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Abstract 
Reference resolution is the problem of interpreting a referring expression to identify the speaker’s 
intended referent. People are capable of correctly resolving referents even in the presence of 
ambiguous or incorrect descriptions. We propose analogy as the process underlying this ability.  
This paper presents ARR, an implemented computational model of analogical reference resolution 
and evaluates its performance on the TUNA Corpus of definite descriptions. We show that the 
model performs as well as an exact matching baseline on error-free descriptions and that it is more 
robust to errors. 

1.  Introduction 
One of the many ways that humans use language is to refer to entities in the world. Referring 
expressions take a variety of forms depending on the context of the utterance, the knowledge of 
the speaker and hearer, and the cognitive status of the intended referent. Reference has many 
subtleties that have occupied linguists for over a century. Chief among these puzzles is the issue 
of definiteness, the intuitive but elusive property shared by noun phrases that mark known 
information and commonly seen in definite descriptions such as “the woman in the corner” 
(Birner, 2012). Formal theories of definiteness link it to uniqueness (e.g., Russell, 1905), where a 
definite description is true of a uniquely identifiable entity, familiarity (e.g., Christopherson, 
1939), where a definite description marks an entity familiar to the hearer, or individuability (e.g, 
Birner & Ward, 1998), where a definite description marks an entity as distinguishable within the 
discourse model. 

But one aspect of the way humans use definite descriptions has remained hard for theorists to 
explain: the near miss problem (Donnellan, 1968). Near misses are definite descriptions that do 
not perfectly match their intended referent but that are close enough to be understood by the 
hearer. For example, consider the following exchange, adapted from Strawson (1952):  

A: “Did you hear about the man who jumped off Swift Hall?”  
B: “He didn’t jump.  He was pushed.” 

A’s description is false to facts. There is no man who jumped off Swift Hall. Yet B was able to 
determine A’s intended referent and correct A’s description in spite of the mismatch. Moreover, 
B was able to do so in a world of potential distractors: other men, other jumping events, and other 
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events involving Swift Hall, not to mention the countless entities known to B. This comes 
naturally to people, but reference resolution is a subtle problem that involves world knowledge, 
semantic similarity, and context. 

This example and others like it show that the mechanism humans use to resolve referring 
expressions must be more flexible than exact matching. Formal theories of reference have a hard 
time accounting for near misses, especially ones rooted in formal logics where an exact match 
between referent and description is assumed. Linguists like Donnellan (1968) have characterized 
the types of near misses and when they arise but have not proposed a mechanism by which people 
resolve them. The issue remains open, a capability of human language understanding that is not 
reflected in linguistic formalisms. 

At the same time, reference resolution is a practical problem for computer systems that 
interact with people using natural modalities. As natural language interfaces become more 
sophisticated, it becomes increasingly important to interpret a user’s utterances in relation to a 
shared context. Reference resolution is therefore relevant to human-robot interaction and human-
computer interaction. Prior work in these fields has modeled it using Bayesian techniques 
(Kennington & Schlangen, 2017; Tellex et al., 2011), graph matching (Liu, Fang, & Chai 2012), 
best-first search with uncertainty (Williams & Scheutz, 2015), and search over experiential 
knowledge (Mohan, Mininger, & Laird, 2013). Related work in symbol grounding (Harnad, 
1990; Gorniak & Roy, 2004; Steels & Hild, 2012) has tackled the problem of mapping between a 
robot’s sensor values and symbolic representations suitable for language interpretation. 

We propose analogy as the mechanism behind reference resolution. Building on Gentner’s 
(1983) Structure-Mapping Theory (SMT), we describe how analogical matching and retrieval can 
be used to resolve a definite description against a set of candidate referents. This provides a 
notion of semantic similarity that takes relational information into account. SMT is domain 
independent and can thus be used with any symbolic, structured representation of entities and 
associated descriptions. 

This paper presents ARR, an implemented computational model of analogical reference 
resolution, and evaluates it on a preexisting data set of definite descriptions. We show that the 
model achieves comparable performance to an exact matching baseline on error-free descriptions 
and that it is more robust to errors. The model does not need to be trained. It is extensible and can 
be modified to incorporate greater contextual information, account for other aspects of reference, 
and fit into a broader model of language understanding. In the next section, we describe the 
analogy process in greater detail. In Section 3, we describe our model of analogical reference 
resolution, while Section 4 evaluates our model, presents its results, and discusses their impli-
cations. In Section 5, we recap related work on reference resolution. We conclude and discuss 
future work in Section 6. 

