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Abstract
In this paper, we explain the Partial Mental State Inducer (PMSI), which models how humans can
learn intuition for problem solving. We believe that this is the first model that unifies theories
of K-lines, human inner language, human problem solving, and neural reinforcement learning.
The result is human-like learning in a training environment that is too data-starved for traditional
reinforcement learning to be successful. We present experiments in three distinct problem domains
(natural language queries, equation solving, and robot planning) with only 20 training problems in
each domain. A typical deep Q-network set-up often does not test better than a random agent on
average, whereas PMSI can learn how to perform at a level that is close to optimal.

1. Introduction

Humans are able to develop an incredible intuition for solving problems with impressively few
practice problems. Mathematicians can prove theorems with lemmas that inexplicably come to
mind and game players can act on hunches that are more insightful than extensive searches. This
indicates that there is a significant component of the human problem-solving capacity which is
beyond the explanation barrier, even though humans can explain their solutions at some level.

We present the Partial Mental State Inducer (PMSI), which models part of the human capacity to
develop intuition for a problem domain from only a few relevant practice problems.1 Given the state
of a problem and a goal, PMSI suggests relevant operator sequences for a separate general-purpose
problem solver to use. The problem solver has access to operators that can manipulate the state of a
problem and check goal conditions, and PMSI’s suggestions are learned through a combination of
reinforcement learning and chunking action sequences.

To the best of our knowledge, PMSI is the first computational model that unifies standard the-
ories of human problem solving, accounts of long-term memory, symbolic representations, and
reinforcement learning with neural networks. There are four key components that, taken together,
make PMSI unique in the literature:

1. By few, we mean substantially fewer problems than state-of-the-art general reinforcement learning models need.
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• it takes as input a universal symbolic language (called Innerese) that can represent any problem
and goal;
• it relies on a society of collaborating agents to select actions, based on learned perceptions,

where the agents are hierarchically structured by their different hypothesis spaces,2 which are
created by grouping learned macro-operators (a compiled sequence of operators);
• it uses methods called B-brains that detect when an agent is in trouble and can switch to another

one; and
• it acquires effective expertise about problem solving from only a few training problems.

We present experiments that show PMSI can learn how to solve unseen problems in three domains
(natural language queries, equation solving, and robot planning) with 20 practice problems each; the
system is successful even when it must learn in all of these domains at once. A typical reinforcement
learning approach with a single deep Q-network, or DQN (Mnih et al., 2015), fails in such a data-
starved training environment. We demonstrate that PMSI produces human-like behavior, such as
functional fixedness (Duncker, 1945) and capture errors (Reason, 1990). We close by discussing
theoretical motivations for PMSI from related work in cognitive psychology.

2. Background
PMSI uses a symbolic language to interpret problems and calls on a problem solver to address
them. Both the symbolic language and problem solver, which have been implemented in the Genesis
Story Understanding System (Winston, 2012), are detailed here. We also briefly describe some of
our main theoretical tenets, which are useful to know before reading the next section. Finally, we
solidify our abstract conversation by providing a worked example of how we want PMSI to behave
with a specific problem.

2.1 Innerese

PMSI takes a special symbolic language as input, which is called Innerese (or inner language)
because it resembles symbolic logic from linguistic theories of semantics. This paradigm, such as
Fodor’s (1975) Language of Thought Hypothesis, suggests that humans parse natural language into
logical expressions, which form a universal language of thought. Some hypotheses state that people
have several such languages (e.g. Sloman, 1978). Regardless, it is generally agreed that languages
of thought can be interpreted and manipulated by a problem-solving apparatus and that they have
compositional semantics, as we can construct meanings by combining other meanings. Our Innerese
model has these properties.

The Genesis group uses the START natural language system (Katz, 1997) to parse English into
Innerese representations. START analyzes natural language by breaking it into sequences of units
called ternary expressions that have the form <subject relation object>. Ternary expressions can
be hierarchically nested in other ternary expressions. As an example, we show an Innerese parse in
Expression 1, of the English sentence “Trump shocked Melania with his question.” This parse is a
sequence of two ternary expressions.

2. In this paper, we use the term hypothesis space to mean the set of actions that are available to a problem-solving
agent, either during training or evaluation.
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<<Trump shocked Melania> with question>,<question related-to Trump> (1)

Human inner language need not come from natural language. In principle, it can come from any
input that a person might access. Likewise, Innerese need not come from a START parse. For
example, one can construct a parser that takes in the state of the world from a robot’s perception and
represents it as Innerese. An example of an Innerese description of a physical environment could be
<wrench on-top-of table>.

Innerese Assumes Low-Level Agents PMSI is an architecture that deals with problem solving at
the level of general symbolic thought (Innerese), which is a high-level part of human cognition. We
assume that there are domain-specific agents that can communicate perception information to PMSI.
Creating perception systems that can observe a problem in a natural form and robustly generate
sensible Innerese is a significant challenge that goes beyond the purpose of this paper. In the view
of PMSI, these agents represent operators that return Innerese.

