∧(performedBy ?event ?actor) ∧  

(subSituations ?event ?sub-event) ∧ (isa ?event BrushingOnesTeeth) → 

(performedBy ?sub-event ?actor)                                                                                         …(Axiom A0)  

 

Reasoning with A0 to solve Q1 would lead the inference engine to try to prove how a military 

occupation could be a sub-event of a teeth-brushing event2. We note that the only explicit 

constraint on the variable ?sub-event is quite general (i.e., it is constrained to be a physical event). 

Therefore simple type checking on explicitly provided constraints cannot detect this implausible 

path. Recently, researchers have used decision trees for addressing this problem [Sharma et al 

2016]. However, they have not discussed how they generate negative examples for their training 

set. In the absence of negative examples, the decision tree learning algorithm can over-generalize. 

Moreover, that work has not shed light on how performance scales with the number of training 

examples.  

 

Our approach is based on the well-known idea that we can learn to make optimal decisions in a 

given domain by sampling actions and building a search tree using those results [Browne et al. 

2012]. A high-level description of our algorithm is found in Figure 1, and Table 1 describes the 

notation used in that algorithm.  

 

The algorithm discussed below uses a specific set of features to represent the states that are 

generated during deductive proofs. The list of features used in this work are shown in Table 1. 

500 collections were used to generate some of these features. These collections were selected by 

                                                 
2
 The predicate subSituations is used to relate situations to further situations which are their parts. 

(subSituations A B) means that the situation B is a part of the situation A, such that a complete description 

of A would have to involve a description of B. For example, (subSituations WorldWarII 

BombingOfHiroshima) holds.  
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analyzing the GAFs in the knowledge base and selecting 500 collections from the middle 

ontology3 that is used most often in these GAFs.  

 

The RandomizedModelLearning algorithm takes a training set (as a set of queries called Queries), 

and a set of 3,003 features as the input. Step 1 of the algorithm continues until a given 

computational budget is exhausted. A query q is selected from the training set at random in Step 

2. Let us assume that q is (partTypes EukaryoticCellCycle AnaphaseI), and depth_cutoff is set to 

2. In Step 5, we find all axioms that apply to the query. Since Cyc reasons over the role 

subsumption hierarchy, this step involves including 448 axioms that apply to the specializations 

of the ‘partTypes’ predicate4. In Step 6, we then select one of these axioms at random. Let us 

assume that Axiom A1 was chosen5.  

 

(relationAllExists properPhysicalParts ?x ?y) →(properPhysicalPartTypes ?x ?y)  … (Axiom A1) 

 

Note that Axiom A1 is applicable to the query because ‘properPhysicalPartTypes’ is a 

specialization of ‘partTypes. Using A1 to backchain on query (Step 7) will lead to a child node 

with query q*: (relationAllExists properPhysicalPartTypes EukaryoticCellCycle AnaphaseI). In 

Step 8, we then query for q*, and that query does not lead to any answer.  

 

 

 

 

 

 

Table 1: Notation 

                     

Features The set of features that are used by the learning algorithm 

Queries The set of queries in the training set 

NumberOfAnswers(query) The number of answers produced by asking the query for 30 seconds.  

StoreInTrainingSet The function that stores the features of the query and the reward in the training 

set. 

                                                 
3
 In this work, a term is said to be part of the middle ontology if its generality estimate is between M and N. 

Through trial and error, we set M and N to be 2,000 and 200,000. 
4
 The predicate ‘partTypes’ is used to relate types of individuals to the types of parts they have. (partTypes 

A B) means that for every instance A1 of A, there exists an instance B1 of B such that B1 is a part of A1. 

For example, (partTypes Eye Retina) holds.   
5
 (relationAllExists PRED A B) means that for every instance A1 of A, there exists some instance B1 of B 

such that (PRED A1 B1) holds. For example, (relationAllExists temporalBoundsContain CalendarWeek 

Wednesday) means that every calendar week contains a Wednesday.  
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Query (p1 t11 t12 … t1N) ^ (p2 t21 t22 …)^ ... 

Focal literal One of the literals in a multi-literal query is chosen for resolution (or 

backchaining). The chosen literal is called the focal literal. 

Collectioni ( i = 1, 2, .., 500) The set of 500 collections chosen as features for queries. 

w(a, j) The weight associated with feature fj for axiom a.   

Feature f1 Number of literals in query 

Feature f2 Number of free variables in query 

Feature f3 Depth of node 

Features f4-f533 
Each feature fi is 1 if (isa arg1 <col>) holds and 0 otherwise. Here <col> is one 

of the features (i.e., Collectioni)  , and arg1 is the first argument to the focal 

literal. 

Features f534-f1033 
Each feature fi is 1 if (isa arg2 <col>) holds and 0 otherwise. Here <col> is one 

of the features (i.e, Collectioni), and arg2 is the second argument to the focal 

literal. 

