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Abstract
Meta-reasoning is an integral part of high-level cognition. Among other tasks, an intelligent agent
may use meta-reasoning for learning by correcting mistakes in its domain knowledge. For exam-
ple, given examples where its classification knowledge fails, a classification agent may use meta-
reasoning to self-diagnose and self-repair the erroneous domain knowledge. We know from prior
work that this kind of self-diagnosis and self-repair is facilitated if a hierarchical structure can be
imposed on the agent’s classification knowledge, based upon available background knowledge. In
this paper, we examine the effect of imposing fixed semantics on the intermediate nodes of the
hierarchy on classification learning, as distinct from the advantage offered by the structuring of
knowledge. We present empirical results from ablation experiments that demonstrate the gener-
alization power provided by verification procedures at the intermediate concepts in the hierarchy,
which are demonstrated to go well beyond those provided by the structure of the hierarchy.

1. Introduction

Meta-reasoning is an integral part of high-level cognition (Brachman, 2002; Cox and Raja, 2011;
Minsky et al., 2004). We know that metareasoning is useful for planning about reasoning (Wilen-
sky, 1981; Cox and Ram, 1999), control of reasoning (Davis, 1980; Stefik, 1981; Hayes-Roth and
Larsson, 1996; Punch et al., 1995; Hansen and Zilberstein, 2001; Raja and Lesser, 2007), bounding
reasoning (Horvitz et al., 1989; Russell and Wefald, 1991; Horvitz, 2001), self-explanation (Goel
and Murdock, 1996; Cox and Ram, 1999), revision of beliefs (Doyle, 1979), revision of reasoning
processes (Birnbaum et al., 1990; Stroulia and Goel, 1995; Leake, 1996; Murdock and Goel, 2008),
refinement of knowledge indices (Fox and Leake, 2001), and guidance of situated learning (Ander-
son et al., 2006; Ulam et al., 2008). Cox (2005) provides a useful review of some AI research on
metareasoning; Cox and Raja (2011) provide a useful collection of papers on recent AI work on
meta-reasoning.

As we describe in Goel and Jones (2011), our work on metareasoning since the early 1990s
has focused mostly on self-adaptation in intelligent agents (e.g. Stroulia and Goel, 1996, 1997;
Murdock and Goel, 2001a,b, 2003). The need for self-adaptation arises because intelligent agents
typically operate in dynamic task environments. It is useful to make a few distinctions here. Firstly,
adaptations to an agent can be retrospective (i.e. when the agent fails to achieve a goal in its given
environment; Birnbaum et al., 1990; Stroulia and Goel, 1995, 1999; Leake, 1996), or proactive (i.e.
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when the agent is asked to operate in a new task environment; Murdock and Goel, 2008). Secondly,
adaptations can be either to the deliberative element in the agent architecture (Birnbaum et al., 1990;
Stroulia and Goel, 1995; Leake, 1996; Murdock and Goel, 2008), or the reactive element (Stroulia
and Goel, 1999), or both. Thirdly, adaptations to the deliberative element may be modifications
to its reasoning process (i.e. to its task structure, selection of methods, or control of reasoning;
e.g. Birnbaum et al., 1990; Stroulia and Goel, 1995; Murdock and Goel, 2008), or to its domain
knowledge (i.e. the content, representation and organization of its knowledge; e.g. Leake, 1996;
Jones and Goel, 2008), or both. Jones and Goel (2012) describe a technique for retrospective self-
adaptation of domain knowledge in a deliberative agent.

Learning by correcting mistakes in domain knowledge is an important issue in cognitive sys-
tems research. Winston (1992), for example, describes a technique in which a recognition agent
autonomously diagnoses and repairs its domain knowledge. Given a domain model for identifying
an instance as belonging to a class, and a failure of the agent to correctly identify an instance, Win-
ston’s recognition agent uses positive and negatives examples of identification to localize and repair
the fault in the domain model that led to the failure. It is important to note that Winston’s technique
maintains a well-defined semantics for the identification class at all times.