2.  Background 
Analogical reference resolution builds on a family of cognitive process models based on Gent-
ner’s (1983) Structure-Mapping Theory (SMT), which models analogy as a mapping process 
between structured descriptions of entities or situations. Similarity judgments depend on the 
strength of an analogical mapping, including its depth and connectedness. Structure mapping 
provides a plausible mechanism by which people judge the semantic similarity between a definite 
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description and a potential referent. It is independently motivated and able to operate over 
arbitrary structured representations, making it domain independent and capable of working with a 
variety of semantic knowledge. SMT has been used to model other linguistic phenomena, such as 
word sense disambiguation (Barbella & Forbus, 2013), learning linguistic constructions (McFate, 
Klein, & Forbus, 2017), and multimodal knowledge capture (Lockwood & Forbus, 2009). 

SMT operates over cases that contain structured descriptions of an entity or situation. Each 
case consists of a set of expressions that capture relations (e.g., “X is on top of Y”) or attributes 
(e.g., “X is green”, “Y is a table”). Expressions can take either atomic terms or other expressions 
as arguments, allowing the model to handle higher-order semantic information, such as causality.  
The model matches from a base case to a target case by searching for a consistent set of corre-
spondences between the expressions of the base and the expressions of the target, as well as the 
entity mappings that arise from them. A mapping consists of a set of structurally consistent 
correspondences, along with a structural similarity score encoding the strength of the match, and 
a set of candidate inferences, expressions in the base that do not correspond to any in the target 
but that are suggested by the structure. 

SMT has been implemented computationally in Forbus et al.’s (2016) Structure-Mapping 
Engine (SME). This performs structure mapping between cases represented in predicate calculus 
by using a greedy merge algorithm that finds near-optimal mappings in polynomial time. The 
system can interface with existing knowledge bases, making it a useful tool for testing and 
applying SMT and letting it serve as a central component of the Companion cognitive architect-
ture (Forbus & Hinrichs, 2017). 

Forbus, Gentner, and Law’s (1995) MAC/FAC (“many are called/few are chosen”) is a model 
of analogical retrieval built on top of SME. It searches a case library for the cases that best 
match a given probe case. Retrieval consists of two processing stages. The first, MAC, performs 
a fast, shallow match between the probe case and every case in the case library. This does not 
take structure into account; it uses a coarse measure of similarity to filter the case library down to 
a manageable size. The second stage, FAC, then uses SME to perform analogical matching 
between the probe case and each of the cases chosen by MAC. This returns the match with the 
highest structural similarity score. When there are other cases whose score is close to that of the 
best match, it returns them as well. 

For the purposes of ARR, the probe case is a representation of the definite description and the 
case library is a set of cases representing the entities in the hearer’s discourse model. The contents 
of the case library depend on context, salience, and other factors, but we assume that it contains 
the speaker’s intended referent (if it is known to the hearer) and a set of plausible distractors. 
MAC/FAC uses the probe case to retrieve the entity that is most similar to the definite descrip-
tion, which it takes to be the referent. The mapping between the description and the retrieved case 
can be used for further reasoning, such as clarification or correction. 

3.  A Model of Analogical Reference Resolution 
In this section, we lay out the ARR model of reference resolution. We begin with an overview of 
the system that explains how it uses MAC/FAC to perform resolution. We then list the potential 
outcomes of this process and what they mean for interpreting a description. Finally, we discuss 
the role of analogy in the model and the advantages it offers. 
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Analogical reference resolution treats the interpretation of definite descriptions as a process 
of analogical retrieval. The inputs are a probe case containing the semantics of a definite 
description and a case library containing representations of the possible referents. The ARR 
model runs MAC/FAC to retrieve the cases that have the highest structural similarity to the 
description. As MAC/FAC always returns at least one match, no matter how weak, ARR uses a 
cutoff threshold to filter matches that are unlikely to be the true referent. The resulting matches, if 
any, are analyzed to determine whether the reference succeeded or how it failed. A successful 
reference can be integrated into the situated interpretation of the speaker’s utterance. A failed 
reference can trigger action on the part of the hearer to resolve the issue, say by requesting 
clarification from the speaker or inferring the existence of an unknown entity. 

3.1  Outcomes of the Resolution Process 
We have identified four potential outcomes of the retrieval process, depending on the number of 
matches found and the strength of their scores. These outcomes correspond to the intuitive ways 
an act of reference can succeed or fail in natural dialogue. The outcomes listed here are a set of 
defaults. Depending on the context, linguistic theory, or computational application, the categories 
below can be merged or split. 

Figure 1 shows the potential outcomes of ARR for a sample description (a). The probe case 
contains the semantics of the definite description. The case library contains representations of 
each entity in the discourse model. For example, the stored case for the referent in Figure 1 would 
contain facts stating that the man is young, dark haired, and wears glasses. Note that the probe is 
derived from a linguistic description, which is typically a subset of the properties known for the 
intended referent. Cases in the library consist of all known properties of each entity, although the 
approach should also apply to relational descriptions.  

