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Abstract
Humans regularly explain observations of their environment in terms of background knowledge.
This process is better characterized as abduction than as deduction, since it often requires intro-
duction of assumptions about unobserved relations. In this paper, we present a theory of abductive
explanation that builds on earlier work but extends it in new directions. The theory distinguishes
between definitions and constraints, with the former used to elaborate existing explanations and the
latter used to detect and repair inconsistencies. We also describe PENUMBRA, an implemented sys-
tem that instantiates the theory, and demonstrate its behavior on a number of domains. The system
carries out heuristic search through a space of explanations, processing observations incrementally,
and generating alternative accounts for a given set of inputs. We conclude by discussing related
approaches to explanation, limitations of the implementation, and directions for future research.

1. Background and Motivation

One distinctive feature of human cognition is the ability to understand complex situations and
events. This invariably involves explaining observations in terms of available knowledge. Moreover,
these explanations are typically abductive in character, in that they incorporate plausible assump-
tions that are neither observed nor derived deductively. Abductive explanation is a general ability
that arises in many contexts, from sentence processing and story understanding (Winston, 2012) to
scene interpretation and plan recognition (Blaylock & Allen, 2005) to diagnosis (Reggia, Nau, &
Wang, 1985). We would like a computational theory of the structures that underlie this capacity and
the processes that operate over them. Ultimately, this should contribute to a more comprehensive
cognitive architecture (Langley, Laird, & Rogers, 2009) that supports goal-directed activity over
time, but here we will focus only on conceptual understanding.

Let us consider a simple example. Suppose we are told that Abe possesses some cash and
Bob possesses a car, but that later Abe possesses the same car. Although we did not observe any
transaction, we can reasonably assume that one took place. Two explanations come immediately
to mind. One is that Abe bought the car from Bob using money; another is that Abe stole the car
from Bob by threatening him in some way. We also know these two explanations are mutually
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exclusive, in that purchases and robbery are two distinct ways to transfer possession of objects.
This means that we must not only introduce plausible assumptions about unobserved events, but
consider the competing explanations and keep them separate. Later, we may hear that Abe actually
gave money to Bob, eliminating theft as an alternative. More complex examples would involve
multi-step inference chains that generate hierarchical accounts of observations.

In this paper, we present a cognitive systems account of such abductive explanations. Our anal-
ysis draws on standard ideas from the paradigm, including a focus on high-level cognition, the
importance of structured representations and knowledge, a reliance on heuristic search, and incor-
poration of constraints from human behavior, such as incremental processing of observations. The
approach that we describe builds directly on two earlier efforts (Bridewell & Langley, 2011; Mead-
ows, Langley, & Emery, 2014) in this area, but extends them to incorporate richer representations
and novel reasoning mechanisms. In the next section, we discuss two formulations of the abductive
explanation task, along with prior results in each framework, and clarify our reasons for selecting
one of them. After this, we describe a new theory for this ability, focusing first on assumptions
about cognitive structures and then on processes that inspect and manipulate them. Next we report
PENUMBRA, an implemented system that instantiates these theoretical ideas, along with its behavior
on multiple scenarios that demonstrate its coverage. We close by discussing links to earlier work,
noting limits of the implementation, and proposing directions for additional research in this area.

2. Two Formulations of Abductive Explanation
We can define any cognitive task in terms of the information provided as inputs and the content
generated as outputs. However, there are often different ways to translate an informal problem into a
formal specification. The literature on abductive explanation has explored two distinct statements of
this mental task that we should discuss before proceeding further. These treatments are orthogonal
to whether inputs are processed incrementally, an important feature of human processing whose
discussion we will delay until a later section.

The first formulation borrows from classic treatments of abduction in logic and the philosophy
of science (Peirce, 1878; Hempel, 1966). We can state it as:

• Given: A set of general knowledge elements K (e.g., relational rules)
• Given: A set of specific observed facts O (e.g., relational literals)
• Find: A set of specific plausible assumptions A (e.g., relational literals)
• Find: A set of proof trees P that derive elements of O from A and other elements of O with K

The key idea here is that the resulting explanation, a set of linked proof trees, must contain a proof
for each observed fact. These may include default assumptions as terminal nodes, which can be
shared across different proof trees, but each observation must follow deductively from these as-
sumptions and from other observations by reasoning over available knowledge. Proof trees may
correspond to causal chains, as in many scientific explanations, but this is not a requirement.

We will refer to this formulation as derivational abduction because observations must be de-
rived from other beliefs. This paradigm has received considerable attention in the AI community.
For example, Reggia et al. (1985) adopted the approach in their work on diagnosis, which inferred
unobserved diseases that caused observed symptoms, and Hobbs et al. (1993) used it in their ap-
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Figure 1. Two formulations for abductive explanation: (a) in derivational abduction, observations are the
roots of proof trees but can also appear as terminal nodes; (b) in associative abduction, observations appear
only as terminal nodes along with plausible assumptions.

proach to language processing, which posited logical relations that let it derive sentences’ meanings.
Ng and Mooney (1990) invoked the same scheme to address high-level aspects of story understand-
ing, while using different criteria for evaluating candidates. More recent work in this tradition comes
from Molineaux et al. (2012), Eckroth and Josephson (2014), Friedman et al. (2018), and Gordon
(2018). The latter has applied an incremental variant of the framework to infer complex explana-
tions of extended interactions among multiple agents. Derivational abduction is arguably the default
approach taken by those interested in the topic. Figure 1 (a) depicts the structure of an explanation
in this framework. Each observation appears as the root node for a proof tree in a connected set of
such trees, although it may also serve as a terminal node in the proof for another observed element.
Assumptions always appear as terminal nodes in one or more proof trees, often supporting more
than one observation. The figure depicts these dependency relationships without specifying node
contents, but these are typically atomic expressions in predicate or propositional logic.

The second formulation of abductive explanation shares many features with the classic treat-
ment, but also differs in an important way. We can state it as:

• Given: A set of general knowledge elements K (e.g., relational rules)
• Given: A set of specific observed facts O (e.g., relational literals)
• Find: A set of specific plausible assumptions A (e.g., relational literals)
• Find: A set of proof trees P that derive new beliefs from O and A with K

The core distinction here is that observed facts appear only as terminal nodes in the proof trees,
along with default assumptions. Other beliefs follow from them deductively, but there is no need
to derive the observations themselves. This does not rule out the possibility of observed elements
appearing as nonterminal nodes, but this is neither typical nor required. The sense of explanation
here differs from that used in science, and it seldom has a causal interpretation, coming closer to
‘making sense’ of everyday situations, events, or activities.