Features f1034-f1533 
Each feature fi is 1 if (isa arg3 <col>) holds and 0 otherwise. Here <col> is one 

of the features (i.e, Collectioni), and arg3 is the third argument to the focal literal. 

Features f1534-f2033 Each feature fi is 1 if (genls arg1 <col>) holds and 0 otherwise. Here <col> is one 

of the features (i.e, Collectioni), and arg1 is the first argument to the focal literal. 

Features f2034-f2533 
Each feature fi is 1 if (genls arg2 <col>) holds and 0 otherwise. Here <col> is one 

of the features (i.e, Collectioni), and arg2 is the second argument to the focal 

literal. 

Features f2534-f3003 
Each feature fi is 1 if (genls arg3 <col>) holds and 0 otherwise. Here <col> is one 

of the features (i.e, Collectioni), and arg3 is the third argument to the focal literal. 

 

 

 

 

Algorithm: RandomizedModelLearning 

Input: A set of queries, Queries 

           A depth cutoff, depth_cutoff 

           A set of features, Features 

Output: A model for ordering rules 

 

1. while within computational budget do 

2.    Pick a query q from Queries at random 

3.              depth ←depth_cutoff,  

4.              while depth > 0 
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5.                      axioms ← All axioms that apply to predicates in q. 

6.                      axiom* ←Select an axiom from axioms 

7.                      Use axiom* to backchain on q and create a child node. Let q* be the child  

                                  node’s query.  

8.                      reward ←NumberOfAnswers (q*) 

9.                      StoreInTrainingSet (q, axiom*, reward, Features, depth_cutoff-depth). 

10.                      q ←q* 

11.                      depth ←depth -1 

12.  for each axiom a in the KB, do 

13.          for each e in TrainingExamples (a) do 

14.                   prediction ← ∑𝑛
𝑗=1 𝑤(𝑎, 𝑗)*xj  [e] 

15.                   error ←Reward (e) - prediction 

16.                   w(a, j) ←w(a, j) + α * error * xj  [e] 

  

                                               Figure 1: The RandomizedModelLearning Algorithm 

    

The algorithm chooses to select axiom A1 to solve query q, and this choice leads to no answer at 

depth 0 of the tree. This information is stored in the training set in Step 9. Each entry in the 

training set takes the following form: 

 

<Axiom, number of literals, number of free variables, depth, f4, f5, …, f3003, reward>. 

 

Let us also assume the following definition for features f4 and f1535.  

 

f4 is 1 if (isa arg1 CyclicalProcessType) holds                                                                        ...(C1) 

f1535 is 1 if (genls arg1 BiologicalProcess) holds.                                                                    ...(C2) 

 

Here q is a single-literal query, and (properPhysicalPartTypes EukaryoticCellCycle AnaphaseI) is 

the focal literal. Therefore, C1 and C2 can be rewritten as6: 

 

f4 is  1 if (isa EukaryoticCellCycle CyclicalProcessType) holds                                             ...(C3) 

f1535 is 1 if (genls EukaryoticCellCycle BiologicalProcess) holds.                                          ...(C4) 

 

The conditions in C3 and C4 hold; therefore both f4 and f1535 are 1.  

 

                                                 
6
 In C1 and C2, arg1 refers to the first argument to the focal literal. Therefore, it can be replaced by 

EukaryoticCellCycle. 
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In Steps 12-16, the algorithm iterates over all the axioms and learns a linear model for them. The 

utility of using a rule is expressed as a linear function of the features in Step 14, and we learn the 

weight of those features based on the standard Widrow-Hoff rule [Russell & Norvig 2003].   

 

The complexity of RandomizedModelLearning algorithm is reasonable. If N is the number of 

axioms in KB, then Steps 5-7 can be completed in O(kN) time, where k is less than 1.7  Step 8 is 

executed for a fixed duration of time T (T is set to 30 seconds in this work). Step 9 involves 

iterating over all features; therefore it takes O(|Features|) time. Steps 4-11 can be completed in 

O(depth_cutoff * (kN+|Features|). The loop in Step 12 executes once for every axiom in the KB. 

Step 14 takes O(|Features|) time because we have to combine evidence from all features.  

Therefore, Steps 12-16 take O(N*|TrainingSet| *|Features|) time, where TrainingSet is the set of 

all training examples. 

 

4. Experimental Evaluation 

 

The selection of benchmark problems for testing algorithms and heuristics is one of the most 

important design decisions in research. We used the following principles in this evaluation: (i) AI 

researchers have often used artificially generated problem instances for testing SAT heuristics. 