An exact match occurs when MAC/FAC returns a single case that matches the description 
perfectly, indicating that the description was sufficient to uniquely identify an entity in the 
hearer’s discourse model. The retrieved case may contain additional information not found in the 
probe, since the hearer will likely know more about the referent than has been conveyed in that 
description, but the information that is in the probe must be correct. In SMT terms, there should 
be no candidate inference from the probe to the retrieved case that contradicts a fact in the 
retrieved case. For example, in Figure 1(b), the man shown is the only entity in the case library 
that matches the description, so it is the one retrieved. 

Reference fails when MAC/FAC returns no matches above the specified threshold. Either the 
intended referent is not present in the discourse model or the description of it is so malformed as 
to be useless. Coping with this situation is a difficult problem in its own right. The hearer may 
interpret the speaker’s description as an introduction of a new entity, just like an indefinite 
description, and update the discourse model accordingly.1 The hearer may also initiate a search 
for matching entities that might be inferrable from context but were not stored explicitly in the 
discourse model during the first pass. However, without a way to assume or acquire the missing 
information, the lack of a suitable match simply means that reference has failed. For example, in 
Figure 1(c), no entity in memory matches the description closely enough, so nothing is retrieved. 

 
1 This use of the definite introduction is more common in narrative prose. “The detective stood under the streetlight” is 

a valid opening line for a novel, even though no detective or streetlight has been mentioned before. 
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Near misses 

2 occur when MAC/FAC returns a single case whose score clears the threshold, 
but there are discrepancies between it and the description given. For example, a near miss would 
occur if the speaker says “the man who jumped off Swift Hall” but the hearer only knows of a 
man who was pushed. Whether a near miss should be considered a success or a failure will 
depend on judgment. The hearer may decide to tacitly accept a near miss, offer a correction, or 
request clarification to ensure the discrepancy is not the result of some deeper misunderstanding.  
For example, in Figure 1(d), the closest match to the description is a dark-haired man with no 
glasses.  The discrepancy may prompt further action from the hearer. 

Ambiguity occurs when MAC/FAC returns multiple matches with similar scores that all clear 
the threshold. Because there are multiple potential referents that fit the description, the hearer 
cannot distinguish among them without additional information. This is the classic case of refer-
ential ambiguity. For example, the phrase “the ball” applies just as well to a red ball as to a blue 
one. The speaker may have intended to refer to either. The ambiguity is resolved by requesting 
clarification, making an assumption based on a principle like salience, recency of mention, or 
suitability for a given task, or allowing reference to fail. For example, in Figure 1(e), there are 
two entities in the case library that nearly match the description: a dark-haired man without 
glasses and a light-haired man with glasses.  The ambiguity would typically prompt the hearer to 
ask for clarification, since the speaker could have meant either entity. 

 
2 Although conceptually similar to Winston’s (1970) definition of near misses in the context of learning, the use of the 

term “near miss” here refers specifically to the linguistic phenomenon described by Donnellan (1968). 

(a)  Definite Description 
“the dark-haired man with glasses” 

(b) Exact Match (c) No Match 

 

 
 

(d) Near Miss (e) Ambiguous 

   
 
Figure 1. For a given (a) definite description, examples of (b) an exact match, (c) no match, (d) a near miss, 
and (e) ambiguous retrievals. Images are for illustrative purposes only. Cases consist of predicate calculus 
representations of the speaker’s description (probe case) or entities in the discourse model (case library). 
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3.2  Role of Analogy in ARR 

We should also explore the properties of analogical mapping and retrieval that are useful for 
reference resolution. In particular, here we look at properties that lead to human-like judgments of 
semantic similarity, facilitate the kinds of error correction seen in people, and contribute to 
ARR’s use as a component in natural language systems. 

Exact matching. Chief among the useful properties of analogical retrieval is that it includes exact 
matching as a special case. When there is one exact, unambiguous referent, ARR will behave no 
differently than traditional, logic-based reference resolution. The referent is identified through 
analogical matching rather than logical inference, but the result is the same. This makes it broadly 
compatible with most formal theories of reference. All that changes is the mechanism by which 
the description is checked against the referent, accounting for human robustness to error while 
leaving the behavior on nondeviant cases unchanged. 