We will refer to this framework as associative abduction because it treats observations as ex-
plained if they stand together, as in ‘guilt by association’. This idea has been explored in the AI
literature, but it is less common than the alternative. For instance, work on truth maintenance
systems (de Kleer, 1986) takes this view, and Makatchev, Jordan, and VanLehn (2004) used it to
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analyze students’ defenses of answers to physics problems. Bridewell and Langley (2011) adopted
the formulation in their AbRA system, which they presented as an account of everyday reasoning
in humans. More recently, Meadows, Langley, and Emery (2013, 2014) reported a similar approach
in their UMBRA system for plan understanding, which Langley et al. (2014) applied to dialogue
interpretation. We will build directly on this latter work, which means that we will adopt the same
formulation. Figure 1 (b) shows the structure of an explanation in this second paradigm. Here each
observation appears as a terminal node in the set of connected proof trees, with assumptions at the
same level. Nonterminal nodes are derived from the nodes below them in a given proof tree. Ob-
servations, assumptions, and nonterminals may appear in more than one derivation chain and thus
support multiple inferences. Again, the figure is abstract, but nodes usually correspond to ground
atomic expressions in some logical notation, possibly with unbound skolem symbols as arguments.

We should also mention other paradigms that have addressed abductive explanation. Early re-
search on story understanding (e.g., Schank & Abelson, 1977) relied on ‘scripts’ to interpret action
sequences, which comes closest to the second formulation in its emphasis on reasoning about ev-
eryday experience. The same holds for structural analogy (e.g., Gentner & Forbus, 1991), which
retrieves relational cases from memory to interpret new situations and generate abductive inferences
about them. Bayesian networks (Darwiche, 2009) support inference about unobserved variables
from observed ones, but they can adopt either formulation depending on their structure, although
relational variants (e.g., Charniak & Shimony, 1990; Kate & Mooney, 2009; Raghavan & Mooney,
2010) usually assume the first formulation of abduction. Finally, answer set programming (Baral,
2003) operates over logical rules to generate different possible ‘worlds’ that make distinct assump-
tions. We can view each world as explaining observed facts, but these do not involve proof trees, so
they do not map well onto either the derivational or associative frameworks.

3. A Theory of Associative Abduction
Now we can turn to our theory of associative abduction, which is an instance of the second for-
mulation. Any theory must address a set of phenomena that it aims to explain. In this case, we
can identify five primary abilities that humans exhibit when they attempt to explain situations and
events. These include the capacity to:

• Explain observations by connecting them to each other through available knowledge;
• Introduce plausible assumptions about relations or events that are not directly observed;
• Process observations incrementally on arrival and incorporate them into existing explanations;
• Detect and address conflicting beliefs that keep explanations from being consistent; and
• Generate alternative explanations when there are multiple plausible accounts of the observations.

We desire a computational account of these five cognitive functions. Previous work in the associa-
tive abduction framework on AbRA (Bridewell & Langley, 2011) and UMBRA (Meadows et al.,
2014) has addressed the first three abilities. They also dealt with consistency by avoiding inferences
that led immediately to conflicting beliefs, but lacked mechanisms for repairing such problems.
Moreover, the programs carried out greedy search through the space of explanations and found only
a single candidate even when other plausible accounts were possible. In this section, we propose an
extended theory that builds on ideas in these efforts but that responds to all five target phenomena.
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3.1 Representational Postulates

Before we can discuss our theory’s claims about processes, we must specify its representational
assumptions. Because explanation always relies on knowledge, we must first take a position on the
types of knowledge in long-term memory and the forms they take.

R1. Explanatory inference draws on two types of knowledge structures: definitions and constraints.

This distinction is similar to the one that Simon (1970) has made in his analysis of scientific theories.
Definitions are rules that specify higher-level relational predicates as conjunctions of more basic
relations. These encode content similar to Prolog rules, in which the same predicate can appear as
one or more heads. In contrast, constraints specify that two or more relations are mutually exclusive.
These encode content similar to rules with empty heads in logic programming, although they specify
two or more mutually exclusive relations. In our framework, such constraints may have heads, but
these serve only to provide a common name to a set of alternatives.

For example, knowledge about English might include one definition for the type of noun phrase,
NP1, that has an article followed by a noun, and another rule for a different type of noun phrase,
NP2, that comprises an article, an adjectival phrase, and a noun. The same grammatical knowledge
base might include a constraint that states an NP1 and an NP2 noun phrase cannot occur together if
they involve the same noun token. Similarly, we might have knowledge that a given prepositional
phrase can be a constituent for a noun phrase or a verb phrase, but not for both at the same time.
Together, definitions and constraints define a space of possible combinations over the available
predicates. This organization is similar to that found in many logic programs.

Now we can turn to the content and structure of explanations in our associative framework. The
postulates here repeat some material from the previous section, but we include them for the sake of
completeness. Our second assumption concerns the types of elements that appear in an account:

R2. Explanatory inference involves three types of beliefs: observed, derived, and abduced.

All beliefs take the same structural form. For example, they might be relational literals, that is,
predicates with a set of arguments, such as (on a b), or a frame instance, such as (on ^top a ^bottom
b). These arguments will often be constant terms, but others may be skolems, as in (on ∗s1 c), to
indicate an unidentified entity or event. In addition, each belief is marked as having a specified
origin. Observed beliefs come from the external environment, derived beliefs have been deduced
from other beliefs using knowledge, and abduced beliefs have been introduced as assumptions.

Of course, an explanation must involve more than a set of beliefs. It must also specify how
knowledge links them to each other, which leads to another theoretical tenet:

R3. Justifications are instances of definitional rules that specify how derived beliefs follow from
observed, abduced, and other derived beliefs.

