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Abstract 
Over the past couple of decades, semantic analysis has been outside of the purview of mainstream 
natural language processing, but the recent surge of interest in cognitive computing has returned it 
to center stage. However, what exactly is semantic analysis? What methods can be used to achieve 
it? What counts as a useful result? How does one measure progress? All of these, and many more, 
issues define the choice space for building semantic analysis systems. This paper presents an 
inventory of parameters and values that contributes to this choice space. It then shows how 
different combinations of parameter values lead to different system profiles using three 
implementations of the theory of Ontological Semantics. We argue that published descriptions of 
systems should explicitly state both the choices made and the positive and negative consequences 
of those choices. This will counter the current tendency for system after system to tacitly reflect 
the same choices without overtly motivating or justifying them. 

1. Introduction
When selecting problems to work on and methods to use in solving them, AI researchers face a 
plethora of scientific, technical, sociological and strategic considerations. In the best case, this 
selection process should be fully overt and conscious. Experience shows, however, that too often 
important decisions are made after less than a thorough reckoning about their prospects and 
consequences. This is true both at the “macro” level of entire fields of study1 and at the “micro” 
level of a single research program. In the latter case, reckoning about choices should take place 
regularly; otherwise, a research program runs the risk of becoming obsolete.  

This paper describes historical shifts within a research program called Ontological Semantics 
(OS) (Nirenburg and Raskin, 2004). Although the basic goals and tenets of the theory of OS have 
remained stable since its inception in the 1980s, the actual program of research, as well as the 
systems implementing the theory, have changed markedly over time. In fact, just recently we 
undertook a new implementation of OS text understanding to reflect two new priorities: 
incremental rather than sentence-level text analysis, and a concentration on dialog rather than 
mainstream NLP tasks (machine translation, question-answering, etc.). Deciding to fully retool an 
approach 30 years in the making was not easy or risk-free. As part of the decision-making 
process, we formulated the parameters that have affected development choices over the years and 
traced how the relative importance of these parameters evolved over time.  As a result, this paper 
has a two-fold utility: a) it proposes some parameters and values that can contribute to a checklist  

1 See, e.g., Nirenburg and McShane (forthcoming) for a discussion of field-level preferences in natural language 
processing. 
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Table 1. Parameters affecting the development of semantic analysis systems, along with their values in 
three implemenations of OS: Mikrokosmos (1993-2003), OntoSem (2003-2015) and OntoSem2 (2015- ). 
Thick borders and shading indicate the same value for a parameter across implementations. 

Parameters Mikrokosmos OntoSem OntoSem2 

1 Analysis vs. Generation Primary focus on analysis 
2 R & D balance Approximately equal R&D 
3 Time frame 3-5-year funding horizons 
4 Priorities Dictated by funded projects, which reflect research interests 
5 Workforce Academic, average ~ 6 individuals at a time 
6 Depth of analysis The meaning of overt 

strings 
Beyond the meaning of overt strings 

7 Analysis end point Text meaning representation  Meaning grounded in agent memory 
8 Quality needs The best quality that could 

be achieved 
Very high quality and confidence 

9 Languages Strongly multi-lingual English focus (to date) 
10 Role of ontological scripts Limited; more theoretical 

than practical  
Extensive: for simulation and reasoning 

11 Learning of lexicon and 
ontology 

None Learning of both lexicon and ontology 

12 Level of psychological 
inspiration/plausibility 

Moderate High 

13 Architecture: incrementality 
& pipeline 

Sentence-level processing; pipeline Incremental; not a 
strict pipeline 

14 Confidence metrics Limited Extensive 
15 System Status Prototype Aiming for deployed 

systems 
16 Text genres Formal texts Formal & dialog Primarily task-oriented 

dialogs 
17 Applications Machine translation, 

question-answering, etc. 
Various Human-agent 

collaboration 
18 Inspectability of processing Limited Moderate Extensive 
19 Imported engines Preprocessor Preprocessor & 

syntactic parser 
All CoreNLP engines 

20 Support of non-linguistic 
perception 

None Interoception Interoception; planned 
integration with other 
sensors 

21 Interaction of linguistic and 
non-linguistic reasoning 

Minimal Moderate Extensive 

to support conscious choices about what to do and how to do it; and b) it discusses specific 
choices – and their consequences – in the subarea of language processing in cognitive systems. 