Our technique for learning by correcting mistakes significantly expands Winston’s work in three
dimensions (Jones and Goel, 2012): it addresses the much more complex task of hierarchical clas-
sification, it combines knowledge-based and statistical techniques for self-diagnosis of the fault in
the domain model, and it grounds the self-diagnosis in perception. We consider the classification
agent as situated in the world such that at classification time only data at the leaf nodes of the clas-
sification tree is available and the agent produces a label at the root node. However, at the time
of self-diagnosis, the agent can use procedures to verify the semantics of the intermediate nodes
in the hierarchy. We found that the use of such empirical verification procedures (or EVPs) that
can define and fix the semantics of the intermediate nodes significantly facilitates self-diagnosis and
self-repair.

An open question in prior work is the extent to which the use of empirical verification of the
semantics of the intermediate nodes in the classification hierarchy improves the efficiency of classi-
fication learning beyond the advantage provided by the accompanying structure imposed upon the
agent’s knowledge representation. In this paper, we are specifically concerned with compositional
classification (e.g. (Jones and Goel, 2008; Bylander et al., 1991; Goel and Bylander, 1989)), where
prior knowledge in the form of a tree structure of classification subproblems is given, and where
both the top level class label and the output values of the subproblems can be obtained during learn-
ing (but the functions computing the subproblems are not known to the knowledge engineer, and
thus cannot be hard-coded). This task is so common in cognition (Chandrasekaran and Goel, 1988)
that Chandrasekaran (1988) called it a Generic Task. Past research has shown that when this kind of
tree-structured background knowledge is available, it can be exploited to increase the efficiency of
learning, e.g., (Fu and Buchanan, 1985; Wogulis and Langley, 1989; Tadepalli and Russell, 1998).
Here we are specifically concerned with empirically distinguishing the additional benefit to learn-
ing efficiency afforded by the use of verification procedures at internal nodes in a classification
hierarchy from the benefit afforded by the imposition of a hierarchical structure on the knowledge.
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Figure 1. DJIA Classification Hierarchy

A number of learning techniques have been proposed that make use of background knowl-
edge about problem structure to bias classification learning. Of these techniques, some enforce
the semantics of intermediate concepts in the classification hierarchy during learning (e.g. Fu and
Buchanan, 1985; Wogulis and Langley, 1989; TSB, Tadepalli and Russell, 1998; Layered Learn-
ing Whiteson et al., 2005; Structured Induction Shapiro, 1987; and BNs Pearl, 1988), while others
do not (e.g. KBANN Towell and Shavlik, 1994; and EBNN Mitchell and Thrun, 1993). For ex-
ample, consider the knowledge structure depicted in Figure 1 , which could be used to learn to
predict the direction of the Dow Jones Industrial Average next month based on currently available
financial data. The leaves in this hierarchy represent values obtainable at the time a prediction is
produced (current and past values of various indicators). Non-leaf nodes in the hierarchy represent
future values that are not known at the time that the prediction is produced – for example, next
month’s unemployment rate or the direction of the DJIA next month. Methods that enforce fixed
semantics at internal nodes will ensure that the concepts learned at intermediate nodes match the
semantics indicated by their annotations. This is done by constructing training examples for each
node using target values that reflect the intended semantic. This means that, to enforce semantics
at intermediate nodes in such a classification hierarchy, each internal concept learner must be able
to somehow obtain or infer the correct (according to the prescribed semantics of the concept) local
value for each global training example. In the case of the DJIA hierarchy depicted in Figure 1, this
can be achived by waiting a month and then obtaining the true values of concept nodes for training
purposes. Techniques that do not enforce fixed semantics at internal nodes may still make use of
background knowledge to structure and initialize the knowledge representation, but make use of
credit assignment techniques that do not modify knowledge at intermediate nodes based on local
examples generated according to fixed semantics. For this reason, the concepts learned at internal
nodes may, over time, cease to have identifiable semantics.
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While it is clear based on this past research that background knowledge about classification
problem structure can enhance the generalization power of a classification learner, the power pro-
vided by fixing the semantics of intermediate concepts in a classification hierarchy is less well
understood. Intuitively, it seems as if enforcing fixed semantics for these concepts will reduce the
expressive capability of the knowledge structure – and thus, some additional generalization power
should be provided. However, because there is a measurable cost to using a technique that enforces
fixed semantics at nodes within a classification hierarchy during learning (knowledge engineering
cost, and more stringent demands on the form of the learning environment), it is important to go
beyond intuition to tangible evidence regarding how much benefit is derived from the enforcement
of fixed concept semantics specifically, as distinct from the associated use of structural background
knowledge. We are aware of no existing studies that have individually examined the merits of
these two related sources of bias. Instead, past research has made use of either some incarnation of
structural+semantic knowledge or structural knowledge alone and analyzed the performance of the
technique as a whole. Due to the preponderance of other variations between techniques, the specific
impact of the enforcement of fixed semantics has remained unclear.