Such justifications are similar to steps in a traditional proof tree, the difference being only that some
of their antecedents may be abduced rather than observed from the environment or derived from
other elements. These instantiated versions of definitions provide the connective tissue that allows
the encoding of larger-scale entities.
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We can combine these four types of elements into an explanatory structure that relates them.
Our fourth representational postulate specifies this organization:

R4. An explanation is a connected proof graph that links observed, derived, and abduced beliefs by
justifications, with derived beliefs as nonterminal nodes and others as terminal nodes.

We have already seen an abstract explanation of this variety in Figure 1 (b), with different colors
denoting different types of beliefs.1 In this framework, an explanation must be a single connected
proof graph; this may have multiple root nodes, but every belief must be connected, directly or
directly, to every other one. If two subsets of beliefs participate in two graphs with no shared
elements, then we view them as distinct but not competing explanations.

However, we still require some way to group disconnected sets of beliefs that complement each
other. This leads to yet another theoretical assumption:

R5. A world is a set of complementary beliefs, justifications, and associated explanations.

Because we cannot always expect an individual explanation to account for all observations, we need
some type of structure – a world – that shelters them under a single umbrella.

Justifications in an explanation are instantiated versions of definitions that connect derived be-
liefs to others, but we have not mentioned constraints. These play a key role in our sixth postulate:

R6. An active world is a set of beliefs and associated explanations that is not known to violate any
constraints; an inactive world is a set of beliefs that is known to violate constraints.

Note the qualifiers ‘is not known’ and ‘is known’ here. As we will see, one must detect inconsis-
tencies before addressing them, and this requires cognitive attention. A set of beliefs may violate a
constraint without it being realized, so whether a world is active depends on such detection.

Finally, recall that we are concerned not only with individual explanations for a set of observa-
tions, but with different accounts for the same content. Thus, we need a set of worlds that encode
competing alternatives, with inconsistency being a key feature in their evaluation. This leads to
another structural assumption, which concerns the organization of worlds:

R7. A world history is a phylogenetic tree that traces the creation of some worlds from others, with
terminal nodes being active and nonterminals being inactive.

The root node of this history is the original world that contains observed beliefs and any inferences
that have revealed no inconsistencies. Children are variations on their parents that address a single
constraint violation, with terminal nodes denoting worlds in which no consistencies have yet been
detected. We refer to this organization as a ‘phylogenetic’ tree because it is directly analogous to
the structures in biology that specify the hypothesized evolution of organisms.

One conundrum raised by our assumption of multiple worlds is that, although humans have
limited working memories, they can still keep a number of alternative hypotheses in mind. We
maintain that the memory load is mitigated by the fact that many beliefs are shared across worlds,
so that the reasoner must only keep track of ways in which these worlds differ. This suggests a final
postulate about the cognitive structures that support explanatory inference:

1. An explanation need not include abduced beliefs; all terminal elements may be observed, as in typical parse trees.
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R8. Beliefs are stored in a single working memory, with each element specifying the active worlds
in which it does not hold.

According to this claim, the various worlds’ beliefs are encoded in a distributed manner that takes
advantage of shared observations, assumptions, and derivations. This scheme avoids the need for
repeatedly making the same inferences during reasoning, as applying a rule can alter contents of
multiple explanations, giving an implicit form of parallelism. Storing worlds for which a belief does
not hold will reduce memory load when elements shared across worlds outnumber their differences.
Thus, it serves as a heuristic measure that offers no guarantees but that should often be effective.

Most of these theoretical ideas have appeared in the literature on automated reasoning, logic
programming, and abductive inference, which means that our representational postulates draw on a
long and respected tradition. The notions of a world history that tracks the evolution of beliefs and
the distributed encoding of worlds in a single working memory appear to be more novel. However,
it is the combination of these elements into a unified framework that makes our structural account
of abductive explanation an important intellectual contribution.

3.2 Processing Postulates

Now that we have presented our representational tenets, we can turn to processes that our theory
posits operate over these data structures. We have already mentioned the first postulate, which links
directly to characteristics of human explanation:

P1. Explanatory inference is an incremental process that updates worlds as it encounters new ob-
servations and draws new conclusions.

In other words, we assume that observed beliefs come from some external source one or a few
at a time, which in turn drives inferential activity. For instance, when understanding a sentence,
humans read only a few words, incorporate them into a partial parse tree or meaning structure,
and then process later words. This has implications for cognitive processing, in that inferences
made early on, with incomplete information, may need to be revised when more evidence becomes
available. Connecting observed, derived, and abduced beliefs in explanations through justifications,
as postulate R4 states, should support extension and revision of worlds as new facts arrive.

Explanations can be complex structures that include many observed, abduced, and derived be-
liefs, along with justifications that connect them. In many situations, different explanations are
possible for the same observations, and their construction requires that one consider these alterna-
tives. This suggests a second postulate about processing:

P2. Explanatory inference involves heuristic search through a space of possible worlds that is de-
fined by available knowledge and driven by observations.

Given that there may be competing accounts of the same facts, some form of search seems natural,
but our theory also claims that heuristic search is involved. This constrasts sharply with approaches
that rely on answer set programming (Baral, 2003), which generate all minimal consistent worlds
and rank them afterwards. Rather, we assume that only promising worlds and their component
explanations are pursued and extended, which is implicated in human processing.
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Of course, we must still specify the operators that are responsible for generating explanations
and traversing the space of worlds. Our third processing tenet refers to these mechanisms:

P3. The search for explanations relies on two types of operations: elaboration and repair.

These two processes complement each other, with the first one extending existing worlds by adding
to their explanations and the second handling inconsistences that result from these elaborations. We
will not take a position here on how these mechanism alternate or which one takes precedence, but
we will claim that both are needed for a complete account of abductive explanation.

Let us consider the first activity in more detail, which occurs when one retrieves a definitional
rule that unifies with one or more existing beliefs. More specifically, we postulate that:

P4. Elaboration involves the application of a definitional rule that produces a new derived belief,
along with abduced beliefs for any unmatched antecedents.

The result is the creation of a derived belief based on the head of this instantiated rule. When all
antecedents are matched, this inference step has a deductive character; however, if some antecedents
are unmatched, then the process introduces assumptions for them that become abduced beliefs. For
instance, given definitional rules for a context-free grammar, it would introduce constituents for
noun phrases, verb phrases, and the like. Elaboration is purely monotonic, in that it only adds
beliefs to a given world and it does not lead to new worlds.

