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Abstract
Describing the content of a visual image is a fundamental ability of human vision and language
systems. Over the past several years, researchers have published on major improvements on image
captioning, largely due to the development of deep learning systems trained on large data sets of
images and human-written captions. However, these systems have major limitations, and their
development has been narrowly focused on improving scores on relatively simple “bag-of-words”
metrics. Very little work has examined the overall complex patterns of the language produced by
image-captioning systems and how it compares to captions written by humans. In this paper, we
closely examine patterns in machine-generated captions and characterize how conventional metrics
are inconsistent at penalizing them for nonhuman-like erroneous output. We also hypothesize that
the complexity of a visual scene should be reflected in the linguistic variety of the captions and, in
testing this hypothesis, we find that human-generated captions have a dramatically greater degree
of lexical, syntactic, and semantic variation. These results have important implications for the
design of performance metrics, gauging what deep learning captioning systems really understand
in images, and the importance of the task of image captioning for cognitive systems research.

1. Introduction

Composing natural language descriptions of visual and perceptual scenes is a key capability of
human and machine cognition. Over the past several years, researchers have published major im-
provements in AI systems that generate natural language captions corresponding to visual images
and scenes. Largely these advances correspond to the recent advent of deep learning and the devel-
opment of large data sets of image files and human-written captions corresponding to them.

However, related research has raised concerns about the limitations of deep learning, demon-
strating that deep networks for computer vision and natural language processing may not be per-
forming these tasks as well as the highly publicized successes would lead us to believe (Nguyen
et al., 2015; Jia & Liang, 2017). It appears that, for nearly all such models, researchers have found
systematic methods for crafting evaluation data sets that are dramatic examples of these models
going wrong, demonstrating how they are not performing these tasks in ways similar to humans.
Image-captioning systems are no exception to this phenomenon, as adversarial examples have been
developed for them as well (Chen et al., 2018).
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The quantitative measures for evaluating these captioning systems compare a machine-generated
caption with several human captions for the same image using “bag-of-words” or “bag-of-n-grams”
metrics. While these metrics are used to gauge advances in the field, their simplicity appears to be
the cause of peculiar claims of machine captioning systems “beating” humans at the task or passing
the Turing Test (Vinyals et al., 2017), and they may also be partly to blame for the confusion about
model performance. The development of modern-day image-captioning systems has been narrowly
focused on improving aggregate scores on these relatively simple metrics on the individual images.
Very little work has disregarded these metrics to examine the overall vision and language behavior
patterns of image-captioning systems in comparison to those of humans.

The organization of light, intensities, colors, edges, textures, and other “low-level” features into
perceived objects, figures, and backgrounds is fundamental to the visual cognitive processing of
images in a variety of vision theories (Wagemans et al., 2012; Ullman, 1989; Marr, 1982). The
main claim of this paper is that these recognition and identification processes are but precursors to
the much richer processes of image understanding, which likely incorporate not only memories of
prior viewings of similar objects, but also experiences with object motion, depth perception, and
other senses. We present evidence to support the claim by differentiating the image-processing
behavior of a learned neural network, which typifies classification and recognition, from that of
humans, which are presumed to be in-depth understanding systems. We perform this comparison
by examining the content of image caption texts produced by each, which act as indicators of the
cognitive processing invoked by the visual stimulus.

Recent studies of the natural language models embedded in learned image-captioning systems
indicate that they may only be recognizing individual objects and stringing together separate de-
scriptions of them without ever understanding how those objects interact with each other and their
environment in visual scenes (Heuer et al., 2016). We theorize that, unlike image classifiers, hu-
mans use complex knowledge structures to understand the physical and social interactions that are
the subjects of images (Minsky, 1975; Schank & Abelson, 1977). These may be analogous to struc-
tures that humans use to understand and reason about natural language stories about similar subjects,
and they may find their expression in descriptions that humans write about the images (Schank &
Leake, 1989).

To differentiate humans from machine generation, we perform a close examination of a corpus
of captions generated by a publicly-available deep network model trained on a widely-used image
captioning data set and compare them to aggregate samples of human-generated captions on the
same images. We characterize patterns in the quality and style of image captions that are obviously
erroneous and reflect strong differences between the model and human intelligence. We hypothesize
that the complexity of human understanding of the visual scene should be reflected in the complexity
and variety of the linguistic responses to the images, and that this complexity may not be reflected
in the conventional scores and metrics. To test this hypothesis, we also compare the linguistic
variety of machine and human captions in our corpus in a number of ways, and find that a sample
of human-generated captions has dramatically greater lexical, syntactic and semantic diversity.