Nested descriptions. Due to SME’s use of structural descriptions, ARR can handle nested definite 
descriptions the same way it handles descriptions of a single entity. For example, “the ball on the 
table” would translate to a case containing two entities linked by the on relation, one with the 
attribute ball and the other with the attribute table. The case for the ball in the discourse model 
would contain all known, relevant facts about it, including the fact that it was on the table. The 
mapping produced by SME would align the discourse variables representing the ball and the table 
in the nested description with the entities denoting the ball and the table in the retrieved case, 
resolving the two descriptions simultaneously.3 

Systematicity. Two particular properties of SME help explain human intuitions regarding near 
misses. The first is the systematicity preference, where an analogical mapping will be preferred if 
it is deep and structural rather than broad and shallow. Systematicity predicts that hearers will 
favor near misses that have relational structure in common with the definite description over ones 
that just share surface features. For example, a hearer would be more likely to interpret the 
referent of “the man who jumped off Swift Hall” as a woman who jumped off Swift Hall than a 
man who painted Swift Hall. The former changes an attribute (i.e., the gender of the jumper) 
while keeping the relation between entities (i.e., the type of event) the same. The latter keeps the 
attribute the same but changes the relation. The systematicity preference accounts for the human 
capacity to pick out meaningful near misses rather than superficial ones. 

Tiered identicality. The other property that helps explain near misses is tiered identicality. By 
default, SME only allows matches between identical attributes and relations. The identicality 
constraint serves in part to limit computational complexity, as otherwise all expressions could 
match to all other expressions with the same number of arguments. It also captures the intuition 
that, when it comes to analogy, it is not meaningful to map arbitrary pairs of relations, only ones 
that share a meaning. But there are times when identicality is too strict. Tiered identicality allows 

 
3 A subtlety arises if the case for the table also contains the fact that the ball is on it, in which case MAC/FAC may 

return the table instead. As long as the mappings are the same, it does not matter which case is retrieved. This 
suggests that, if two cases score similarly to one another, they should be checked to ensure they have different 
mappings before ambiguity is declared. 
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matches between nonidentical attributes or relations as long as they are ontologically related.  
Returning to the Swift Hall example, SME would match jumping off a building to being pushed 
off because they are semantically close, but it would not match jumping off a building to an 
arbitrary event with the same entities.4 Tiered identicality explains how a hearer can infer the 
intended referent from an incorrect relational description without allowing implausible matches. 

Candidate inferences and alignable differences. Another benefit of using analogical retrieval is 
that the mapping it produces makes it easy to extend hearer knowledge and identify sources of 
error.  The candidate inferences from the retrieved cases to the probe include facts known about 
the referent that were not present in the description. These are commonplace and simply reflect 
the fact that humans know more about the world than what is conveyed in language. Candidate 
inferences from the probe to the retrieved case provide new information about which the hearer is 
not aware. For example, “the green fruit on the table” may inform the hearer that the green object 
on the table is a fruit if this was not known already. These inferences make it natural to 
incorporate new knowledge into the appropriate case for an entity. Alignable differences (Mark-
man & Gentner, 1993) occur when candidate inferences for the probe and for the retrieved case 
contradict each other. This indicates that either the speaker’s description or the hearer’s knowl-
edge is incorrect and that clarification is needed. Again, the nature of analogical mappings makes 
it easy to identify and articulate where the error occurred. 

Ambiguity. The ARR model incorporates a subtler notion of ambiguity than uniqueness-based 
approaches. In addition to the classic type of ambiguity, where an underspecified description 
exactly matches two or more referents, analogical retrieval can return multiple near misses, none 
of which match the description exactly but all of which are plausible referents of similar strength.  
For instance, in the Swift Hall example, suppose there was a man who jumped off Mudd Hall and 
a man who was pushed off Swift. The speaker could have meant the former, mistaking the 
location of the event, or the latter, mistaking the type of event. An even subtler case arises when 
one of the returned matches is an exact match and the rest are near misses. Whether reference 
succeeds in this case is indeterminate. 

4.  Empirical Evaluation 
Reference resolution is a task where perfect accuracy is possible when the descriptions are error-
free and uniquely identifying. Under these circumstances, an exact matching system will always 
be able to pick out the intended referent.  However, this is not the case when the descriptions are 
erroneous. An exact matching system has no way to recover from an error in a description. On the 
other hand, ARR allows for partial matching and can accommodate errors. As long as the 
intended referent is the best fit for the description, ARR should be able to identify it. 

Therefore, to evaluate our system’s performance, we conducted two experiments comparing 
it to an exact matching baseline. In Experiment 1, we tested it on a data set of correct, uniquely 
identifying descriptions to show that, like the baseline, it performs accurately on error-free inputs.  