The second activity comes into play when one notices that a world includes two or more incon-
sistent beliefs and is responsible for resolving the problem. In particular, we assume that:

P5. Repair involves detecting a violated constraint, deactivating the worlds it makes inconsistent,
and activating new child worlds that are more nearly consistent.

Here the result is deactivation of the inconsistent world and creation of two or more children, each
of which avoids the problem. This involves identifying beliefs that violate a constraint, finding the
assumptions on which they depend, and creating disjoint sets, each of which eliminates the inconsis-
tency. Each child world retains one of these sets, ensuring they sidestep the detected problem. For
example, when processing a sentence, inferring two types of noun phrase for a given noun violates
a constraint that only one may appear, leading to one world for each parse. Repair is nonomotonic,
in that it removes abduced and derived beliefs from the child worlds, which then become active.

For a given set of worlds, or even for a single partial explanation, many definitional rules might
be applied, and there may even be multiple inconsistences that should be resolved. This suggests
the need for guidance, which leads to our sixth postulate about processing:

P6. Explanatory inference focuses attention on one belief at a time, which provides heuristic guid-
ance to elaboration and repair by limiting which rules to consider.

The theory claims that the inference process never considers its entire knowledge base. Instead, it
attends to a single belief at a time and only considers rules, both definitions and constraints, that
connect with it. This means that the mechanism may overlook some useful elaborations or important
inconsistencies, but, to the extent its heuristics for selecting foci are effective, such events will be
rare. We might instead assume that the reasoner considers all possible matches at once, as in classic
production systems (Klahr, Langley, & Neches, 1987), but organizing processing around foci has
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two important effects. First, processing only considers rules that unify with the focus, which makes
partial matching computationally tractable and scalable. Second, it provides a variety of ‘spreading
activation’ that operates over generic rules rather than ground facts. That is, it produces a ‘stream
of consciousness’ in which one idea leads to another, which is a key feature of human cognition.

As with our theory’s structural postulates, these process elements draw on ideas explored by
previous researchers, including work on automated reasoning, heuristic search, belief revision, and
models of human cognition. The contribution of these elements lies not in isolation but in their
integration into a coherent framework for conceptual inference and abductive explanation. As noted
earlier, this should ultimately be embedded in a broader computational theory of the cognitive ar-
chitecture that we will not address here. Such an architecture would use inferred beliefs, and the
worlds associated with them, to make decisions during plan generation and execution, and thus drive
an agent’s behavior in an external environment.

4. The PENUMBRA Abduction System
We have implemented a system, PENUMBRA, that constitutes an instance of the theory described in
the previous section.2 Theories are by nature abstract and require additional assumptions to make
them operational (Langley, 2018). In this section, we examine PENUMBRA’s representational struc-
tures and processes, referring back to the earlier postulates when appropriate. Many implementation
decisions are arbitrary and could arguably be done in other ways, but they are needed to produce the
desired behavior, so we have done our best to document them here.

4.1 Representation in PENUMBRA

The PENUMBRA architecture incorporates most of the representational commitments that we enu-
merated earlier. To make these postulates concrete, the system adopts a specific syntax for encoding
long-term and short-term cognitive structures. This offers a programming language for specifying
domain knowledge and beliefs that underlie associative explanations. The notation has many simi-
larities to those used in logic programming, even though the manner in which mental elements are
processed differs in important ways.

For example, Table 1 (a) presents two definitional rules that describe ways a person can obtain
an object from some other person who possesses it. These include definitions for buying the target
object and for robbing its owner. Some elements, such as (possess ?from ?obj ?t1 ?t2), describe
situational relations, while others, such as (give ?to ?from ?obj ?money ?t2 ?t3) and (threaten ?to
?from ?obj ?t2 ?t3), refer to activities. These relations include start and end times that specify inter-
vals of time over which they hold, but PENUMBRA does not require them. Also, the implementation
actually uses a frame-like notation that associates each argument with an attribute; this lets one omit
arguments that are not needed in antecedents. Table 1 (b) shows a single constraint, which states
that a person cannot both buy and steal an object, as the activities are mutually exclusive.

Similarly, Table 2 presents beliefs that can arise in this domain. These include observed be-
liefs (a), such as (possess Abe cash1 1 2), that come from some external source. The table also
includes abduced beliefs (b) like (give Abe Bob cash1 2 3) and derived beliefs (c) like (buy Abe

2. This name indicates its relation to UMBRA (Meadows et al., 2013, 2014), an earlier system that influenced its
design, which in turn referred to the shadows on the wall in Plato’s Allegory of the Cave.

101



P. LANGLEY AND B. MEADOWS

Table 1. (a) Two definitional rules and (b) one constraint for a simple knowledge base about ways that a
person can obtain an object from another person. The definitions specify activities for buying and selling,
whereas the constraint states that the two forms of transfer are mutually exclusive.

(a) ((buy ?to ?from ?obj ?money ?t2 ?t3) <=
(possess ?from ?obj ?t1 ?t2) (possess ?to ?money ?t1 ?t2) (money ?money)
(give ?to ?from ?money ?t2 ?t3) (give ?from ?to ?obj ?t2 ?t3)
(possess ?to ?obj ?t3 ?t4) (possess ?from ?money ?t3 ?t5)))

((rob ?to ?from ?obj ?t2 ?t3) <=
(possess ?from ?obj ?t1 ?t2) (threaten ?to ?from ?obj ?t2 ?t3)
(give ?from ?to ?obj ?t2 ?t3) (possess ?to ?obj ?t3 ?t4))

(b) ((obtain ?obj) ::
(buy ?to ?from ?obj ?money ?t2 ?t3) (rob ?to ?from ?obj ?t2 ?t3))

Bob car1 cash1 2 3). We will not go into details about justifications, but these take the form of
instantiated definitions, with a derived belief as the head and with observed, derived, or abduced
beliefs as antecedents. An explanation is simply a collection of beliefs that are linked through a set
of justifications, whereas a world is a set of beliefs connected by zero or more such explanations.
As discussed earlier, each relational literal has an associated set of worlds for which that belief does
not hold. In this case, most beliefs (including all observations) hold for all worlds, giving the empty
set, but some are excluded from one alternative or another.