These results have important implications for broader questions on the appropriateness of con-
ventional performance metrics for image-captioning systems. They also address the degree to which
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recent captioning systems actually understand what is going on in images, such as the interactions
between people and objects that appear in them, and whether image captioning should continue to
be an important task for cognitive systems research on the vision and language functions of human
intelligence.

2. Background

Humans have an ability to describe the content of an image, a task that has proved difficult to
replicate in computer models. An image captioning model usually uses advanced techniques from
areas of both computer vision and natural language processing to recognize objects and caption the
relationships between them.

Traditional image-captioning systems (for a review, see Hossain et al., 2018) required hand-
crafted vision and language features that are task specific and constrained to the domain. In com-
parison, deep networks are claimed to automatically learn image and language features through large
data sets. Such image-captioning systems typically use convolutional neural networks (CNNs) in
image encoding to extract visual features and long short-term memory (LSTM) variants of recurrent
neural networks (RNNs) to generate sentences describing the images (LeCun et al., 1998; Hochre-
iter & Schmidhuber, 1997; Hossain et al., 2018). These systems generate a full sentence conditioned
on a given image. In each step, they predict one word wt from the previous output (w0, w1, ..., wt−1)
and the visual information representation I .

In the training phase of model development, the training data is provided as an image with part
of a human annotated caption, such as “A cat is eating”, and the model learns to predict the correct
next word, e.g., “food” through an optimization process. The actual output of the model is a vector
where each entry is the probability of a particular word in the dictionary being the next word. In the
testing phase, the model generates a caption based on an image as a prediction of the first word, the
second word, and so on. This means that the previous prediction may bias the future output. The
model generates a full sentence iteratively by generating the highest-probability word in the vector
at each step. The full caption is generated and typically compared with one or more ground truth
human-generated captions and scored using common metrics (described below).

Microsoft Common Objects in Context (MSCOCO, Lin et al., 2014) is a large-scale image data
set used in various computer vision tasks, such as object detection, segmentation, and caption gen-
eration. Its first version, commonly known as MSCOCO2014, consists of 82,783 training images,
40,504 validation images, and 40,775 test images. The training and validation images are annotated
with five ground-truth captions written by humans which have been collected via crowd-sourcing,
and are provided for researchers to train and validate machine-learning systems for image cap-
tioning. The COCO evaluation server allows researchers to upload generated captions for the test
images and make direct comparisons with competing captioning systems. The server calculates and
posts the scores of competing models on the test data set using a set of standardized evaluation met-
rics while keeping the ground truth captions of the test data set private and hidden from researchers.
MSCOCO2014 has been a long-standing image captioning challenge task since the Large-Scale
Scene Understanding workshop (Yu et al., 2015).
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MSCOCO also provides an evaluation API with implementations of metrics (Chen et al., 2015)
for evaluating machine-generated captions against the validation data, including BLEU (Papineni
et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin, 2004), CIDEr (Vedantam et al.,
2015), and SPICE (Anderson et al., 2016). Although these have become standard metrics, there is
scant evidence that they are correlated with human judgment. Researchers who created the “Show
and Tell” system that tied for first place in the MSCOCO 2015 image captioning challenge (Vinyals
et al., 2017) found that their model did exceptionally well on standard metrics, but fared poorly
when human raters evaluated the captions. Although Vinyals et al. (2017) were “hoping for more
discussion and research to arise regarding the choice of metric”, very little can be found in the
literature. More recently, however, Krause et al. (2017) used statistical diversity of part of speech
tags to compare paragraph-length descriptions of images to sentence-length captions.

3. Methodology

To learn more about actual image captions, metrics commonly used to evaluate image-captioning
systems, and the linguistic diversity of machine-generated captions, we ran a state-of-the-art, read-
ily available deep learning-based image-captioning system on the MSCOCO data set. Hardware
support, training processes, hyperparameter settings, and network design all affect the performance
of deep learning-based models. Publications on these models often do not provide enough of these
details, making it difficult for other researchers to fully reproduce the results, even when the authors
provide source code for the model. Also, researchers usually implement pre-processing and post-
processing algorithms separate from the deep learning architecture to boost performance; these are
frequently not published or even mentioned.

Ultimately we chose a system called NOC, the Novel Object Captioner (Venugopalan et al.,
2017), to generate image captions for our study. This consists of a CNN-based image recognition
model and an LSTM-based language model, and, as such, it is an excellent example of the standard
architecture used in deep learning captioning systems. Also, NOC has achieved state-of-the-art
performance on the MSCOCO task fairly recently, and, most importantly, unlike many of the avail-
able models, a version of NOC that has been pre-trained on the MSCOCO2014 data was available
online,1 letting us avoid issues with training and hyperparameter tuning conflicts.