The time is right for the field of cognitive systems to engage in a meta-analysis of this type 
due to the recent surge of interest in cognitive computing, both scientifically and in the public 
sphere at large. The buzz around cognitive computing represents a thaw in the alleged winter of 
artificial intelligence, but history warns us not to overpromise. Cognitive computing requires 
human-level reasoning, and human-level reasoners require as input formal, unambiguous 
meaning representations that address all of the challenges posed by natural language, such as 
ambiguity, ellipsis and implicature. However, the challenges of human-level semantic analysis 
have not magically become any easier, so the question is, where do we actually stand in attaining 
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this goal? Our community is poised to make fundamental progress on comprehensive language 
understanding within embodied cognition. However, planning a realistic path of progress requires 
understanding all of the challenges posed by natural language, having a plan to solve all of these 
challenges, and delivering systems on a staged timeline that shows useful progress.  

2. The Spoiler
In service of clarity – though to the detriment of compelling storytelling – we start with a 
summary (Table 1) of key parameters affecting the development of semantic analysis systems, 
along with their values in three successive implementations of OS: Mikrokosmos (1993-2003), 
OntoSem (2003-2015) and OntoSem2 (2015-). In the text of the paper, parameters are referred to 
by their numbers in curly brackets. Readers well acquainted with computational semantics should 
find the table largely self-explanatory. Others will learn about the parameter space in the course 
of the system descriptions to follow. However, first let us briefly introduce the theory of OS 
underlying all three implementations.   

3. The Theory of Ontological Semantics (OS)
The theory of Ontological Semantics (OS) describes an approach to automatically extracting the 
full, ontologically-grounded, contextual meaning of natural language input, which is then used as 
interpreted knowledge to support language processing applications. The concepts used in text 
meaning representations (TMRs) are drawn from a property-rich ontology currently containing 
around 9,000 concepts. The translation from text strings to concepts is supported by a lexicon 
currently containing around 30,000 word senses. Each word sense features linked syntactic and 
semantic structure zones, with the latter describing the meaning of words and phrases using the 
ontological metalanguage. For example, the lexical sense for the multiword expression apply 
pressure to, recorded as the fifth verbal sense of apply is shown below. We use a semi-formal 
representation for readability’s sake.  

apply-v5 
def  “phrasal: ‘apply pressure to’; press in a physical sense” 
ex “She applied pressure to his chest.” 
syn-struc 

subject (root $var1) (cat np) 
v (root $var0) (cat v) 
directobject  (root $var2) (cat n) (root pressure) 
pp (root $var3) (cat prep) (root to) (obj ((root $var4) (cat np))) 

sem-struc 
PRESS 
 AGENT  ^$var1 
 THEME  ^$var4 
^$var2  null-sem+ 
^$var3  null-sem+ 

The syn-struc zone asserts that, in the active voice, the verb apply takes a subject, a direct object 
headed by the word pressure, and a prepositional phrase headed by to. Each syntactic element is 
associated with a variable. The sem-struc asserts that the event in question is the ontological 
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concept PRESS, whose AGENT is the meaning of $var1 (^ indicates “the meaning of”) and whose 
THEME is the meaning of $var4. The ontological description of PRESS – which is consulted during 
lexical disambiguation – includes the information that the AGENT must be ANIMATE, whereas the 
THEME must be a PHYSICAL-OBJECT that is NOT ANIMATE.  (So, an input like He applied pressure 
to his employees will be treated by a different lexical sense whose prepositional object is 
constrained to HUMAN.) The descriptor “null-sem+” indicates that the meaning of these elements 
should not be computed separately: it has already been taken care of in the overall meaning 
representation. 

Below is a the pretty-printed text meaning representation (TMR) for the input You need to 
apply pressure to the wound, excluding metadata and frames showing inverses: 
 

REQUEST-ACTION-1 
  AGENT   HUMAN-1   ; the speaker 
  THEME   PRESS-1 
  BENEFICIARY HUMAN-2   ; the interlocutor 
PRESS-1 
  AGENT   HUMAN-2   
  THEME   WOUND-INJURY-1 