In this paper, we present empirical results using an existing, representative technique for compo-
sitional classification where we vary only the set of intermediate concepts for which fixed semantics
are enforced. These results demonstrate the additional generalization power gained by enforcing
fixed semantics of intermediate concepts within a classification hierarchy, beyond that provided by
the structuring of knowledge. Specifically, we present experiments comparing the generalization
performance of hierarchical classifiers that have fixed semantics at all internal nodes with other
classifiers that have identical structure, but lack the enforcement of fixed semantics at one or more
internal nodes. We refer to these learners with fixed semantics at only some internal nodes as hybrid
learners, as they use a combination of diagnostic techniques to assign credit over nodes that do and
do not have fixed semantics.

Below we first present an overview of the existing technique for compositional classification
learning which was used to perform the experiments described in this paper. Then we turn to a
description and discussion of the experiments themselves. The contribution of this paper is the in-
dividual analysis of the benefits of structural and semantic background knowledge in compositional
classification, with the goal of providing guidance to machine learning practitioners on the value
of investing effort in imbuing their hierarchical classification learning systems with fixed concept
semantics.

2. Compositional Classification

Compositional classification is a common inference pattern within AI, and a variety of techniques
have been proposed to learn classification knowledge that is hierarchically structured, as discussed
above. Informally, a compositional classification problem is one in which a hierarchy of interme-
diate abstractions mediating between raw, observable state (the input feature vector) and the target
classification, like that depicted in Figure 1, can reasonably be elaborated by a domain expert. The
structure of these intermediate abstractions forms the background knowledge (provided by a knowl-
edge engineer) that will be provided to the learner. In the experiments described in this paper,
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we make use of Abstraction Networks (ANs), a specific technique for compositional classification
learning. We provide an overview of ANs below. Formal definitions of both the compositional
classification problem and ANs can be found in Jones and Goel (2008).

2.1 Representation in Abstraction Networks

The Abstraction Network knowledge structure contains a node for each intermediate concept as
well as the top level target concept (the root of the hierarchy). These nodes are connected in a
hierarchy that reflects direct dependence relationships according to background knowledge. Each
node handles the subproblem of predicting the value of the concept with which it is associated,
given the values of its children. For this purpose, each node will contain a classification learner. In
principle, any supervised classification learner can be used within AN nodes. In this work, Artificial
Neural Networks Rumelhart and Mcclelland (1986) (ANNs) are used. At the leaf nodes, raw inputs
come directly from the environment in the form of an input feature vector, while at higher levels,
values produced by child nodes become the inputs of the parent.

Normally, each node within an AN hierarchy has associated with it an Empirical Verification
Procedure (EVP). For the purposes of the experiments described here, an EVP is an oracle that is
able to obtain the correct value of the associated node for a given set of inputs to the node. When
a node is trained using examples constructed by querying an associated EVP, the semantics of the
node are fixed by the EVP – that is, the node will learn to match the concept encoded by the EVP.
In these experiments, we will sometimes train ANs that have EVPs at some, but not all nodes. More
details about the training mechanisms used are given below under “Learning”.