 
4 This example assumes a relational representation of events with an ontology to support them. In practice, a neo-

Davidsonian representation (Parsons, 1990) that treats events as entities is more flexible, but it misses out on the full 
structural strength of SME. 
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In Experiment 2, we tested its robustness to noise by altering the contents of the descriptions, 
simulating a near miss situation. For both experiments, we used the TUNA Corpus (Gatt, van der 
Sluis, & van Deemter, 2007), described below. Although our experiments test ARR’s ability to 
perform partial matches, they do not test its preference for the relational matches that SME 
supports. We leave testing this aspect of the model for future work.  

4.1  The TUNA Corpus 

For our experiments, we evaluated our system on the TUNA Corpus (Gatt et al., 2007), an 
existing data set originally designed as a benchmark for Referring Expression Generation (REG) 
systems. Each item in the corpus consists of a set of entities and a human-authored description 
that refers to one of them. The researchers presented participants with a 3×5 grid containing 
pictures of seven entities and asked them to describe the one marked. They then annotated the 
participants’ responses with the attributes mentioned, providing a set of attributes intended to pick 
out a unique target among a field of distractors. 

The TUNA Corpus contains 360 descriptions for the people domain, where the entities are 
black-and-white photographs of people, and 420 descriptions for the furniture domain, where the 
entities are digitally generated pictures of household items.5 A stimulus from the people domain 
can be seen in Figure 2(a). Entities are characterized by simple visual characteristics such as color 
or orientation. The corpus contains annotations for the attributes most commonly used by 
experiment participants. Additional characteristics found in descriptions are marked as “other”.  
References to an entity’s relative location are marked with the corresponding absolute position. 

For use with ARR, we converted the XML files of the corpus into predicate calculus notation, 
as shown in Figure 2(b). Each attribute-value pair was mapped to a unary predicate (e.g., 
<ATTRIBUTE NAME="age" TYPE="literal" VALUE="young"/> became age-Young).  
We did not include attributes that lacked semantic information (i.e., “other” or “unknown”). This 
resulted in 14 descriptions from the people domain and three from the furniture domain 
containing no attributes, so we removed these examples from the data set.  We gave each entity 
and description its own case, as can be seen in Figure 2(c). To test the resolution of a description, 
we queried its case against the appropriate set of entities using MAC/FAC and checked whether 
the retrieved entity was the correct one. Because the data set consists only of plausible distractors, 
we used a cutoff threshold of zero. In more realistic applications, where the entities are more 
varied and the cases contain more information, we may need to set the threshold higher to filter 
out spurious matches. 

4.2  Experiment 1 

Table 1 shows the results of the first experiment. The baseline system attains 92 percent accuracy 
on the people domain and 78 percent accuracy on the furniture domain. As the baseline represents 
a literal interpretation of the description, the examples that it gets wrong are by definition the 
ones to which the description does not uniquely refer. These non-uniquely identifying descrip-

 
5 The corpus contains a similar number of plural descriptions.  For the sake of simplicity, we only examine the singular. 
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tions arise from a combination of error by the annotator, error by the author, and reliance on 
attributes that were not cataloged in the corpus. 

Table 2 shows the types of errors made by the baseline system and the ARR model.  For the 
baseline, ambiguous retrievals represent underspecified descriptions that match more than one 
referent (including the intended one), while no retrieval indicates that the description failed to 
apply to any referent.  These errors account for the majority of the baseline system’s mistakes.  
ARR performs better than the baseline, with 94 percent accuracy on the people domain and 80 
percent accuracy on the furniture domain. However, neither improvement is statistically signif-
icant at the p < 0.05 level. The slight improvement comes from a few erroneous descriptions that 
are close enough to their referents for analogy to match, even though the literal description is 
incorrect. ARR performs strictly better on this data set, as it does not miss any examples that the 
baseline gets correct. 

Further improvement can be seen in the second column of Table 1, which shows the systems’ 
accuracy when taking ambiguity into account. For this calculation, a retrieval was considered 
correct if it contained the intended referent, whether or not a unique referent was found. This 
corresponds to situations in which a human would ask for clarification, so the system’s ability to 
identify likely referents matters for downstream applications. Here ARR’s improvements over the 
baseline when allowing ambiguity were significant in both domains (p < 0.01). 

4.3  Experiment 2 

For our second experiment, we permuted the descriptions to test the systems’ robustness to noise.  
In principle, ARR provides a way to identify a referent even when inaccurate descriptions are 
present, as demonstrated by its improvement over the baseline in Experiment 1. To simulate a 
near miss situation, we performed two types of edit operations: inserting an incorrect attribute 
into a description (e.g., color-Green when the target is a red chair) and substituting a correct 
attribute with an incorrect one (e.g., replacing age-Young with age-Old). We also examined 
underspecification by deleting attributes from the description. 