 
The TMR is headed by a numbered instance of the concept REQUEST-ACTION, which is the 
interpretation of you need to when uttered in a task-oriented dialog.2 The AGENT of this action is 
the HUMAN speaker and its THEME (what is requested) is an instance of PRESS. This instance, 
PRESS-1, is further specified in its own frame as having the HUMAN interlocutor as its AGENT and 
an instance of WOUND-INJURY as its THEME. The ontology provides further information about 
each concept. For example, PRESS is the child of APPLY-FORCE. Among its property-value pairs 
are case-roles that support lexical disambiguation and agent reasoning, including (AGENT  
ANIMATE), (INSTRUMENT  LIMB, DEVICE), (THEME PHYSICAL-OBJECT). In short, the meaning of 
ontological concepts is defined by their inventory of property values and how they participate in 
the scripts that drive simulated agent action and reasoning.3  
 TMRs represent knowledge structures of the type that the reasoning community has been 
needing – and handcrafting – for decades. The OS approach to meaning analysis is the antithesis 
of so-called “upper-case semantics,” which refers to the tradition of sidestepping natural language 
challenges like ambiguity and semantic non-compositionality by asserting that strings written 
using a particular typeface (often, uppercase) have only the single, intended meaning. By contrast, 
OS takes responsibility for all challenges of natural language including lexical and referential 
ambiguity, multi-word expressions, nominal compounds, ellipsis, fragments, indirect speech acts, 
and more. 

OS is a language-independent theory of meaning, so the ontology, the fact repository, the 
TMRs, and all agent reasoning rules are written in the same language-independent, ontologically-
grounded metalanguage (McShane & Nirenburg, 2012).4 Even many aspects of the lexicon – such 

                                                
2 Outside of a task-oriented dialog, one must conveys only a high value of obligative modality. Within a task-oriented 

dialog, you must has the further implication “so do it”. 
3 For scripts in OS, see McShane et al., 2007. For reasoning, see Nirenburg et al., 2008. 
4 Individual agents have their own ontologies, which contain a combination of universal knowledge and agent-specific 

knowledge: e.g., all agents know what a STOMACH is, but only medically informed agents know what a LOWER-
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as the semantic descriptions of many words – are language-independent, leading to the time-
efficient porting of lexicons across languages (McShane et al., 2005a). We leave additional 
details about OS to the descriptions of implementations to follow. 

4. The Implementations 
Over the 25+ years of its development, OS has been the theoretical substrate for three markedly 
different systems. The first two, Mikrokosmos and OntoSem, represent the evolution of a single 
code base, whereas the third, OntoSem2, is being developed from scratch. Throughout the history 
of OS, the values for five parameters in our inventory have remained stable: analysis has been 
pursued more rigorously than generation {1}; approximately equal effort has been spent on 
research and development, with the academic orientation pushing the research angle but the need 
for system-based validation driving development {2}; the funding horizon has been 3-5 years 
{3}, with the focus of work at any given time reflecting projects goals {4}; and the workforce has 
been mainly academic personnel, averaging around 6 individuals at a time {5}. Here the 
similarities across all implementations end, and we switch to top-down descriptions of each 
system, ordered historically. 

4.1  Mikrokosmos: 1993-2003  

The Mikrokosmos language analyzer (Beale et al., 1995) was initially developed in service of 
interlingual machine translation (MT) {9, 17}.5 Language analysis resulted in sentence-level 
TMRs that could be used as input to generators for any language. Text analysis was prioritized 
over generation {1} since the automatic creation of knowledge structures is a prerequisite to any 
scalable approach to generation: that is, generation systems have to generate language strings 
from something and, to date, that something is manually crafted for most systems.  

Although all language phenomena were, in principle, in purview, the MT application 
suggested certain priorities, such as lexical disambiguation, the establishment of the semantic 
dependency structure, and the processing of long and syntactically complex sentences. Of lower 
priority were phenomena that could typically be carried over in translation without deep analysis, 
such as ellipsis, implicatures, and referring expressions {6, 7}.6 The goal was to achieve the 
highest-quality translations possible within a largely research-oriented effort {8}. Although 
script-based reasoning was included in the theory of OS, it was operationalized only for 
demonstration examples {10}. There was no explicit learning of lexicon or ontology, but 
meanings for unknown words could be hypothesized on the fly using unilateral selectional 
constraints: e.g., quood could be understood to be an INGESTIBLE from the input John ate some 
quood {11}.  

                                                                                                                                            
ESOPHAGEAL-SPHINCTER  is. As concerns language- and culture-specific interpretations of basic ontological concepts, 
these can be conveyed by property values added to the relevant word senses in the lexicon.  

5 This was before the ascendancy of statistical methods supported by large parallel corpora. MT is among the most 
suitable applications for statistical processing since many ambiguities, implicatures, ellipses, etc., can be directly 
passed from one language to the other, with the human consumer responsible for resolution. Language understanding 
by task-oriented intelligent agents, by contrast, is far more demanding: the agent must resolve all of these reasoning-
heavy ambiguities and underspecifications. 