We ran the NOC model and generated captions for all images in the MSCOCO validation data
set, and used the MSCOCO evaluation API to calculate the scores of these captions on standard
metrics. The METEOR score of 0.212 that we obtained is nearly identical to that published in
Venugopalan et al. (2017), confirming that the model was performing as expected. Additionally, the
scores on ROUGE-L and CIDEr stood at 0.436 and 0.487 respectively, while the scores on SPICE
and BLEU-2 were 0.148 and 0.507.

To show that the NOC model is state of the art, we sought to compare its metric scores to the
scores of other models on the MSCOCO captioning task leaderboard.2 The scores are based on the
test data set, and we are unable to calculate metrics for the NOC model on the test data because this
would require the ground-truth captions for the test data, which are kept hidden. We compared the

1. https://github.com/vsubhashini/noc
2. http://cocodataset.org/#captions-leaderboard
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Table 1. An example of a “stutter” caption. All metrics give unexpectedly high scores except for SPICE.

Image file: COCO_val2014_000000300216.jpg

Human-generated ground-truth captions:
1. A clean white bathroom with a simple mirror above the vanity.
2. A bathroom with a white sink and mirror.
3. Bathroom sink with toothbrushes in a stand and a mirror.
4. A white bathroom a sink and a brown mirror.
5. A bathroom sink underneath a mirror and tooth brushes.

Machine caption: A bathroom with a sink, mirror and a mirror.

Metric BLEU-2 METEOR ROUGE-L CIDEr SPICE

Score 0.82 0.373 0.832 1.678 0
Percentile 98.49 94.85 98.89 95.92 9.02

leaderboard scores on test data to our scores on the validation data instead and found that the scores
achieved by our model were not the best, but they were at least comparable to the leaderboard scores.
Overall, there has been little improvement in the performance of models posted to the leaderboard
for this task since 2017, the year that the NOC model was first published. Due to this and the fact
that the underlying “vision model-language model” structure is widely used in neural network based
image-captioning systems (Hossain et al., 2018), NOC is a suitable representative of these systems.

4. Nonhuman-like Anomalies in Machine-Generated Captions

There are many ways to classify errors and anomalies in image captions. Minor misidentifications
of objects and locations, as well as inaccurate descriptions of activities, occur in both human and
machine-generated captions. But some machine-generated captions have clearly nonhuman-like
characteristics in terms of their structure and content. A close examination of just a few captions
generated by the learned model confirmed previous observations of nonhuman-like anomalies and
discoveries of new ones.

In this section we provide samples of these machine-generated captions, the images that gener-
ated them, and the corresponding human-generated ground-truth captions. These are accompanied
by scores on metrics provided by the MSCOCO evaluation tools. In addition to illustrating the
metrics’ performance, this demonstrates the discrepancies between human judgment and automatic
evaluation tools that potentially mislead the development of image-captioning systems. The sam-
ples are representative since these types of errors are common in machine-generated captions and
designers of future metrics should consider these inconsistencies.
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Table 2. An example of a “never-ending” caption in which all metrics except for SPICE give low scores.

Image file: COCO_val2014_000000452695.jpg

Human-generated ground-truth captions:
1. A view of kitchen with two microwaves in it.
2. A kitchen with counters, a sink, a refrigerator and a

microwave in it.
3. Modern kitchen facility in open space with large counters.
4. A kitchen that has a icebox and some microwaves in it.
5. A very clean and empty kitchen and counter area.

Machine caption: A white sink sitting under a mirror in a bathroom . . . . . . . . . . . . . a very
clean and ready to ready to be a sink in a mirror . . . . . . . . . . . . a . . .

Metric BLEU-2 METEOR ROUGE-L CIDEr SPICE

Score 0.245 0.172 0.335 0.014 0.636
Percentile 28.51 32.12 25.41 13.65 99.99

4.1 “Stutter” Captions

Sometimes the image-captioning system demonstrates that it successfully detects objects, but it
creates a sentence with unusual repeated phrases describing a particular object in the image. In
the example shown in Table 1, the model recognizes that the image was taken in a bathroom, but
the caption states that there are two mirrors in the image, which is only partially accurate given
that there is only one mirror. We found instances of these “stutter” captions easily in a cursory
examination of machine-generated captions, confirming the acknowledgment of their existence by
the creators of the NOC model (Venugopalan et al., 2017). However, while stuttering does occur
in human speech and writing, we found no examples of this behavior in a similar search over the
human captions in the data set.

For the stutter caption in the table, BLEU, METEOR, and ROUGE give scores that seem very
high given this anomaly, whereas SPICE penalizes it far too much. We speculate that this is due
to the fact that SPICE parses the caption to build a semantic graph of the sentence, and for some
reason this process failed on this caption. For the other metrics, it appears that the extra mention
of the mirror only amounts to a tiny penalty because all of them primarily count overlapping short
phrases. We conclude that these metrics generally have difficulty penalizing captions that human
readers can easily recognize are not accurate.