2.2 Reasoning in Abstraction Networks

Performing inference using an AN is straightforward. The input feature vector is partitioned appro-
priately to produce the sub-vectors that form the inputs for each leaf of the AN concept hierarchy.
Inference is performed at each leaf node, using the supervised classification learner within the node
(here, the ANN within the node). The value produced is passed up to the parent to form part of its
input vector. This process is repeated at each level in the hierarchy until the root node produces the
overall output classification value.

2.3 Learning in Abstraction Networks

In the AN paradigm, learning is failure driven. This means that the learner is first presented with
an input vector and asked to produce a classification, which it will do according to the procedure
outlined under “Reasoning” above. Then, the true, desired classification is compared with that
produced by the learner. If the value produced by the hierarchy was correct, no further action is
taken. If the global classification produced by the root of the hierarchy is found to be erroneous, error
is propagated backwards through the hierarchy according to the following diagnostic procedure,
starting with the root node as the “current node”:

1. If the current node is a leaf node, use the value returned from the current node’s EVP to create
a training example for the current node.
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2. If the current node has one or more children with EVPs, execute each of those EVPs. If
the value that was produced by one or more children was incorrect, recursively apply this
procedure with each incorrect child as the “current node”.

3. If all of the current node’s children have EVPs, and none were found to be incorrect, use the
value returned from the current node’s EVP to create a training example for the current node.

4. Otherwise, the current node has one or more children without EVPs, and was found to have
produced a value in error (only nodes with errors detected by EVP execution become the
“current node”). Use standard error backpropagation through the current node into those
children to effect reweighting of their ANN learners and of the local ANN learner.

This procedure is a kind of mixed backpropagation, where fixed, known semantics are used to
identify the source of error where possible – that is, where nodes have associated EVP oracles –
and statistical backpropagation is used in regions lacking EVPs. One will notice that, while this
procedure is able to move from propagating error back through a region that has EVPs to one that
lacks EVPs, the opposite move is not accounted for. That is, the procedure above gives no means
to convert statistical backpropagation back into “semantic” backpropagation if a node with an EVP
is a child of one without. In these experiments, we remove EVPs only from complete subtrees that
include the leaves, so this situation does not occur. In general, this technique would need to be
extended to cover such cases. Additionally, note that this procedure essentially treats regions of the
AN that lack EVPs as deep ANNs, training those regions together via standard backpropagation if
they are entered during diagnosis. In the work described here, we always used ANNs within all AN
nodes. While ANN outputs are typically quantized by each node, in these experiments we eliminate
the quantization of ANN outputs at nodes that do not have EVPs. This is necessary to cause those
nodes to produce differentiable functions such that backpropagation can be used to push error back
from ancestors into those nodes.

3. Experiments

We have performed experiments in a synthetic domain that investigate the generalization power
provided to compositional classification learners by the use of fixed semantics for intermediate
concepts, beyond that provided by the knowledge structure. That is, the experiments aim to isolate
the inductive bias provided by the structure of the intermediate concepts in a classification hierarchy
from that provided by the fixed semantics of those intermediate concepts. In the AN framework,
fixed semantics are enforced by the EVPs associated with concept nodes. In these experiments, we
will remove the EVPs from some nodes within an AN while retaining the structure, and observe the
impact on learning.