6 Of course, there are exceptions: e.g., plural pronouns in Hebrew have gender, introducing an extra choice in English-
to-Hebrew translation.   
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In Mikrokosmos, sentences were processed as a whole, using knowledge-based strategies 
supplemented by computational methods for reducing combinatorial complexity. A program 
called Hunter-Gatherer (Beale et al., 1996) leveraged two tools for achieving higher efficiency in 
problem solving: hunting (reducing the search space by looking for suboptimal or impossible 
solutions and removing/killing them) and gathering (efficiently extracting answers to 
subproblems; collecting and combining satisfactory answers). Weighted preferences were also 
combined to decide, for example, whether it was preferable to satisfy syntactic or semantic 
constraints when both could not be simultaneously satisfied. The contribution of these 
computations made some aspects of language-oriented decision-making uninspectable {18}. In 
addition, effort was not devoted to creating visualization tools to trace system processing – an 
enhancement that was introduced later on.  

Although the theory of OS is strongly psychologically motivated, emulating human processing 
{12} was not a first-order goal of Mikrokosmos. Thus, inputs were analyzed at the level of 
sentences, and the architecture followed a strict pipeline (preprocessing à syntactic analysis à 
semantic analysis à pragmatic analysis), which is not how people process language {13}.  

All Mikrokosmos processing engines, apart from various preprocessors {19}, were developed 
in-house. Also developed in-house were the Mikrokosmos ontology and ontologically-linked 
lexicons of varying sizes for languages including English, Russian, Spanish, Turkish, Chinese and 
Korean. 

Once the basic language processing resources and engines were developed, they were applied 
to various applications beyond MT, such as information extraction and question answering (e.g., 
Cowie et al., 2000) {17}. All of these applications were prototypes that worked on open text or 
within a specific but non-toy domain, such as the Olympic Games or bankruptcy {15}.  

The goal of semantic analysis was the production of correct TMRs for individual sentences 
{7}, sometimes merged into a fact repository. The actual implementation of fact repositories 
during the Mikrokosmos period was not as advanced as the corresponding memory modeling of 
intelligent agents in subsequent implementations.  

Let us return to the historical context. This was the 1990s, before the ascendancy of the 
internet, before social media, before vast increases in computing power, before “ontology” 
became a watered-down term used to describe any hierarchical knowledge base, before the push 
toward open-source resources, and during the meteoric surge of interest in machine learning in 
support of knowledge-lean NLP. The most noteworthy point about knowledge-lean NLP for this 
discussion is that it offers faster results for applications in the near term but it does not address the 
difficult language phenomena that will be necessary in the long run. In fact, the success of 
knowledge-lean NLP can be traced to the strategic choices of applications: machine translation 
systems can leave many ambiguous aspects of text unresolved, shifting that work to the human 
reader; question-answering systems can rely on redundancies in a large corpus, opting to target 
simpler formulations of information; and search engines are readily forgiven errors, being the 
ultimate no-risk application. Even IBM’s Jeopardy-playing Watson system, though not 
knowledge-lean, could selectively treat inputs, choosing not to respond at all in cases of low 
confidence. 

By the end of the 1990s it became clear that these mainstream applications would not be the 
best showcases for systems pursuing full text understanding. Therefore, OS development began to 
shift focus to reasoning-heavy applications for which knowledge-lean approximations would not 
suffice.    
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4.2  OntoSem: 2003-2014 

OS expanded into agent applications thanks to the Maryland Virtual Patient (MVP) project. MVP 
is a clinician-training system in which a cohort of simulated virtual patients can be diagnosed and 
treated using interactive simulations (Nirenburg et al., 2008). A virtual tutor, along with other 
supporting medical agents, rounds out the team of intelligent agents. This R&D effort had three 
foci: a) creating functionally realistic double agents, defined as integrated, interactive 
physiological and cognitive simulations; b) creating a knowledge environment in which the same 
structured knowledge supported cognitive and physiological simulations (McShane & Nirenburg, 
2012); and c) approaching language understanding as a situated, task-oriented problem, affected 
by the plans, goals and expectations of the dialog participants.  
 In the context of developing this agent environment, which would come to be known as 
OntoAgent, the team’s attention became widely distributed. We dove into domains ranging from 
physiological simulation (McShane et al., 2007) to decision-making biases (McShane et al., 2013) 
{21}. To help speed progress on language understanding with less in-house effort, we 
incorporated the Stanford CoreNLP dependency parser (Manning et al., 2014) into our processing 
pipeline {19}. Although this was not without significant initial and ongoing overhead (see 
McShane et al., Forthcoming, for details), it permitted us delegate responsibility for syntactic 
analysis so that we could more squarely focus on semantics within the larger model of agent 
cognition.  
 OntoSem, like Mikrokosmos, processed full sentences at a go, used a pipeline architecture, 
and relied on the Hunter-Gatherer engine to manage complexity {12, 13}. The results of language 
understanding were incorporated into agent memory along with memories generated by 
interoception (the experiencing of bodily signals), reasoning, and simulated action {20}. Memory 
thus augmented served as input to the agent’s decision functions about its lifestyle and medical 
treatment.  