4.2 “Never-Ending” Captions

Table 2 illustrates another anomaly that is prevalent in our machine-generated captions, which we
have named the “never-ending” caption. This caption and others like it contain long sequences of
periods and repeated words and phrases. Also, all of these captions are 50 tokens long, which is the
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maximum length of a caption produced by the NOC model using the default settings the authors
provide in the source code. When we analyzed the lengths of all of the captions generated by our
model, we found that 10,486 (25.89%) of them are at the maximum length.

To confirm that this behavior represented a proper functioning of the model, we examined a
set of captions that have been made publicly available by the NOC model authors.3 We searched
the 20,252 captions in this data set for two or more consecutive periods and found that 26.3%
of the captions (5,335 out of 20,252) had this characteristic, nearly identical to the percentage of
our captions. However, visually scanning the captions in the data set provided by the authors, we
realized that this issue might not have been noticed previously because the maximum caption length
appeared to be set at 25 words.

Researchers commonly use post-processing techniques to make captions more presentable be-
fore metric evaluation. These never-ending captions could be fixed with a post-processing algorithm
that truncates the caption at the first period. However, the caption might be incomplete at the first
period and cutting it there runs the risk of removing salient information. We also found instances of
anomalous maximum length captions where this would not work because they contained no periods
at all (e.g., “Parking meter parking meter parking meter . . . ”). The appearance of consecutive pe-
riods in the data set provided by the NOC authors indicates that no post-processing is being applied
except for a truncation of the captions at 25 words.

The never-ending caption scores fairly poorly in a majority of the standard evaluation metrics;
this is because if the machine-generated caption (the candidate) is very long and contains many short
phrases that do not exist in the ground-truth human caption (the reference), metrics that contain a
precision score component will penalize these as false positives. Even if a phrase that appears
repeatedly in the candidate appears in the reference, additional instances of it in the candidate will
be penalized as noise. On the other hand, the SPICE metric gives an extremely high score in spite
of the fact that it was designed to be a better metric for evaluating image-captioning systems. We
speculate that this issue is also due to the fact that SPICE parses the caption to build a semantic
graph, and the process may not penalize sequences of periods or ungrammatical repeated phrases in
the sentence structure.

5. Linguistic Variation

We also worked to determine whether captions produced by deep learning were human-like and
displayed the natural variety, diversity, and originality of words and structures that are present in
natural language. Tables 1 and 2 show examples of this kind of variety in the five ground truth
captions written by humans to describe the MSCOCO images.

5.1 Tests for Originality

Examining the captions, we noticed that the model frequently produced the same caption for many
different images and that these repeated captions were a good match for some of those images but
not others. For example, the model captioned 29 separate images with the identical caption “A

3. https://vsubhashini.github.io/noc.html
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(a) (b)

(c) (d)

Figure 1. Four images captioned as “A woman sitting on a bed with a teddy bear”. The model captioned 29
separate images with this identical caption, which exists as a ground-truth caption in the training set, but the
model seems to use it incorrectly on many of the images.

woman sitting on a bed with a teddy bear”, but the model seems to use it incorrectly on many
of them. Four instances are shown in Figure 1. This caption also appears 11 times as a ground-
truth caption in the training set, but there are more than ten times as many captions in the training
data as in our collection of machine captions. This example raises a question: is the system really
generating unique captions based on the objects it finds in the images or is it merely “remembering”
and reproducing a ground truth caption verbatim based on a few features in the image?

The first way that we assessed the originality in the machine-generated captions was by deter-
mining how many were exact duplicates of captions in the training data. We found that, out of the
40,504 captions generated from the MSCOCO validation data, there were exact matches for 4,988
(12.3%) in the 413,915 ground-truth captions in the 82,783 training cases.

We were also concerned about whether the system generally tends to reproduce the same cap-
tions over and over again, regardless of whether they are identical to ground-truth captions or not, so
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Table 3. Texts and frequencies for the ten highest frequency machine captions.

Caption Frequency

“A bathroom with a toilet and a sink.” 110
“A man riding a wave on top of a surfboard.” 109
“A man riding a skateboard down a street.” 108
“A man riding a surfboard on top of a wave.” 96
“A man riding skis down a snow covered slope.” 93
“A plate of food with a fork and a plate of food.” 77
“A clock tower with a clock on top of it.” 67
“A man riding a skateboard down a ramp.” 59
“A woman sitting at a table with a plate of food.” 56
“A baseball player swinging a bat at a ball.” 55

we calculated the frequency of each machine-generated caption in the whole corpus. Of the 40,504
captions we generated, 25,631 (63%) are unique captions that appear only once, while the remaining
14,873 (37%) appear as duplicates of another 3,423 captions. Some 563 of these repeated captions
appear more than five times and 227 of them appear over ten times.