We have not shown the world history for this scenario, but it includes three nodes. One of these,
W, is the root note from which processing starts. Two other worlds, W.1 and W.2, denote children
of the root node that share many beliefs but that differ on a few relations. In particular, the beliefs
(threaten Abe Bob car1 2 3) and (rob Abe Bob car1 2 3) do not hold in W.1, whereas (give Abe
Bob cash1 2 3) and (buy Abe Bob car1 cash1 2 3) are not included in W.2. The fact that these two
worlds are children of W indicates that the root world violated some constraint, which in turn led to
its deactivation and to the generation of its successors.

4.2 Processing in PENUMBRA

Like most cognitive systems, PENUMBRA operates in successive cycles, in this case at two distinct
levels. On each pass through the top level, the architecture checks the environment for the arrival of
newly ‘observed’ beliefs. Any such elements are added to working memory and associated with all
existing worlds. At the second level, PENUMBRA carries out a number of inference cycles that either
extend the contents of working memory by adding new beliefs or eliminate inconsistencies among
them in newly created worlds. Once the system has executed the specified number of iterations or
until nothing has transpired, it returns to the first layer and continues processing. This loop repeats
until completing a specified number of observation passes.

The first step of the second-level inference cycle involves selecting a belief on which to focus
attention. To make this decision, PENUMBRA invokes heuristics that are determined by the settings
for a set of parameters. One of these declares how to filter candidates, say by eliminating ones that,
when last serving as a focus, led to no rule application. Another specifies criteria with which to
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Table 2. (a) Observed beliefs, (b) abduced beliefs, and (c) derived beliefs from the domain introduced in
Table 1, including the worlds in which they do not hold. Each belief comprises a predicate and its arguments,
which may be either constants or skolems that start with asterisks.

(a) (possess Abe cash1 1 2) [ ]
(possess Bob car1 1 2) [ ]
(possess Abe car1 3 4) [ ]
(money cash1) [ ]

(b) (give Abe Bob cash1 2 3) [W.2]
(threaten Abe Bob car1 2 3) [W.1]
(give Bob Abe car1 2 3) [ ]
(possess Bob cash1 3 ∗s1) [W.2]

(c) (buy Abe Bob car1 cash1 2 3) [W.2]
(rob Abe Bob car1 2 3) [W.1]

evaluate beliefs, such as their recency or the number of skolems they contain. The final parameter
states how to pick a belief from a ranked list, such as taking the best-scoring candidate or using
probabilistic sampling based on scores. On each inference cycle, PENUMBRA uses these parameter
settings to select a focal belief and continues to the next stage. Nothing forbids selection of the same
focus on successive cycles, but typical heuristics encourage attentional change.

The next phase addresses repair, but the elaboration stage is simpler, so we will describe it
first. On this step, PENUMBRA finds all definitional rules with antecedents that unify with the
focus belief.3 Each such unification for a rule R provides a set of variable bindings B that let the
system find all complete and partial matches of R that are consistent with B. Rules are indexed by
predicates that occur in their antecedents, so PENUMBRA ignores any rules that have no connection
to the focus. After it has produced a set of matches, the system selects one of them for application,
again using parameters to determine details. One such parameter controls filtering of candidates,
say by retaining only rule instances in which each element contains a nonskolem argument or that
connect at least two existing beliefs. Another indicates how to score remaining matches, say by
the number of unsatisfied antecedents or the number of worlds the rule would elaborate. A third
parameter specifies how to select a candidate based on these numbers, say by picking the best-
scoring alternative or by choosing from a distribution based on the scores.

Once it has selected an instantiated definition, PENUMBRA applies the rule to generate new
beliefs. These always include a derived belief based on the head, although this may contain skolem
constants if some of the predicate’s arguments were unbound in the partial match. In addition, if
any of the rule’s antecedents were unmatched, the system adds an abduced belief for each omitted
element, again possibly with skolem arguments, that serve as plausible assumptions to complete
the conditions of the partially matched rule. Moreover, it generates a justification that links the
inferred head to the beliefs on which it depends, for possible use in future processing. Also, recall
that associated with each belief is a set of worlds in which it does not hold, so PENUMBRA must
determine this set for each newly derived or abduced element. To this end, the system retrieves the

3. One might also retrieve rules with matched heads, but the current implementation does not consider this option.
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Table 3. PENUMBRA’s two-level processing cycle for generating explanations through associative abduction.
The pseudocode assumes that definitions and constraints are available as domain knowledge.

Explain(N,K)

Let Root be an empty possible world and let Worlds be Root.
Let Beliefs and Justifications each be the empty set.
Let Cycle be 0.
Until Cycle = N,
[After which return the list of active worlds.]
Let Beliefs be Union(Observe( ), Beliefs).
Increment Cycle.
Let Count be 0.
Until Count = K,

Let Focus be Select-Focus(Beliefs).
Let Conflicts be Detect-Conflicts(Focus, Beliefs, Constraints).
If Conflicts is not empty,
Then let Selected-Conflict be Select-Conflict(Conflicts).

Let Worlds be Resolve(Selected-Conflicts, Justifications, Worlds).
Else let Matches be Find-Matches(Focus, Beliefs, Definitions).

Let Selected-Rule be Select-Match(Matches).
Add Selected-Rule to Justifications.
Let New be Apply-Rule(Selected-Rule).
Let Beliefs be Union(New, Beliefs).

Increment Count.

set of worlds attached to each matched antecedent, takes their union, and associates this combined
set with each of the new elements. Because beliefs store worlds in which they do not hold, applying
definitions can produce new beliefs that appear in narrower contexts but never in broader ones.

Another stage of the cognitive cycle checks for violated constraints. As with definitions, PENUM-
BRA only considers constraints with at least one element that unifies with the current focus belief.
The system finds all such inconsistencies and, if there is more than a single constraint violation,
selects one of the conflicts for correction. As before, parameters specify the details of this selection
process. One indicates how to score each conflict, say by assigning a uniform value or using the
number of competing worlds that a violation discriminates. Another parameter determines how the
architecture should use these scores to decide which conflict should receive immediate attention,
say at random or by selecting the best-scoring alternative. The system always deals with a detected
constraint violation before it uses definitions to elaborate its beliefs, although it must focus attention
on a relevant belief to notice an inconsistency.