A core feature of MVP was its extensive “under the hood” panes, which showed real-time 
traces of many types of agent functioning (Nirenburg et al., 2010). In addition, we developed 
interfaces that offered both programmers and knowledge engineers better access to intermediate 
results of language processing, which fostered testing and debugging of both the language 
processing engines and the supporting knowledge bases {18}.  

As concerns learning, OntoSem introduced methods for agents to learn elements of lexicon 
and ontology through interaction with a human user {11}. For example, virtual patients in MVP 
could learn the names and properties of diseases, tests and treatments through interaction with the 
human playing the role of attending physician.  

An essential component of MVP was the ontological scripts used to model the interactive, 
physiological simulations. This same script-based knowledge also supported language 
understanding and agent reasoning {10}. 
 During the OntoSem period, quite separately from the work on MVP, we continued to 
enhance the microtheories devoted to such issues as lexical disambiguation (McShane et al., 
Forthcoming), multiword expressions (McShane et al., 2015), nominal compounds (McShane et 
al., 2014), reference resolution (McShane & Nirenburg, 2013), and the processing of fragments 
and ellipsis (McShane et al., 2005b). Some of these algorithms were implemented and evaluated 
on open text, whereas others remained on the stack for later integration.   
 To sum up, during the OntoSem period our attention broadened to agent modeling overall, 
with language understanding being only one contributor to agent cognition. As part of this 
process, we became more concerned with both psychological plausibility and the inspectability of 
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processing results, since an agent’s confidence in its language understanding must inform its 
decision-making about action. We determined that sentence-level processing using a pipeline 
architecture would not provide sufficiently human-like behavior, and decided to experiment with 
incremental parsing. We also sought to render all language-oriented decision-making as 
inspectable as possible so that the agent could achieve fine-grained estimates of confidence in its 
language understanding. For these reasons, we halted development of OntoSem and applied all of 
the available knowledge resources and algorithms to a completely new implementation, 
OntoSem2. 

4.3  OntoSem2: 2015- 

OntoSem2 focuses on language understanding for task-oriented dialogs {16}, which are expected 
to contain short, highly elliptical utterances whose full interpretation requires world knowledge, 
situational understanding, and the treatment of difficult linguistic phenomena.  

OntoSem2 processes inputs incrementally and permits all heuristic evidence to be leveraged as 
soon as it becomes available, in a largely non-pipeline architecture {13}. This will offer human-
like possibilities such as beginning to act in mid-sentence and interrupting for clarification {12}. 
For example, if a person tells a robot, “Take the nylon rope and tie it firmly to the fender of the 
car”, the robot should already start reaching out toward the nylon rope after the 4th word is 
pronounced. Furthermore, if the robot doesn’t understand a necessary aspect of input – e.g., 
“nylon” could get pronounced during a loud crash – it should immediately interrupt to ask for 
clarification. 

Incrementality makes it natural to leverage any and all heuristic evidence as soon as it 
becomes available, avoiding the drawbacks of traditional, but cognitively implausible,  pipeline 
architectures. For example, given the fragment, “The pain started in my abdomen and then it”, 
the system can hypothesize that it is referential (not pleonastic) and refers to the pain (McShane 
and Babkin, Forthcoming). This hypothesis, though overridable, immediately reduces the choice 
space for disambiguating the upcoming verb.  