Table 3 lists the ten highest-frequency machine captions. We notice that these captions all have
a similar structure, such as “an object is doing something on/in some place”. Moreover, half of them
are about similar objects and actions, such as “riding a skateboard”. We hypothesize that there may
be systematic biases in the model, a prevalence of these kinds of images in the data set, or both.
While these high-frequency captions may match the image content (which we did not check) they
generally show a lack of variety in terms of structure and content.

5.2 Vocabulary Size

To give a sense of the lexical variation present in the machine-generated captions, we compared
the size of the vocabulary of the captions generated by our model with that of human-generated
ground-truth captions (a method also employed by Krause et al., 2017). We calculated the number
of unique words and tokens in our 40,504 machine-generated captions. We also calculated unique
words and tokens in the human-generated captions in both the 82,783 training data items and the
40,504 validation data items. Since five human-written sentences are provided for each image in
the training and validation sets, we randomly selected one of them from each image to ensure a fair
comparison between the humans and the model. We did not perform stemming, lemmatization, or
spelling correction on any of the captions beforehand.

We found that the machine-generated captions contain 2,297 unique words, which is about 24%
of the vocabulary of 9,466 unique words in the 20% sample of the human-generated ground truth
captions in the validation data; these 2,297 words are also only 9% of the 24,781 unique words
in our 20% training sample. This shows that the image-captioning model is limited in its use of
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Table 4. Examples of part-of-speech tags (b), and dependency parses (c) of a 15-word machine-generated
caption and a 16-word human-written ground-truth caption describing similar scenes (a). Both are from
our data set. However, the machine-generated caption shown was changed slightly from “snow covered” to
“snow-covered” so that it would parse correctly in this example.

Machine-generated Caption Human-generated Caption

(a) “A large wing view of a airplane sitting on top of a
snow-covered mountain.”

“Several airplanes can be seen at the airport, but
there is also snow on the ground.”

(b) A/DT large/JJ wing/NN view/NN of/IN
a/DT airplane/NN sitting/VBG on/IN
top/NN of/IN a/DT snow-covered/JJ
mountain/NN ./.

Several/JJ airplanes/NNS can/MD
be/VB seen/VBN at/IN the/DT
airport/NN ,/, but/CC there/EX
is/VBZ also/RB snow/NN on/IN the/DT
ground/NN ./.

(c) det(view-4, A-1)
amod(view-4, large-2)
compound(view-4, wing-3)
root(ROOT-0, view-4)
case(airplane-7, of-5)
det(airplane-7, a-6)
nmod(view-4, airplane-7)
acl(view-4, sitting-8)
case(top-10, on-9)
nmod(sitting-8, top-10)
case(mountain-14, of-11)
det(mountain-14, a-12)
amod(mountain-14,

snow-covered-13)
nmod(top-10, mountain-14)

amod(airplanes-2, Several-1)
nsubjpass(seen-5, airplanes-2)
aux(seen-5, can-3)
auxpass(seen-5, be-4)
root(ROOT-0, seen-5)
case(airport-8, at-6)
det(airport-8, the-7)
nmod(seen-5, airport-8)
cc(seen-5, but-10)
expl(is-12, there-11)
conj(seen-5, is-12)
advmod(is-12, also-13)
nsubj(is-12, snow-14)
case(ground-17, on-15)
det(ground-17, the-16)
nmod(snow-14, ground-17)

words in comparison to human annotators, and this is another respect in which the model lacks the
linguistic variety of human-generated captions.

5.3 Syntactic and Semantic Variation

In order to investigate the syntactic and semantic structures of machine and human captions, we
used the Stanford CoreNLP parsing system (Manning et al., 2014) to parse the 40,504 machine
captions and the 20% sample of human captions from the validation data set for comparison. Two
basic parsers in the Stanford CoreNLP suite of tools were used for evaluation: the part of speech
parser and the dependency parser.

The part of speech parser tags each word with one of several dozen well-known grammatical cat-
egories, including noun, verb, adjective and so on. The dependency parser employs phrase-structure
rules and detects dependency relationships between pairs of words in a sentence (De Marneffe et al.,
2014). Dependency parsing systems are designed as an alternative to traditional phrase structure
representations to provide output that is more easily accessible to non-linguists focused on extract-
ing information, textual relations, and graph representations of text. We propose that variety in the
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Predeterminer (PDT)
Adjective, superlative (JJS)

Foreign word (FW)
Proper noun, plural (NNPS)

Wh-adverb (WRB)
Quotation Marks (“)
Quotation Marks (”)

Modal (MD)
Wh-pronoun (WP)

Adjective, comparative (JJR)
Possessive ending (POS)