Having selected an inconsistency between two beliefs, B1 and B2, PENUMBRA resolves it by
taking four steps. First, the system deactivates all worlds in which both B1 and B2 occur. Next,
for each such inconsistent world, W, it creates two new child worlds, W1 and W2. PENUMBRA

then finds which assumptions belief B1 depends on uniquely and which ones instead underlie only
B2, ignoring any that they share. After this, it removes B2 and its assumptions from W1, along
with all derived beliefs that follow from them, by adding that world to the sets associated with the
beliefs. Similarly, the sytem removes B1 and its unique assumptions, from W2, together with any
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Table 4. Eight parameters that PENUMBRA uses to control heuristic search through the space of abductive
explanations. Each parameter can take on different settings to produce distinct reasoning behaviors.

Parameter description Default setting

How should focus processing filter beliefs? has led to some rule application
How should focus processing score beliefs? recency of belief
How should focus processing select a belief? prefer higher scores
How should definition processing filter matches? some nonskolems, two+ matched
How should definition processing score matches? number of unmatched antecedents
How should definition processing select a match? prefer lower scores
How should constraint processing score conflicts? uniform value
How should constraint processing select a conflict? at random with equal probability

derived beliefs that depend on them. These modified children, which represent two distinct ways to
eliminate the detected conflict, become new terminal nodes in the phylogenetic world history.

Not all constraint violations result from problematic assumptions. In some cases, two or more
explanations can be derived entirely from observed beliefs and still produce inconsistencies. A clas-
sic example involves different parse trees for a given English sentence. In this situation, PENUMBRA

still deactivates any inconsistent worlds and creates new children, but it has no abduced beliefs to
remove in them. Instead, it simply removes one of the two conflicting beliefs in each child world,
along with any derived beliefs that depend on them. The system also adds their negation to the
relevant child, with the details of rule selection ensuring it will not be derived again later. An-
other important situation occurs when an abduced belief conflicts directly with an observed one. In
this case, the observation takes precedence, leading to removal of the assumption and anything it
supports, rather than to the creation of two active worlds.4

PENUMBRA’s use of heuristics to guide search, including its reliance on focus beliefs to direct
attention, has both advantages and disadvantages. There are obvious efficiency benefits, since the
relational pattern matching is an expensive process and the system must only consider candidates
with antecedents that unify with the focus. On the other hand, the parameter settings that are respon-
sible for selecing a definition to apply may cause PENUMBRA to overlook some elaborations, so the
final worlds obtained may be incomplete. Similarly, a given world may contain violated constraints
that remain undetected because the system never attends to any of the beliefs involved, leading to
unnoticed inconsistencies. However, humans exhibit kindred limitations and they often manage in
complex reasoning situations regardless.

4.3 Implementation and Use Details

We have implemented the PENUMBRA architecture in Steel Bank Common Lisp. The system fol-
lows the two-level cognitive cycle for generating abductive explanations summarized in Table 3.
This includes the mechanisms just described for selecting focus beliefs, for detecting and eliminat-

4. Approaches that also consider revising observations are certainly possible, as reported by Rose and Langley (1986)
in their account of belief revision in the early history of chemistry.
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ing constraint violations, and for matching and applying definitional rules. The latter two processes
are responsible for creating new worlds and elaborating existing ones, respectively. Both operate
over the distributed encoding of worlds reported earlier. PENUMBRA carries out search through a
space of plausible explanations, with choices determined by its available knowledge, the observa-
tions it encounters, and the heuristics specified in the eight parameters summarized in Table 4. These
handle the filtering, scoring, and selection of focus beliefs, the scoring and selection of constraint
violations, and the filtering, scoring, and selection of elaborative definitions.

To run PENUMBRA on a given scenario, a user loads a file that contains domain definitions
and constraints, along with settings for the system’s parameters and a set of predicates that can be
assumed during abduction. The file includes an Observe function that, on each call, returns a set
of observed beliefs that are added to working memory. The user runs the architecture by calling it
with two arguments: the number of desired observation cycles and the number of inference steps
per observation cycle. The system iteratively invokes the observation function, on each pass repeat-
edly selecting a focus belief, using definitions to elaborate its current explanations, and repairing
constraint violations as it detects them. Upon completion, PENUMBRA returns the list of worlds
that remain active and the beliefs associated with each one.

5. Demonstrations of PENUMBRA’s Behavior

The theory we presented in Section 3 offers a promising approach to associative abduction, but a
primary reason for implementing the ideas in a running sytem is to show that it behaves as intended.
Remember that we want to account for the ability to explain observations by linking them through
available knowledge, to introduce plausible assumptions about unobserved relations or events, to
process observations incrementally upon their arrival, to detect and eliminate conflicting beliefs,
and to generate multiple explanations when they are viable. In this section, we report case studies
of PENUMBRA’s behavior that demonstrate its functionality.

We will focus on two primary domains, plan understanding and sentence parsing, that involve
hierarchical structures, support alternative explanations, and involve incremental processing. We
demonstrate PENUMBRA’s ability to generate single explanations, show it can recover after making
incorrect guesses, and handle scenarios in which multiple explanations are consistent with observa-
tions. For the runs reported here, we set the system parameters to favor more recently added beliefs
unless they had failed to produce a rule application and to calculate, during the elaboration stage, the
number of unmatched antecedents for candidate rule instances and prefer those with lower scores,
provided the rule had not already been applied earlier. Finally, when choosing a detected constraint
violation to repair, we specified that the program should select from among candidates at random
with equal probability. These correspond to the default settings listed in Table 4.

5.1 Finding Single Explanations

We designed our initial scenarios to demonstrate that PENUMBRA can generate hierarchical explana-
tions when only a single interpretation suggests itself. One domain revolved around understanding
a sequence of observed actions with blocks. Knowledge included two rules for how to construct
pyramids, one for lifting a block and stacking it on another and a recursive rule for lifting a block
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and stacking it on an existing pyramid. We provided two constraints: a block cannot appear as the
top of two distinct pyramids and a block cannot be a pyramid’s bottom if it has been stacked. Ob-
servations were the action sequence (pick-up B) (stack B C) (pick-up A) (stack A B), where C was
wider than B and B was wider than A. Taken together, these actions produced a three-level pyramid.