The target knowledge in the synthetic domain is represented using a fixed abstraction network,
over which no learning will occur, that is defined as representing the correct, target content (and
structure) for the problem. Given this fixed AN, we then create a separate learner AN that will
be initialized with incorrect knowledge content and expected to learn to produce the same top-level
classifications as the fixed AN. This is implemented by initializing the knowledge content of both the
fixed and learner AN nodes separately with pseudo-random values. The randomly-generated content
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of the fixed AN forms the target knowledge for the learner AN. Training proceeds by repeating the
following steps:

1. Generate a pseudo-random sequence of integers within a defined range to serve as the input
vector.

2. Perform inference with the fixed AN, saving the values produced by all nodes (intermediate
and root).

3. Perform inference with the learner AN.
4. Perform diagnosis and learning over the learner AN according to the procedure described in

Section 2.3.
EVPs are not needed in the fixed AN, since no learning occurs in the fixed AN. EVPs in the learning
AN are set up to examine the saved output value from the corresponding node in the fixed AN. Thus,
the fixed semantics of the concept nodes in the learner AN are enforced (grounded) by reference
to the knowledge encoded in the fixed AN. This is reasonable in a synthetic domain because the
generator provides the environment for learning. In a non-synthetic domain, the EVPs would instead
need to obtain values from a “real" environment.

In these experiments, we sometimes remove the EVPs from some of the learner AN’s internal
nodes, and train by executing standard error backpropagation Rumelhart and Mcclelland (1986)
over those sections of the structure from which EVPs have been removed, as described above. We
will refer to these ANs with some EVPs removed as hybrid learners, as they combine standard
backpropagation with EVP-based diagnosis. An ANN learner is used within each AN node. In each
experiment, we used fixed and learner ANs of four levels with binary tree structures (level sizes 8-
4-2-1). In each case, we allow 3 values to be produced by each node in the hierarchy, including the
root. We also trained a standard ANN learner (operating outside the AN framework) on the same
problem, for the sake of providing a baseline that uses neither knowledge-based structure nor fixed
semantics. We refer to this learner as the “flat" learner, as it does not make use of knowledge-based
structure. We have run experiments with EVPs at all nodes; one EVP removed at the layer imme-
diately above the leaves; two EVPs removed at peer nodes within the layer immediately above the
leaves; and three EVPs removed in the form of a connected subtree rooted in the layer immediately
beneath the root, thus also involving two peer nodes in the layer immediately above the leaves. For
each of these learner setups, we experimented with various training set sizes – 60, 125, 250, 500
and 1000 examples. We always used a test set consisting of 1000 examples. In each case, the goal
was to train until the error rate ceased to decrease, or until there was evidence of overfitting. Re-
sults reported here are the average of five independent trials, where inital learner knowledge and the
training/test sets were re-randomized in each trial.

4. Results and Discussion

The results of the runs in a representative subset of these experimental setups are depicted in Figures
2-7, and the results of all runs are summarized in Figure 8. The difference between the red lines
in Figures 2-7 and the green/blue lines illustrate the generalization power of structured knowledge
representations – the flat learners lack the benefit of a structured knowledge representation. The
difference between the blue and green lines in these figures demonstrates the generalization power
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Figure 2. Training epoch vs. error rate for flat, AN and hybrid-AN learners with a training set size of 60
examples, where the hybrid learner is missing one EVP.

realized by enforcing fixed semantics at all internal nodes within a structured representation, as the
hybrid learners fail to achieve error rates as low as those of the learners with EVPs at all concept
nodes, for fixed training sets of various sizes.

The key result illustrated in Figures 2 through 7 is that in all cases, ANs that are missing EVPs
from one or more nodes fail to reach a final error as low as the complete ANs. In general, this final
error is higher (worse) when more EVPs are removed, and when the training set size is smaller.
A progressive degeneration in learning ability as more EVPs are removed is apparent as a general
trend, as demonstrated by Figure 8, which summarizes the results of all experiments run with hybrid
ANs, showing the average final error rate for each experimental setup. It can also be seen from
Figure 8 that larger training sets generally lead to lower final errors for each learner type, as one
would expect. This main result clearly demonstrates that the enforcement of fixed semantics at
concept nodes within a classification hierarchy introduces substantial inductive bias beyond that
provided by the structure itself.