(a) 
 
 

 

(b)  
<ENTITY ID="9" IMAGE="Godel.gif" TYPE="target"> 
<ATTRIBUTE NAME="hairColour" TYPE="literal" 
VALUE="dark"/> 

<ATTRIBUTE NAME="hasBeard" TYPE="boolean" 
VALUE="0"/> 

<ATTRIBUTE NAME="hasGlasses" TYPE="boolean" 
VALUE="1"/> 

(c) 
(isa s101t26-9 Entity) 
(hairColor-Dark s101t26-9) 
(noBeard s101t26-9) 
(glasses s101t26-9) 

 
Figure 2. Example stimulus from the TUNA Corpus: (a) a picture from the corpus in the people domain; 
(b) a snippet of its XML description; (c) the symbolic representations used in our experiments. 
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For each of these operations, we constructed modified sets of descriptions with one, two, and 
three edits. Where an edit would change the entire structure (e.g., substituting two attributes when 
there had been only two), we removed the example. Figure 3 shows the distribution of attribute 
counts. Note that the resulting descriptions are not guaranteed to help identify the correct referent. 
Unlike near misses in the wild, the errors are introduced at random rather than through psycho-
logically plausible mistakes. Multiple errors can quickly overwhelm the correct attributes, 
whereas the restricted nature of the domain means the modified structure has a better chance of 
matching the wrong referent. Still, the modifications serve as a useful stress test for our system. 

ARR’s performance in Experiment 2 can be seen in Figure 4, with accuracy for exact 
retrievals in the left column and accuracy allowing for ambiguity in the right. The baseline system 
performed as expected, failing to retrieve the correct referent for nearly all descriptions modified 
by substitution or insertion.6  For deletions, its performance closely matched that of ARR. For 
these reasons, baseline results are omitted from the figure. 

We used paired samples two-tailed t-tests to compare ARR with the baseline for each 
operation, number of edits, and scoring measure. ARR performed significantly better than the 
baseline system for n = 1, 2, 3 insertions and n = 1, 2 substitutions on both accuracy measures (p 
< 0.01 in all cases). For n = 3 substitutions, ARR performed significantly better in the furniture 
domain when allowing for ambiguity (p < 0.01), but not when counting exact retrievals or for 
either measure in the people domain (p > 0.05). For deletions, the results are mixed. In the people 
domain, the only significant difference between the two systems is for one deletion when 
allowing ambiguities (p < 0.05; p > 0.05 in all other cases). For the furniture domain with exact 
retrievals, ARR outperforms the baseline for n = 1 (p < 0.05) but not for n = 2 or 3 (p > 0.05).  
When allowing for ambiguities, ARR does better than the baseline for all values of n (p < 0.01 for 
n = 1, 2; p < 0.05 for n = 3). 

 
6 In the single-substitution condition, the system retrieves four correct referents for the furniture domain and three for 

the people domain.  These results are anomalies caused by the erroneous descriptions found in Experiment 1. 

Table 2. Retrieval counts by type in Experiment 1 for ARR and the baseline system. 

 People Furniture 
 ARR Baseline ARR Baseline 

Exact Retrieval 324 319 333 326 
Ambiguous Retrieval 20 11 77 59 
Incorrect Retrieval 2 2 7 6 
No Retrieval 0 14 0 26 

 

Table 1. Accuracy for ARR and the baseline system in the People and Furniture domains. 

 Exact Accuracy Accuracy w/ Ambiguity 
 ARR Baseline ARR Baseline 

People 0.94 0.92 0.99 0.95 
Furniture 0.80 0.78 0.98 0.92 
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4.4  Discussion 

Our experiments confirm that ARR performs as well as an exact matching baseline on accurate 
descriptions and outperforms it on inaccurate ones. Experiment 1 showed that ARR performed 
strictly better than the baseline on a corpus of definite descriptions. Although in principle both 
systems should have done perfectly, there were naturally occurring errors in the data which 
affected their behavior. ARR showed its robustness to noise by handling some of these errors 
correctly, leading to a statistically significant improvement in accuracy when taking ambiguity 
into account. Moreover, it correctly identified all referents that the baseline did, confirming that it 
is an effective model when dealing with error-free descriptions. 

Experiment 2 expanded on these results by showing how artificially introduced noise affects 
ARR’s performance. Performance is reasonable for a single deletion or insertion, with up to 48 
percent accuracy in the furniture domain, but it declines rapidly as more errors are introduced.  
Substitution, which combines a deletion and an insertion operation, causes an even sharper 
decrease in accuracy. This behavior follows from the task definition, where the addition of errors 
quickly causes the noise to outweigh the signal. An extreme case of this can be seen in the 
baseline results. Introducing just one incorrect attribute prevents an exact match, making the 
baseline system extremely brittle. ARR’s flexibility more closely resembles the way humans cope 
with near misses, retrieving the closest match even if it is inexact.  