We first ran PENUMBRA on this problem in nonincremental mode, in that we provided all ob-
servations at the outset of processing. In this scenario, one observation cycle and three inferences
produced 13 beliefs, including a three-level hierarchical explanation of the observed actions. In
addition, one constraint check detected a pyramid construction in which the bottom block had also
been stacked, leading it to abandon the root world and one of its children. We also presented
PENUMBRA with the same observations incrementally, providing one action after another. Here
five observation cycles and three inferences found the same hierarchical plan as before, with the
program generating 13 beliefs and one consistent world, while abandoning two others for incon-
sistencies. Along the way, the system predicted the action (stack A B), merging the abduced and
observed versions later, which was the main difference from the nonincremental run.

The second domain involved syntactic parsing of declarative English sentences. Knowledge
included a context-free grammar with seven definitional rules for inferring parts of speech, along
with six higher-level rules for generating adjective phrases, noun phrases, verb phrases, and sen-
tences. Two constraints specified that a given adjective or noun could serve as the head of only one
constituent, whereas a third stated that a particular word can have only one part of speech. When
given seven observations encoding the sentence The big dog chased a black cat in nonincremental
mode, PENUMBRA took one observation cycle and 13 inferences to create a five-level parse tree
encoded in 20 beliefs, none of them abduced. When presented with these observations incremen-
tally, PENUMBRA required seven observation cycles to produce the same 13 inferences and parse
tree. No constraint violations occurred in either run, so all beliefs were associated with the original
root world. Both the parsing and pyramid tasks were easy, producing a single interpretation without
constraint violations, but they demonstrated the focus and elaboration modules interact as intended.

5.2 Dealing with Garden Paths

We devised additional scenarios to examine PENUMBRA’s behavior in misleading situations that
require it to detect the problem and recover. In sentence processing, these are known as garden
paths, but the same challenge can arise in any domain that involves sequential observations. We used
the same domains as before, but we provided observations that offered ambiguous interpretations.
For instance, in the pyramid domain, we introduced blocks of the same size (B1 and B2, C1 and
C2) that could be stacked to produce different constructions. Here we provided the the system
incrementally six observations – (pick-up B1) (stack B1 C1) (pick-up B2) (stack B2 C2) (pick-up
A) (stack A B1) – that interleaved building a three-block pyramid and a two-block one. In this run,
PENUMBRA predicted correctly that block A would be placed on B1, then merged this abduced
belief when its analog was observed later. However, the program also guessed incorrectly that
block A would be placed on B2, leading to a conflict between its assumption and observation. This
caused it to abandon the world with the abduced belief and retain the one that was consistent with
the observed action. This run involved six observation cycles, during which six inferences and two
constraint violations produced 24 beliefs and five worlds, four of which PENUMBRA abandoned.
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For the parsing domain, we gave the system definitional rules that associated different parts of
speech with the same word and thus allowed multiple parses for initial portions of sentences. When
given The old man the boats , a classic garden path sentence, PENUMBRA infers that the word old
is an adjective and a noun, but then realizes that it cannot have both parts of speech, leading it to
abandon the root world and create two childen, one for each option. Analogous steps happen for
man, which can be either a noun or verb, but not both at the same time. Along the way, the system
identifiesThe old man as a noun phrase, but this never leads to a complete parse, while the other
interpretation, which views The old as a noun phrase and man as a verb, produces a full parse tree
with 14 beliefs. PENUMBRA does not explicitly abandon the other explanation, which it retains
in a separate world while focusing its reasoning efforts on the alternative. This run involved five
observation cycles, during which 13 inferences and two constraint violations produced 22 beliefs
and seven worlds, three of which PENUMBRA rejected for inconsistency.

5.3 Generating Multiple Interpretations

Finally, we developed a third set of scenarios to test PENUMBRA’s ability to generate alternative
explanations for observations that support multiple interpretations. These often occur when key
relations or events are unobserved, as in the example from Tables 1 and 2, which suggested two
explanations for how the car changed possession. To demonstrate the system’s behavior on this
scenario, we gave it two definitions from Table 1, one for buy and another for rob, along with
a constraint that an agent cannot both buy and steal an object. A run on the four observations
in Table 2 (a) produced two inferences and one constraint violation, giving 14 beliefs and three
worlds, including the root, which PENUMBRA discarded. The two active worlds correspond to the
alternative explanations discussed earlier for this example.

Multiple explanations do not arise in the pyramid domain as we have defined it, so we de-
vised another task that supports multiple plans for going from an initial location to a destination by
traversing intermediate points that are never provided to the system. Here we provided definitional
rules for two routes from place A to place D, one that passes through place B and another through
place C. We also specified a constraint that these alternative routes are mutually exclusive. We
presented the system with two observations – the agent’s initial and final locations – in addition to
information about place names. This run took three observation cycles in which two inferences and
one constraint violation generated 14 beliefs and three worlds. PENUMBRA abandoned the root but
retained its children, which encoded distinct explanations for how the agent reached D from A.

In some settings, multiple explanations can arise even when all events are observed, as in sen-
tences with multiple parses. To examine such situations, we augmented the earlier grammar with
a definitional rule for the preposition with, another for prepositional phrases, and two rules for in-
cluding them in noun phrases and verb phrases, respectively. We then presented PENUMBRA with
the sentence The cat saw a dog with the binoculars, for which it found two complete parses, one
attaching with the binoculars to dog and another to saw. We also provided a new constraint that told
the system these cannot occur together, leading it to create one world for the first and another for
the second. The two parse trees share considerable structure, with only a few beliefs differing in the
two worlds. This run took eight observation cycles, during which 19 inferences and two constraint
violations generated 30 beliefs and five worlds, three of which PENUMBRA deactivated.