A known challenge of incrementality is the potential explosion of ambiguity while the system 
awaits disambiguating elements of input. For example, sentence-initial “It made” can have many 
interpretations until we know what comes next. However, the numerical threat is not nearly so 
imposing with dialog as with more formal text genres, since dialog tends to be organized into 
word packets of around 7 to 10 words (McWhorter, 2013). Such chunks can be: (a) complete 
sentences like I’m hungry; (b) fragments contributing to complete sentences like I’m hungry / and 
a little bit nervous too; (c) free-standing fragments like How many scoops do you want? Three, or 
(d) incomplete structures due to interruptions, changes in one’s train of thought, distractions, or 
the availability of extra-linguistic support for one’s meaning, like “Hammer!” meaning “Pass me 
the hammer fast!”  

Deciding to pursue incrementality leads to a host of other decisions about implementation. We 
dive deeply into parameters involving incrementality because if semantic analysis is a rarity, all 
the more so is incremental semantic analysis.  

4.3.1  Parameters Involving Incrementality 

Although this inventory of parameters is similar in nature to the one presented in Table 1, we 
present it in running text rather than tabular format since we are discussing only one of many 
possible values for each parameter. 
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INCR-Parameter 1. Does OntoSem2 use a syntactic parser that is optimized for incremental 
processing? No. For preprocessing and syntactic analysis, OntoSem2 continues to use the 
preprocessor and parser of the Stanford CoreNLP toolkit. We are not modeling human-like 
syntactic processing for the following reasons: (1) Working on syntax would pull resources from 
our main interest, which is semantics and pragmatics. (2) Syntax has dominated the field of NLP 
for the past 40 years, meaning not only that quite good parsers are available, but that it is high 
time to pay attention to other things. (3) OS makes no theoretical claims about how syntactic 
structures are built; it simply uses syntactic evidence, to the extent it is available, as one type of 
heuristic evidence for semantic analysis. (4) Incremental syntactic parsers exist (e.g., Ball et al., 
2014) and could replace our current parsing method if their results proved better, or if one wanted 
to make stronger claims about the alignment of agent cognition with human cognition. (5) Even 
though CoreNLP is not optimized for incremental parsing, it does a reasonably good job of it. We 
expect that parsing errors – like errors in semantic and discourse analysis – will be more frequent 
for fragments than for full sentences and are working toward enabling the agent to function as 
well as possible in this non-optimal situation. The incorporation of not purely-knowledge-based 
systems into our knowledge-based environment has the benefit of advancing system development 
but at the expense of full explanatory power. We accept that compromise in order advance what 
we consider the most useful and scientifically interesting aspects of OS.  

INCR-Parameter 2. Does OntoSem2 use other externally generated results? Yes, it uses 
CoreNLP named entity recognition and reference resolution, the latter described in Parameter 4. 
We are open to using the results of other engines as well, if they can produce results without 
requiring automatically unachievable prerequisites (something not true of many reported 
systems).  

INCR-Parameter 3. How strictly incremental is the system? Syntactic analysis is run after every 
word,7 so the parser is called after sentence-initial “The”, then “The big”, then “The big white”, 
etc. We are not concerned about efficiency or processing speed at this time (which is another 
choice within this choice). As regards semantic/pragmatic analysis, it is run only after every noun 
or verb. We find it superfluous, e.g., to dwell on what an agent’s semantic interpretation of 
sentence-initial The in isolation should be, and we consider it of low priority to optimize the 
semantic interpretations of other fragments that are missing a semantically weighty head, such as 
The very or The very big (exceptions below).8 So, for the sentence, The big white horse ran into 
the barn after the gunshot, semantic/pragmatic analysis will be launched at 4 points, indicated by 
slashes: The big white horse / ran / into the barn / after the gunshot /. This strategy is 
intentionally generic: e.g., we do not treat verb forms that might be functioning as auxiliaries 
differently from main verbs (have can serve both functions), and we do not look ahead to 
determine if nouns are the initial component in a nominal compound (the tree will be ultimately 
be analyzed differently from the tree structure). We do, however, account for the special case in 
which a non-verbal, non-nominal fragment serves as a full utterances: “What kind of wine would 
you like?” “Red.” 