Somewhat surprisingly, in Figure 7, we see that in this case, the AN with three EVPs removed
has failed to achieve a lower final error rate than the flat learner! This is likely due to the sus-
ceptibility of large EVP-less regions (which are effectively deep ANNs) to local minima. There
are techniques that specifically address this problem, such as KBANN Towell and Shavlik (1994),
which initializes a deep network based upon prior knowledge, or the work of LeCun et al. (1998)
in which components in a structure are pretrained before end-to-end training is applied. However,
in both cases the semantics of intermediate portions of the knowledge structure are enforced before

60



CONCEPTUAL SEMANTICS

Figure 3. Training epoch vs. error rate for flat, AN and hybrid-AN learners with a training set size of 1000
examples, where the hybrid learner is missing one EVP.

Figure 4. Training epoch vs. error rate for flat, AN and hybrid-AN learners with a training set size of 60
examples, where the hybrid learner is missing two EVPs.
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Figure 5. Training epoch vs. error rate for flat, AN and hybrid-AN learners with a training set size of 1000
examples, where the hybrid learner is missing two EVPs.

Figure 6. Training epoch vs. error rate for flat, AN and hybrid-AN learners with a training set size of 60
examples, where the hybrid learner is missing three EVPs.
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Figure 7. Training epoch vs. error rate for flat, AN and hybrid-AN learners with a training set size of 1000
examples, where the hybrid learner is missing three EVPs.

end-to-end training, even if this enforcement is relaxed after initialization/pretraining. Thus, even
though the requirement for enforced semantics at internal nodes is weaker in these other techniques
than when using a classification hierarchy with strict enforcement of concept semantics, there is still
some reliance upon internal semantics to produce an initialization of the structure to be trained. The
benefit of such techniques is that the problem of local minima in deep structure can be ameliorated
to some extent by the initialization. ANs make even stronger use of these explicit internal node
semantics, and, as evidenced by the very low final errors achieved by “complete" ANs in each of
the experiments in this section, show a strong resistance to local minima.

An interesting secondary point to be noted is that, in each case, more epochs are required for the
ANs with EVPs removed to reach their lowest error rate. This computational savings is another ben-
efit of using fixed concept semantics wherever possible within a hierarchical classification learner,
and is further evidence that the semantic “pinning" of nodes via EVPs is providing a restriction bias
beyond that offered by the hierarchical structuring of knowledge alone.

Examining Figure 8, it is clear that the degradation in final error rate is much more pronounced
in the AN that has had three EVPs ablated. It is likely that this is because a connected subtree of
three nodes had their EVPs removed, creating a more substantial region within the AN that lacked
fixed semantics. A large, connected region that lacks EVPs is likely to be very susceptible to local
minima. In addition, these deep networks have more inputs than each member of the set of AN
nodes they are replacing. Because the input dimension is higher, these deep networks will require
more training examples to learn the target concept than the AN nodes they replace.
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Figure 8. Training set size vs. best achieved error rate for flat, AN and hybrid-AN learners.

5. Conclusion

In this paper, we have presented empirical results that demonstrate the generalization power gained
by enforcing fixed semantics of intermediate concepts in a classification hierarchy, beyond the power
known to be provided by the knowledge structure itself. These results provide empirical support
to the intuition that fixed concept semantics provide a useful form of inductive bias, and justify
spending time and energy imbuing a learner with this kind of background knowledge when possible.
Benefits are apparent even if fixed semantics cannot be enforced at all nodes within a classification
hierarchy. Further, it appears that minimizing the size of connected subtrees within the knowledge
structure that lack fixed semantics is particularly important in terms of maximizing the quality of
generalizations made by the learner.

This result is useful for further developing techniques for learning by correcting mistakes. In
general, a knowledge engineer not only develops a classification tree but also labels the intermediate
nodes in the tree. It turns out that as in Winston’s (1992) original technique for learning by correcting
mistakes, this labeling of the intermediate nodes provides much needed learning bias.
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