Existential there (EX)
Wh-determiner (WDT)

Verb, base form (VB)
Verb, past tense (VBD)

Proper noun, singular (NNP)
Possessive pronoun (PRP$)

Particle (RP)
Adverb (RB)

Personal pronoun (PRP)
Cardinal number (CD)

Verb, non-3rd person singular present (VBP)
Comma (,)

Verb, past participle (VBN)
To (TO)

Verb, 3rd person singular present (VBZ)
Coordinating conjunction (CC)

Ellipsis (:)
Noun, plural (NNS)

Verb, gerund or present participle (VBG)
Adjective (JJ)

Period (.)
Preposition or subordinating conjunction (IN)

Determiner (DT)
Noun, singular or mass (NN)

Frequency Ratio

Human captions
Machine captions

Figure 2. A comparison of the sentence structures of machine captions and human annotated captions via the
frequency ratios of part of speech tags of each in our data set. The plot is ordered by the total count of each
tag, with most common tags appearing at the top. Only tags occurring more than ten times are shown.

part-of-speech and dependency categories is a signal of the overall complexity of the syntactic and
semantic structures of the captions from different sources. Table 4 shows examples of tagging and
dependency parses of human and machine captions from our data set.

5.3.1 Part-of-Speech Tag Comparisons

We calculated counts of the appearance of each part of speech tag over all of the parses of the
machine-generated and human-generated captions. Since the frequencies of different tags over the
data set varied from over 100,000 for nouns (nn) and determiners (dt) to less than 100 for superlative
adjectives (jjs), we calculate and plot the ratios of tag frequencies between the human and machine
instead of raw frequencies. Figure 2 shows the frequency ratios of different tags arranged from
highest to lowest frequency, denoted as blue and orange bars for human and machine captions,
respectively; the topmost tag is most frequent, while the one on the bottom occurs least often.
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We found that the machine captions have greater percentages for many of the more frequently
occurring part-of-speech tag categories, with the exception of plural nouns (NNS). In both the ex-
ample parses (Table 4) and the frequency ratio plot (Figure 2) the machine-generated captions had
higher instances of parts of speech used to form simple sentences: singular or mass nouns (NN),
determiners (DT), coordinating conjunctions (CC), prepositions/subordinating conjunctions (IN),
adjectives (JJ), the word “to” (TO), third person singular present verbs (VBZ), and present partici-
ple (“-ing”) verb forms (VBG). We found that machine-generated captions also had more commas
and periods. All ellipsis tags (appearing as “:” in the tag set) came from machine captions; the parser
recognizes the long sequences of periods in never-ending captions as concatenations of ellipses.

In contrast, human-generated captions have dramatically greater numbers of plural nouns (NNS),
past participle verbs (VBN), past-tense verbs (VBD), non-third person singular present verbs (VBP),
verb base forms (VB), third-person singular verbs (VBZ), modal verbs (MD), possessive and per-
sonal pronouns (PRP and PRP$), possessive endings (POS), comparative adjectives (JJR), singular
proper nouns (NNP), and wh-determiners (WDT). They also had more particles (RP, e.g., “over”,
“down”, “out”), adverbs (RB), and cardinal numbers (CD). These and elements like the existential
there (EX) in Table 4 are used to form more diverse and complex sentences.

5.3.2 Dependency Parse Comparisons

We also obtained dependency parses of all of the human and machine-generated captions and cal-
culated counts of the appearance of each dependency relationship. Again, since there was a huge
range of frequencies of different tags over the data set, we calculate and plot the ratios of depen-
dency relationship frequencies between the human and machine instead of raw frequencies. Figure 3
shows the frequency ratios of different dependency relationships arranged from highest to lowest
total frequency; the topmost tag has the highest frequency while the tag on the bottom is lowest.

In the dependency parses,4 again the machine-generated captions dominated relationships for
simpler sentences: determiners (det), prepositions (case, nmod), adjectival modification (amod,
acl), conjunctions (conj, cc), compound nouns (compound), and punctuation (punct). The depen-
dency parse of the example machine-generated caption in Table 4 has seven kinds of dependency
relationships, while the human-written caption has fifteen. As with the part of speech tags, the
human-generated captions more frequently featured relationships of more complex sentences, such
as clausal modifier relationships (xcomp, acl:relcl, advcl, ccomp, csubj), passive voice (auxpass,
nsubjpass), negation (neg), and multi-word expressions (mwe), among others.

5.3.3 Permutation Tests

We also gathered quantitative statistical evidence that machine-generated captions have greater in-
stances of higher-frequency tags and dependency relationships. We performed permutation tests to
demonstrate that the difference between the average ratio of machine captions is statistically signif-
icant between high-frequency and low-frequency categories. To do this with the tags, we divided
them in half according to frequency, one set being the high-frequency tags and the other the low-
frequency tags. We define the means of the ratios of tag frequencies in these two sets as r̄h and r̄l.