Deletion behaves differently from the other operations, as removal of attributes leads to an 
underspecified description that may no longer be unique. For exact retrieval, this results in 
decreased performance for both systems as the number of competing referents increases. For 
ambiguous retrieval, the performance remains at ceiling. Unlike insertion and substitution, 
deletion does not produce incorrect references, only incomplete ones. 

 
 

Figure 3. Frequency distribution of number of attributes per description in each domain. 
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The contrast between performance on exact and ambiguous retrieval for each system sheds 
light on the type of referential errors introduced by insertion and substitution. Because the 
modified descriptions no longer apply to the intended referent, the baseline system shows no 
improvement when ambiguous retrieval is allowed. This shows that the type of ambiguity 
introduced is not underspecification, but rather ambiguity among near misses. ARR handles this 
type of ambiguity robustly, retrieving the correct referent 54 percent of the time in the furniture 
domain even with the insertion of three incorrect attributes. Because situated reference generally 
occurs in contexts where clarification is possible, the ability to retrieve a correct referent, even 
nonuniquely, is valuable. 

5.  Related Work 
Reference resolution is a well-studied problem in the field of computational linguistics. AI 
systems that address this problem date back to Winograd’s (1971) SHRDLU and its ability to 
identify situated referents using procedural semantics. Since then, reference resolution has 
remained an active area of research, with systems that handle it for collaborating with robots 

  

  
 

 
Figure 4. ARR’s accuracy (exact and ambiguous) in each domain, per edit operation and total number of 
edits.  Baseline results are omitted for all conditions because of near-zero accuracy on insertion and 
substitution and overlap with ARR’s performance on deletion. 
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(Chai et al., 2014), processing visual scenes (Gorniak & Roy, 2004), and interpreting multimodal 
user input (Chai, Hong, & Zhou, 2004; Kehler, 2000).  Here we review the three most pertinent 
models of reference resolution and contrast ARR with them. 

Chai et al. (2014) address the problem of establishing common ground (Clark, 1996) between 
human and robot interlocutors that have mismatched perceptual capabilities. Their system uses an 
inexact graph matching algorithm (Liu, Fang, & Chai, 2012; Liu et al., 2013) to ground referring 
expressions against a visual scene. The algorithm matches a vision graph, representing the scene 
as observed by the robot, and a dialogue graph, representing entities mentioned in the discourse 
so far.  In each graph, nodes represent entities and their attributes, and edges represent the spatial 
relations between them. The algorithm searches for a match that minimizes a cost function 
measuring the degree of difference between nodes of the two graphs. The output is a match that 
connects each referring expression with the object in the scene to which it most likely refers. 

Of the existing models of reference resolution, Chai et al.’s comes the closest to the account 
presented here. Both rely on graph matching to map between a description and its potential 
referents, but the earlier work focuses on reference resolution over visual scenes grounded in 
sensor data, whereas ARR is a domain-independent model that operates over symbolic repre-
sentations. ARR also benefits from an independently motivated, cognitively plausible graph-
matching algorithm that does not need to be altered for this task. Structure mapping has been used 
to model human reasoning in a variety of domains, including tasks that combine information from 
visual and linguistic inputs (Lockwood & Forbus, 2009; Chang, 2016). 

Another notable model of reference resolution is POWER (Williams & Scheutz, 2015), a 
probabilistic reference resolution system capable of handling uncertainty and references to 
unknown entities in an open world. This system queries consultants that track entities in relation 
to a specific domain, such as spatial reasoning or visual processing, and calculates the probability 
that a given configuration of entities satisfies a semantic constraint. It conducts a best-first search 
to find the most likely assignment of variables to entities. The system also posits new entities as 
needed to extend its knowledge of the world.  POWER has been tested in several domains, both 
in isolation (Williams & Scheutz, 2015) and as part of the DIARC robotics architectures 
(Williams et al., 2019). It has been extended with the Givenness Hierarchy (Gundel, Hedberg, & 
Zacharski, 1993) to form GH-POWER (Williams et al., 2016), which handles a variety of 
referring expression types by searching over different levels of memory. Recent work has relaxed 
the strict precedence of this search, resulting in GROWLER (Williams et al., 2018), which 
handles more naturalistic uses of referring expressions. 