However, the generation of such problem instances has not received enough attention in the 

commonsense reasoning community. Therefore, we test our heuristics on queries pertaining to 

real-world events and applications. Programmers and knowledge engineers generated these 

queries to test the performance of inference engine and different applications (e.g., Project HALO 

[Friedland et al. 2004], HPKB project [Cohen et al. 1998]), BELLA [Lenat & Durlach 2014]). (ii) 

Heuristics should be tested on the most difficult problems. To accomplish this: (a) We have tested 

our heuristics on the largest commonsense KB that uses full FOL8; (b) The Cyc KB has thousands 

of queries of varying levels of difficulty: some of them can be answered in a few milliseconds by 

focused graph search. On the other hand, some queries require us to generate a deep and large 

search tree. In this work, we are aiming at improving deep backward inference. Therefore, we 

excluded simple queries that can be answered by simple lookup or shallow one-step backward 

inference (e.g., (isa BarackObama Person)). Instead, we focused on queries that are typically slow 

because they produce a huge search space. We identified a set of 2,000 such queries. Reasoning 

with these queries was quite difficult for the Cyc system. The results for baseline experiment 

show that the average time requirements for queries was quite high. In fact, a significant fraction 

of queries could not be answered in less than 10 minutes.  

Recall that the inference engine uses a set of heuristics for ordering nodes during search. 

The net score of a node s is given by 𝑓(𝑠)  =  𝑤0 + 𝑤1 ∗ 𝑔𝑛(𝑠), where gn() is the function learnt 

                                                 
7
 Since Cyc has indexing support for identifying relevant axioms for a predicate, we do not need to iterate 

over all axioms in the KB.   
8
 KBs like ConceptNet might have more GAFs than the Cyc KB, but they do not have axioms for deductive 

reasoning. Researchers have shown that Cyc-based problems are 1-3 orders of magnitude larger than other 

problems [see Table 1 in Hoder & Voronkov 2011].  
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from the RandomizedModelLearning algorithm with n training examples, and w0 is the score 

returned by heuristics not discussed in this paper. When n is 0 (i.e., when there is no learning), the 

function gn() returns 0, and the node ordering corresponds to the baseline version for our 

experiments. By changing n, we can assess how performance varies with the size of training set.  

  We perform a k-fold cross-validation, by dividing the queries into five sets of 400 queries each.  

One of these sets was kept for validation, whereas the remaining four were used for training 

purposes. This process was repeated five times with each query subset used for validation. The 

results of these experiments are shown in Table 2. In this paper, we examine how the number of 

randomized explorations improve search performance. As discussed above, when the size of the 

training set is zero, the question answering (Q/A) performance corresponds to the baseline for the 

experiment. In Table 2, the number of queries is shown in Column 3 (labeled “#Q”). The next 

column (labeled “%A”) shows the proportion of queries that were answered in the experiment. 

The total time requirements of the queries are shown next. The column labeled “Speedup” shows 

the improvement in time requirements over the baseline. The last column (labeled “C”) shows the 

improvement in proportion of questions answered over the baseline. The experimental data were 

collected on a 4-core 3.40 GHz Intel processor with 32 GB of RAM.  

 

 

 

 

 

 

 

Table 2: Experimental Results 

 

 

Query set Size of 

training set 

#Q %A Time 

(hours) 

Speedup C(%) 

1 0 400 49.25 35.0 - - 

 18,079 400 83.75 11.4 3.07 70 

 46,248 400 95.75 3.4 10.29 94 

2 0 400 43.50 41.3 - - 

 17,241 400 92.75 5.4 7.64 113 

 46,326 400 96.00 3.0 13.40 120 

3 0 400 53.75 32.38 - - 

 8,496 400 94.75 3.88 8.34 76 
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 18,874 400 95.50 3.36 9.63 77 

 78,358 400 95.75 3.23 10.02 78 

4 0 400 34.50 42.63 - - 

 38,011 400 58.00 24.58 1.73 68 

 246,439 400 68.25 15.48 2.75 97 

 1,368,720 400 75.00 11.18 3.81 117 

5 0 400 36.50 40.91 - - 

 42,899 400 61.00 24.69 1.65 67 

 282,255 400 76.00 12.51 3.27 108 

 1,287,025 400 78.50 10.20 4.01 115 

 

We see that our approach has led to significant speedups in all cases. Since these models identify 

useful parts of the search space, they have improved Q/A performance too.  

 

5. Conclusions 

 

This paper has examined an important problem: How can cognitive systems become proficient in 

deriving deductive proofs in an unknown environment? We have presented a model in which we  

can sample decisions by conducting random simulations. We can learn search control knowledge 

from these simulations because the true of value for choosing an axiom in the given state is 

correlated with the observed result of simulation.  Given the large state space, we approximate a 

state by a set of features, and use function approximation to learn the value of choosing an action 

given its feature representation. Experiments show that our approach has the characteristics of a 

statistical anytime algorithm: more computing power generally leads to better performance. These 

results suggest three lines of future work: (i) to ensure the generality of these methods we would 

like to test them on a larger set of queries. (ii) we would like to choose actions non-uniformly and 

use them to guide a search toward more promising states; (iii) we would like to experiment with 

other schemes of feature selection and analyze how they affect efficiency.   
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