4. http://universaldependencies.org/docs/en/dep/
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Figure 3. A comparison of the sentence structures of machine captions and human annotated captions via
the frequency ratios of dependency relations in our data set. The plot is ordered by the total count of each
dependency relation, with the more common relations appearing at the top. Only relations occurring more
than ten times are shown.

The null and alternative hypotheses are
H0 : r̄h − r̄l = 0

and
HA : r̄h − r̄l > 0.

We did the same for dependency relationships. The permutation test statistics are shown in Table 5.
We have enough statistical evidence to reject the null hypothesis H0 and we can conclude that,
on average, the machine captions have greater numbers of high-frequency tags and dependency
relationships than low-frequency ones.

45



M. DAI, S. GRANDIC, AND J. C. MACBETH

Table 5. Permutation test results for ratios of part of speech tags and dependency relationships.

Test Part of Speech Tags Dependency Relations

Number of Rounds 100,000 100,000
Observed Value of r̄h − r̄l 0.3836 0.2630

p-value 0 5 × 10−5

6. Discussion

Our study provides insights into understanding the functioning of image-captioning models and ar-
eas for improving them. While we confirmed the existence of “stutter” captions, we were amazed
that more than a quarter of the captions produced by our model were anomalous maximum-length
“never-ending” captions, providing obvious differences between how the models and humans gen-
erate captions. Stutter captions may be occurring due to weaknesses in the recurrent architecture in
the language model and in the word embedding representations. With never-ending captions, dur-
ing pre-processing special “start” and “end” tokens are attached to the beginning and end of each
caption in the training data, and the recurrent language model is supposed to learn to produce an
“end” token to signal that the caption is complete. Apparently, in many instances, the model fails to
do this and the system continues running the model until the maximum caption length is reached.
Since most systems employ the same language models and pre-processing techniques as NOC, we
suspect that this is a widespread issue.

However, the evidence we gathered from comparing the overall linguistic variation of machine-
and human-generated captions is unique and strong in supporting our claim that human-like un-
derstanding of an image is a more involved cognitive process than simple classification or object
recognition. The comparison of vocabulary size demonstrates that the model only “remembers” a
small percentage of words in the training data—likely the most frequently-occurring ones. In addi-
tion to the roughly 25,000 word vocabulary in the training data, the NOC model word-embedding
system uses an external corpus with six billion tokens and a vocabulary size of 72,700 words (Venu-
gopalan et al., 2017). However, this additional vocabulary available at training does not appear to
have a strong effect on the vocabulary of the generated captions. We hypothesize that the neural
network training process inherently places greater weight on high-frequency phrases, syntactic pat-
terns, and entire sentences. This could explain the high percentage of repeated captions and captions
with exact matches in the training data.

When humans compose a caption for an image, they obviously use visual perception and lin-
guistic knowledge. But humans do more than simply identify the objects in the image and their
relative positions in a natural language description; they also apply complex knowledge structures
about the physical and social situations in which the objects are involved, and how they interact, as
in the Heuer et al. (2016) example of “woman and dog with frisbee on grass near fence” versus “a
woman playing tug of war with a dog over a white frisbee.” Observing human-generated captions
in aggregate, the complexity of the language given in response to visual scenes reflects the sophisti-
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cation of understanding a visual scene, the different aspects of scenes and different parts of images
that people notice, their implications and consequences, and individual differences among them.

Our finding that the machine-generated captions tend not to have this linguistic complexity is
evidence to the claim that these image-captioning systems are not learning these kinds of knowledge
structures and are not truly understanding images in the same ways as people. This is consistent
with related findings (Heuer et al., 2016) supporting the view that, by and large, these systems are
simply recognizing objects and composing lists of simple noun phrases. At the same time, this is
somewhat unsurprising, given that the models, the data sets used to train, validate, and test them,
and the metrics used to judge their performance generally have not been designed with human-like
understanding in mind.

7. Directions for Future Work

In this paper, we illustrated that neural network image-captioning models have several special chal-
lenges with respect to caption errors and syntactic structures, and, unfortunately, widely-used eval-
uation tools do not seem to detect these problems. Our study, while showing various ways in which
image understanding is a much greater process than image object classification, provides important
illustrations about how these machine-captioning systems actually work and the ways their behav-
ior does not resemble human performance. In our corpus of machine-generated captions, we found
a large number of examples of captions that are clearly erroneous, or appear repeatedly and often
poorly describe the source image. The “stutter” and “never-ending” caption errors clearly reveal a
deficiency in the language models used to handle this vision-to-language task. Our experiment also
demonstrates that the models may converge towards simple sentences in the training data. This ap-
pears to be due to approaches to image captioning where it is posed primarily as a computer vision
and classification problem, rather than a joint task between computer vision and natural language
generation. We also measured and observed how machine-generated captions lack the linguistic and
descriptive variety of human captions.