                                                
7 There are some exceptions, but they are too fine-grained for this paper.  
8 The question, if one chose to pursue it, is: Would big, outside of context, be understood as SIZE, WEIGHT or 

IMPORTANCE? Would the default interpretation change in certain contexts? Does this hold any scientific interest or 
have any impact on human or agent reasoning? Measuring human responses just because they are measurable, and 
modeling agents accordingly just because we can, has little scientific or practical rationale. 
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INCR-Parameter 4. How are syntactic, semantic and pragmatic analysis integrated? Our current 
processing algorithm, which is under implementation, is as follows: (1) Syntactic and reference 
analysis is provided by CoreNLP. (2) Three types of pre-semantic processing are run, which offer 
useful heuristics for upcoming semantic analysis: multi-word expression detection; basic nominal 
compounding analysis; and homegrown coreference for certain types of difficult referring 
expressions not handled by CoreNLP. (3) Basic semantic analysis is launched, aimed at lexical 
disambiguation and the establishment of the dependency structure. (4) Deep coreference 
resolution is run, which validates or overturns prior coreference votes using semantic evidence; it 
also establishes co-reference links for so-far unresolved referring expressions. (5) Semantic 
analysis and deep co-reference analysis are rerun, in turn, to optimize the combination of 
decisions about lexical disambiguation and reference resolution. (6) Triggered meaning 
procedures (recorded in the lexicon) are run, to resolve contextually-bound meanings such as 
yesterday and approximately. (7) Advanced contextual reasoning is applied, as needed, to handle 
sentence fragments, non-lexically recorded indirect speech acts, implicatures, etc. (8) TMRs are 
grounded in agent memory: For known objects and events, new information is added to their 
anchors in memory, whereas new objects and events establish new anchors.  

INCR-Parameter 5. In cases of less than full confidence, are multiple candidate analyses 
retained? They can be, and currently are. This is an application-specific decision. 

INCR-Parameter 6. Can later processing override the results of earlier processing? Yes. For 
example, surfacy coreference votes can be overridden by semantic analysis: In The janitor talked 
to the surgeon and then he operated, syntactically-oriented coreference will suggest that he is 
coreferential with the janitor, whereas semantic analysis will prefer coreference with the surgeon.  

INCR-Parameter 7. Is reasoning about action interleaved with reasoning about language? 
Absolutely, as described in McShane and Nirenburg (2015a,b).  

Zooming out, we have just considered some of the choices involved in developing an 
incremental semantic analysis system. Now we turn to how these choices, in conjunction with the 
larger choice space of Table 1, are manifesting in the nascent OntoSem2 system. 

4.3.2  Current State of Development of OntoSem2 

We are a little over a year into the development of OntoSem2 and are making fast progress thanks 
to the availability of previously compiled knowledge resources, precisely described 
microtheories, and a sober attitude toward choosing our battles. We expect that in the next 6 
months domain-neutral language understanding capabilities will be stable enough for a baseline 
formal evaluation. During this time, we also expect to start building an ontological model to 
support a new medical application. This model will include physiological and clinical aspects, 
and will permit robust reasoning by the agent even in linguistically underspecified contexts. For 
example, if a patient says, “God, my lower gut!” the agent must understand this as the report of 
severe pain in the lower abdomen. Our past experience in medical modeling suggests that this 
level of understanding is entirely achievable.  

In this implementation, we are paying close attention to the inspectability of processing {18}, 
both to enhance code and knowledge debugging, and to permit the agent to more accurately 
gauge its confidence in each instance of language understanding {14}. For example, we can 
generate three levels of traces of decisions related to lexical disambiguation and semantic 
dependency determination, and we are well into developing interfaces that show the intermediate 
and final stages of processing, appended with selectable inventories of metadata.  
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5. Comparisons with Others 
As regards semantic analysis, the programs of research that most closely resonate with OS are 
Schank’s (1972) Conceptual Dependency Theory and Wilks’ Preference Semantics (Wilks, 1985; 
Wilks & Fass, 1992). Unlike OS, however, these theories were not applied to broad-scale text 
analysis, though they did inspire approaches that were: e.g., Schank-like script-based reasoning 
inspired the Knowledge Machine project (Clark & Porter, 2004). The generational attribution of 
these programs of research should come as no surprise for reasons described earlier. 
 As regards incremental analysis, there are two interesting points of comparison. Jerry Ball’s 
(2014) Double-R incremental parser has successfully treated difficult syntactic structures in 
English (e.g., What could he have been given to be eaten?) but it does not pursue semantics. By 
contrast, Ruth Kempson’s Dynamic Syntax is a purely linguistic (rather than computational 
linguistic) theory that was used by Purver at al. (2011) as the theoretical substrate for the 
approach to incremental parsing described in Purver and Kempson (2004) and Purver et al. 
(2011). This system generates a decorated tree structure that is said to represent the semantic (not 
syntactic) interpretation of the utterance; however, the system does not engage in lexical 
disambiguation, instead employing a version of upper-case semantics. In short, they seem to have 
mechanisms to cover various linguistic phenomena, but they seem to make the same assumptions 
as do most formal semanticists: that external, upstream processors will deal with problems such 
as lexical and referential ambiguity, idiomaticity, and indirect speech acts. It is noteworthy, of 
course, that the closest points of comparison that we could find are not, in the end, very close at 
all.  