108



EXPLANATION THROUGH ASSOCIATIVE ABDUCTION

5.4 Discussion

Together, these runs offer evidence that PENUMBRA supports the key target abilities related to as-
sociative generation of explanations that we identified earlier. The system introduces plausible as-
sumptions as needed to support explanations, incorporates observations incrementally, detects and
eliminates inconsistent worlds, and generates alternative accounts that are consistent with observa-
tions. The empirical studies also indicate the viability of the basic cognitive cycle, which alternates
between selecting a focus belief and selecting a definition or constraint to apply. This approach
differs radically from classic production systems, which match all rules’ conditions on each cycle
before deciding which one to fire. Because it limits retrieval to structures related to the focus belief,
PENUMBRA may overlook some inferences and inconistencies, as do humans, but it should scale
far better to complex explanations and to large knowledge bases.

As noted in Section 2, the literature on explanatory inference revolves around two main paradigms.
In derivational abduction , each observation appears as a root node in a proof tree, with different
proofs sharing other observations and assumptions as terminal nodes. In associative abduction ,
which is less common, both observations and assumptions appear only as terminal nodes in a proof
graph, with derived beliefs serving as nonterminal nodes. Our theory, and its implementation in
PENUMBRA, are instances of the second framework, which we hold comes closer to everyday rea-
soning humans. We will not claim that our approach is superior to derivational accounts, as it seems
likely that, for any given domain, we can transform one formulation into the other, giving them the
same functionality. Neither would empirical comparisons be appropriate at this stage, as our frame-
work is less mature than the alternative, making it more appropriate to demonstrate basic abilities
than to report controlled experiments with quantitative measures.

6. Related Research

Our approach to explanatory inference draws on many ideas from the literature on this topic, with
the strongest influence coming from earlier work on associative abduction. The reliance on focus
beliefs to direct cognitive attention comes directly from AbRA (Bridewell & Langley, 2011) and its
successor UMBRA (Meadows et al., 2014), as does our emphasis on incremental processing. These
earlier systems also encoded constraints, but used them only to eliminate inferences that would
immediately violate them. Our primary extensions include the ability to entertain multiple worlds,
a distributed encoding for these alternatives, recording a world history that traces their evolution,
and using constraint violations to drive the repair process, which creates new worlds that revise
their parents in nonmonotonic ways. PENUMBRA’s predecessors carried out greedy search, with
one-step lookahead, through a space of explorations, whereas the new system instead supports a
more extensive search that expands a frontier of worlds heuristically.

However, our framework also incorporates insights from many other efforts in both abduction
paradigms. There has been general agreement that explanations take the form of proof graphs, which
link observations through knowledge, that their construction uses this knowledge to introduce plau-
sible assumptions, and that the problem involves search through a space of candidate explanations.
We have also borrowed important ideas from elsewhere in the artificial intelligence and cognitive
systems literatures, including claims that:
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• Beliefs are organized into worlds that share some elements but differ in others to encode alter-
native models of the environment (Baral, 2003; Fahlman, 2011; Bello, 2012);

• Cognitive processing occurs in cycles which retrieve and select among rules that alter the con-
tents of a working memory, as in work on production system architectures (Klahr et al., 1987).

• Observations are processed incrementally, which leads to detection of inconsistencies and drives
repair of explanations (Eckroth & Josephson, 2014; Molineaux et al., 2012);

• Explanatory search relies on heuristics to make the process tractable by selecting among alter-
natives and allocating cognitive resources (Ng & Mooney, 1990; Rose & Langley, 1986).

Our theory incorporates each of these computational insights, but it combines them in novel ways.
The result is a promising account for how cognitive systems can generate plausible explanations of
observed situations and events in terms of available knowledge.

One research area that did not influence our efforts directly, but that has many parallels, concerns
assumption-based truth maintenance systems (de Kleer, 1986). These combine monotonic inference
with nonmonotonic repair, use constraints to detect inconsistencies, organize beliefs into worlds
(or contexts) in which they hold, and store these worlds in a similar distributed manner. Initial
techniques generated all consistent worlds, but later work (de Kleer, 1994) incorporated heuristic
search. Although the literature on explanation seldom cites this line of research, it shares many
features with associative abduction, and this link deserves more attention in the future.

7. Concluding Remarks

In this paper, we presented a new cognitive systems account of abductive explanation. We distin-
guished between two formulations of explanatory inference and selected one – associative abduction
– in which observations appear with assumptions as terminal nodes in proof graphs rather than as
root nodes. We stated our theory in terms of postulates about the representation of knowledge, be-
liefs, justifications, and explanations, as well as processes that inspect and modify these cognitive
structures. We also reported PENUMBRA, an implemented system that embodies these assumptions,
and its behavior on a number of explanatory scenarios. Our theory incorporates ideas from earlier
research on associative abduction, but extends them in important ways and makes new contributions
to the study of cognitive systems. These include the use of constraints to detect inconsistencies, a re-
pair mechanism to eliminate them, a world history that tracks the evolution of competing accounts,
and a distributed encoding of worlds that avoids duplication of effort during elaboration and repair.

Nevertheless, there remain important limitations to both the theory and its implementation that
we should address in additional research. Our demonstrations have shown that PENUMBRA behaves
as intended on reasonable scenarios, but we should test it more thoroughly on more domains and on
more complex tasks. Promising testbeds include the Monroe corpus for plan recognition (Blaylock
& Allen, 2005) and traces extracted from the classic Heider-Simmel video (Gordon, 2018). We
also need to devise and implement heuristics for selecting focus beliefs, choosing definitional rules
during elaboration, and deciding which constraint violations to address, then run controlled experi-
ments to determine when they are effective. In addition, we should evaluate PENUMBRA’s ability to
handle large knowledge bases and complex explanations; its use of focus beliefs should let it scale
well to these factors, but this remains a hypothesis that we must test empirically.
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Furthermore, we should expand our theory’s scope and PENUMBRA’s corresponding abilities.
The current framework supports plausible reasoning and introduction of assumptions as needed, but
it does not rank active worlds. The distributed character of inference means this is not essential for
generating explanations, but it is important for decision making, so future versions should include
criteria for evaluating explanations, such as coherence (Ng & Mooney, 1990). We should also
augment the system to incorporate, and reason over, probabilistic information about knowledge
and beliefs, supporting computations similar to those in Markov logic networks (Kate & Mooney,
2009). Finally, a fuller treatment of associative abduction would not only learn these probabilities
from experience, but create new hierarchical definitions from successful explanations, which would
in turn aid future understanding. These extensions would offer a more complete computational
theory of abductive inference and its role in the construction of everyday explanations.
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