One broader question concerns the modern big-data paradigm of machine learning research and
the possibility that systems in this paradigm only give good results because of the narrow scope
of the tasks and the way the data sets are constructed. There may usually be a “good answer”
or a “good response” to a stimulus in the validation or test data based on “shallow” patterns in the
training data. If “shallow” metrics are what define a “good response”, then these systems can exploit
simple patterns in data sets to achieve “good” performance without ever needing to perceive, think,
reason, and respond at a human level. Resolving this question requires further investigation of the
data sets and the metrics themselves.

Future work could employ crowdsourcing for a more thorough analysis of patterns in machine-
generated captions that would gain greater insights into the inner workings of these models. Another
possibility for future work is to run a number of other models to build a larger corpus of captions
on which to perform further studies. Although the NOC model is representative of these systems, a
larger study could reveal more patterns in machine-generated image captions. Better optimization
strategies or ways of weighing visual and sentence representations may help reduce obvious anoma-
lies in these captions. Also, more could be done to detect and penalize these kinds of problems in
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the model training process. The kinds of anomalies we found through cursory inspection can be
easily detected, so post-processing may reduce their impact on the caption quality with respect to
commonly-used simple metrics.

Due to the optimization limitations of neural networks, the training phase for deep network
captioning systems requires caption-level comparisons, and all widely-used metrics, such as BLEU
and SPICE, only consider captions for a single image. However, our analysis shows the notice-
able corpus-level differences between machine and human captions, and novel training systems
that reward corpus-level similarity will let researchers evaluate and improve their models from this
perspective. The ideal metric can also include variance in vocabulary and sentence structure, in a
way similar to our tests of linguistic variance. If the models are redesigned to take word and cap-
tion frequencies into consideration, they may avoid overfitting to simple sentence structures. To
be specific, we might give a linguistic complexity weight to each image-caption training case that
favors captions with lower-frequency words or more complicated syntactic structures during opti-
mization. Another possible strategy for improvement is to train the language model with a more
linguistically-diverse text corpus to give it a broader search space for semantics and vocabulary.

But the prevalence of these anomalies in spite of the huge amount of training data provided is an
indication of the great limitations of incremental development of these kinds of models. Assuming
the larger claim of this paper, cognitive systems researchers will probably be well served by the
pursuit of novel image-captioning architectures that perform sophisticated and complex human-like
understanding and language generation processes.

It is obvious that, in performing the captioning task, humans have access to more visual infor-
mation, episodic and semantic memories, knowledge, and reasoning capability than that provided
in data sets like MSCOCO. A better approach to building a cognitive system for image captioning
based on machine learning could use sensory information in the form of active, non-canonical views
and videos of similar objects, observations of objects with other senses, and interactions with them
via actuators. These kinds of data could easily be provided by the sensors and actuators of cognitive
robotic systems (Haber & Sammut, 2013) and tied to the language used to describe the activities in
visual scenes (Scheutz et al., 2013).

However, if the generation of complex language by humans is driven by complex knowledge and
reasoning, as we have hypothesized, these better language models will need to be integrated with
complex commonsense knowledge structures (e.g., Gilpin et al., 2018). This will require subsystems
that can reason about the objects, figures, and background information present in an image, and draw
conclusions about the acts and events that are happening and their consequences as part of caption
generation. To support this kind of reasoning, they will need access to structured knowledge about
stereotypical social situations and about the goals and plans of actors, particularly when humans are
in the images (Lenat, 1995; Speer & Havasi, 2013).

Finally, performance metrics are driving the development of these systems, and a more compre-
hensive analysis of the most commonly-used evaluation metrics, including their distinct properties
and potential drawbacks, is currently underway. New metrics to assess image captions from other
dimensions (e.g., level of detail or commonsense knowledge) that align with a more comprehensive
human judgment of caption quality are worthy of invention. One of the most interesting character-
istics we discovered about image captioning is the intrinsic structural variation of the language of
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acceptable captions for a particular image. While we did perform comparisons of structural vari-
ation of language in this paper, we are motivated to design quantitative metrics of variation to aid
in these evaluations and comparisons, and diversity metrics used in ecology and other life sciences
might be adapted to this purpose. The idea that human intelligence can seemingly generate an in-
finite variety of language behaviors from finite means formed an important part of the cognitive
revolution. It is only natural that cognitive systems research should incorporate better measures and
use them to raise expectations in assessing the human-like qualities of computational artifacts.
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