Our domain-independent model of reference resolution also operates over a wide variety of 
semantic knowledge. But where POWER handles uncertainty by attaching probabilities to facts, 
ARR uses analogy to deal with inaccurate descriptions and knowledge.7 The two approaches 
differ in their focus. POWER is a key component in robotics architectures, where different 
modalities of data must be integrated and where quantifiable uncertainty is the norm. ARR is a 
psychologically plausible account of reference resolution suitable for use with symbolic reason-
ing systems in which probabilistic information may or may not be available. 

 
7 It is worth noting that SME can take probabilities into account when computing structural similarity scores, so in 

principle ARR can handle probabilistic uncertainty. For the purposes of the current work, we ignore this capability 
and focus instead on facts that are fully believed but that may be erroneous. 
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Kennington and Schlangen (2017) present a generative model of reference resolution that 
incrementally calculates the most likely referent from the tokens in a referring expression. Their 
model learns probabilistic mappings between objects and properties and between properties and 
language, letting it flexibly adapt to the meanings of words as they are used in a particular 
domain. The incrementality of their model matches psycholinguistic evidence of how humans 
process referring expressions (Spivey et al., 2002; Tanenhaus et al., 1995), while its probabilistic 
nature makes it able to incorporate uncertainty about the properties of objects. Their model is 
language independent and has been successfully applied to German, Japanese, and English. 

ARR differs from Kennington and Schlangen’s model in several key respects. Where their 
generative model must be trained on each new domain, our model requires no training and 
encodes semantics symbolically rather than as probability distributions. Our approach is also 
domain independent, where the generative model has chiefly been applied to visual domains. 
While the current version of ARR makes no attempt to handle the incremental processing of 
referring expressions, the incrementality of SME offers a path to achieving this ability. 

6.  Conclusions and Directions for Future Work 
In this paper, we presented a model of reference resolution that uses analogical retrieval, an 
independently motivated cognitive process, to match definite descriptions to their intended 
referents. We discussed the advantages of this approach, showed that our model performs as well 
as an exact matching baseline on correct descriptions, and demonstrated its robustness to errors, 
in particular near misses and ambiguities. Although we consider this to be a promising start, we 
should explore the model’s behavior on a wider range of inputs, extend it to handle other types of 
referring expressions, and provide the scaffolding needed to integrate it with a dialogue system. 

Here we tested ARR in isolation on a relatively simple, nonrelational domain using pre-
annotated visual attributes and semantics. To demonstrate the model’s ability to interface with 
other components in a cognitive architecture, we plan to integrate it with EA NLU (Tomai & 
Forbus, 2009), a domain-independent semantic parser built on the NextKB ontology (Forbus & 
Hinrichs, 2017). Integrating ARR with a semantic parser will let us experiment on more natural-
istic input and test the system on tasks where its strengths, such as the systematicity preference 
and the ability to generate clarification dialogs, play a more important role. 

In addition, we should situate ARR within a broader account of language understanding. The 
model depends on external processes to encode its cases and populate its case library. The corpus 
used in the current work included structured representations that made encoding straightforward, 
but for more complex domains, this may not be the case. By explicitly modeling the processes on 
which ARR depends, we hope to account for a wider range of referential phenomena. In 
particular, we plan to incorporate aspects of the Givenness Hierarchy (Gundel et al., 1993) to 
guide case library construction and search through memory. 

The Givenness Hierarchy also suggests a mechanism for ARR to handle other types of 
referring expressions. Although our approach is a natural fit for definite descriptions and should 
extend cleanly to indefinite ones, it is less clear how analogy applies to pronouns and deixis. By 
specifying a series of case libraries corresponding to different levels of cognitive status, we 
believe that we can model the resolution of more referring expressions than with analogy alone. 
In this, we take the same position as Williams et al. (2016) in their work on GH-POWER. 
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Another benefit of adopting a more complex search strategy is the opportunity to address two 
factors—salience and recency—that are commonly used to help distinguish intended referents.  
MAC/FAC only takes structural similarity into account. The system does not consider either a 
case’s contextual salience or how recently it was last retrieved. We can address the former by 
separating the case library into tiers according to salience, so that more salient cases are consid-
ered first. We can address the latter by replacing MAC/FAC with SAGE-WM (Kandaswamy, 
Forbus, & Gentner, 2014), a model of analogical generalization and retrieval that checks cases 
according to how recently they were added to memory. This would give the model a way to 
prioritize more recent matches, making it a better fit for reference resolution in temporal contexts. 

Based on our preliminary evaluation, analogy provides a promising model for the resolution 
of referring expressions. This supplies the similarity judgments needed to understand near misses 
while using a mechanism already believed to be at work in other areas of cognition. Furthermore, 
its properties make it a practical choice for use in cognitive systems. Future work will extend the 
ARR model to more complex domains and forms of reference, including ones that involve richer, 
relational contents.  
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