6. Final Thoughts 
The inventory of parameters and values we presented here is not intended to be complete; instead, 
it is intended to capture some noteworthy, high-level distinctions between implementations of OS 
that were describable in a paper of this length. A longer treatment of this topic could have taken a 
number of different paths, of which we mention just two.  

On the one hand, we could have continued to focus on OS implementations but have included 
more fine-grained parameters and larger value sets. However, in order for those parameters to 
make sense, we would have had to have provided much more detail about how each system 
worked. This would be entirely appropriate, and is an excellent idea, for a book-length treatment 
of implementations of OS. 

Another direction for a much longer paper – and, indeed, a dedicated program of study – 
would have been to have proposed a universal set of parameters that could be used, as applicable, 
to describe any NLP system. It is interesting to consider some of the things that would have to be 
included in the most rigorous interpretation of that goal:  
 

1. The individual listing of every linguistic phenomenon that could be encountered. For 
example, does the system treat broad referring expressions, scalar attributes, quantifiers, 
heavy-NP shift, sentence fragments, indirect speech acts, and each of hundreds more 
language phenomena? This inventory could be informed, e.g., by the lists that guide the 
work of field linguists, or by grammars like Quirk et al.’s Comprehensive Grammar of 
the English Language (1,792 pages!). 

2. All possible levels of treatment of each phenomenon. For example, does analysis include 
morphological, syntactic, semantic and/or discourse analysis?  

11



M. MCSHANE & S. NIRENBURG  

 

3. What counts as “treatment” of a given phenomenon? For example, does resolving a 
referring expression require finding any single member of its textual coreference chain, or 
all members of its textual coreference chain, or the latter plus grounding the referring 
expression to agent memory to account for cross-document coreference?  

4. What theoretical framework is being used to motivate the approach to describing each 
phenomenon? For example, does one use 6, 12 or 28 parts of speech to describe the 
lexical stock of a given language? What are the pros and cons of the selected theoretical 
framework, and do they differ across applications?  

5. What counts as a correct treatment? For example, does the agent have to have a high-
confidence answer that it can explain? (If so, how high does the confidence have to be, 
and what counts as explanation?) Or is the agent’s best guess without explanation 
sufficient, with the likelihood of a correct answer being defined solely by a system-level 
evaluation metric? 

 
This is just a sampling of the very large inventory of parameters that could be included in a 
universal inventory. Clearly, not only building, but also using, such an inventory would quickly 
become overwhelming, which suggests that inventory creation is better informed either by 
specific scientific questions or by specific practical needs. In our case, as described earlier, we 
undertook this analytical exercise as a precursor to deciding to halt work on a mature system 
implementation in favor of developing a new one from scratch. In retrospect, we believe that this 
sort of programmatic spring cleaning is invaluable and we intend to make it a regular practice.  

Before leaving the issue of a universal inventory of parameters, let us mention that the center 
of gravity of such an inventory – i.e., innumerable linguistic details – would probably be of less 
interest to the cognitive systems community than the more broad-strokes inventory we presented 
here. Our main point is to advocate the utility of making manifest one’s research decisions, rather 
than to suggest that there is a single best way to organize the results of that process. If a full menu 
of parameters and values were to exist, it might speed up analysis work of this kind and permit 
neater cross-system comparisons. However, we believe there is also utility in looking at one’s 
program of research bare, without any externally-imposed organizational principles, and 
analyzing which decisions one has made, why, and to what effect. After all, any inventory will be 
incomplete, and the reliance on an inventory can affect judgment – even leading to missing the 
most salient features if they are, idiosyncratically, not accounted for.  
 In closing, although the details of this paper will likely be of interest only to developers of 
language understanding systems, we hope that the overarching point will be of broader interest. 
Throughout artificial intelligence and, specifically, cognitive systems, it would be of great benefit 
if developers would spend more time talking about why they are doing what they are doing, 
framed among the competing options. The recent preoccupation in computational linguistics 
circles with numerical system evaluations has detracted from what is far more interesting: how 
can we work toward truly sophisticated intelligent agents, and what part in that big picture does 
each necessarily small contribution play? Such issues should not be implicit knowledge for the in-
crowd. Instead, they should be front and center in scholarship aimed at a wider audience.  
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