It is apparent that humans must also use domain-specific agents to retrieve general thoughts
about many problems. We can access the sensor-invariant information that someone is walking
nearby using our eyes, our ears, or both organs, but we cannot see things with our ears and we
cannot hear them with our eyes.

2.2 The Self-Aware Problem Solver

Winston’s (2017) Self-Aware Problem Solver has access to a variety of operators that can manipulate
the state of a problem and check goal conditions. All of its actions return Innerese expressions about
how they updated the state of a problem, which means that it solves a problem in a way that generates
an Innerese explanation. Because it can also interpret problems represented in Innerese, the problem
solver can solve problems about its explanations, which generates other Innerese explanations. The
reason why “Self-Aware” is part of its name is because it can recursively solve problems about how
it solved problems; in this sense, it can reason about its own reasoning.

We believe that self awareness is a suitcase term (Winston, 2017), i.e., it describes a cognitive
concept so abstract that many different meanings can fit inside. We will not attempt to argue that the
Self-Aware Problem Solver implements all aspects of this broad term. We only mean that it contains
a key component of our interpretation of self aware, which is the ability of a system to recursively
solve problems about how it solved problems.

PMSI and the Self-Aware Problem Solver can combine to create a human-like problem-solving
system. The Self-Aware Problem Solver does not know how to best apply its actions, given the
state of a problem and goal, and PMSI can learn to fulfill this function. Due to the problem solver’s
ability to apply its actions to problems regarding its solutions to other problems, PMSI is also able
to learn a kind of meta-level intuition about how to solve problems that concern how it solved other
problems. These meta-level aspects are not explored in this paper, but we consider this possibility
important to mention, as it is a next step for our work. For now, we only use the Self-Aware Problem
Solver as a resource through which PMSI can apply operators and receive Innerese responses about
non-meta-level problems.
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2.3 Theoretical Tenets from K-lines, B-brains, and Near-Miss Learning

Minsky’s K-line Theory states that a human is able to remember the set of mental agents that were
active when they were solving a problem, so that they can be primed with all of those agents when
they encounter a similar problem. Such collections are called K-lines; they induce a learned subset
of a mind’s resources, known by Minsky as a Partial Mental State, from which PMSI gets its name.
K-lines can contain other K-lines, and more generic K-lines are composed of more specific K-lines.
A Level Band is the region of the mind with K-lines at the best-suited level of abstraction for a
problem, so that the K-lines do not overfit or underfit on the problem at hand.

Minsky’s theory predicts that human problem solvers should sometimes get stuck in K-lines
outside the Level Band that are too specific and do not cluster enough agents. Alternatively, a K-
line might contain too many agents, so the analysis of the problem is too shallow. The latter is
indeed observed as a common type of human error (Reason, 1990), but humans are usually able to
recognize that they are stuck and recover.3 Minsky addresses the ability to recover from capture
errors with the idea of B-brains, which can suggest another part of the mind to replace a failing part
or offer some deliberation to guide the mind in a good direction. Sometimes a human can take more
actions than necessary to solve a problem, but still achieve success, through a generally applicable
K-line that they have learned; this is observed as functional fixedness (Duncker, 1945).

Finally, we consider Winston’s (1970) Theory of Near-Miss Learning. This idea explains that
the ability of humans to learn useful concepts from few examples stems from the ability to identify
attempted solutions that are almost correct and learn the small corrections. So, to be a good model
of human cognition, PMSI should be able to learn general solution paths that are almost correct for
many of the problems, and it should require few training examples. As our experiments show, our
implementation is able to achieve this goal by using ideas from the K-line and B-brain theories.

2.4 Worked PMSI Example

To clarify our research goal, we trace the desired behavior of PMSI on a problem that it solves in
one of our experiments. Suppose that the Self-Aware Problem Solver has access to six operators,
which will presumably only be useful if the problem involves solving equations. The names are self-
explanatory, and exact specifications for how the actions work are not necessary for understanding
this example.

• add like terms
• simplify fractions
• simplify products
• apply quadratic formula
• divide both sides by relevant multiple
• check if solution is explicit

The simplify products operator only works if fractions are simplified. Similarly, apply quadratic
formula only works if an equation is in quadratic form, and divide both sides by relevant multiple

3. Humans cannot always recover; an example is learning phonetic categories (Goto, 1971).
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only works if an equation is sufficiently simplified. Suppose now that we have a problem and goal,
given in English by Expression 2.

x is a variable. −5 · x · x · 0.7− x+ 4 · 2− x2 = 3 · x is an equation. Solve the equation. (2)

Because this is an English representation, START can parse it into Innerese. A parse for the problem
and goal is given in Expression 3; in this case, the problem is on the first line and the goal is on the
second.

<class variable x>,<class equation −5 · x · x · 0.7− x+ 4 · 2− x2 = 3 · x>

<I solve equation>
(3)

PMSI should propose a relevant operator or sequence of them that the Self-Aware Problem Solver
can use to get closer to a solution. In this case, simplify products would be a good suggestion because
there are products that can be multiplied, but simplify fractions would not be useful because there
are no fractions in this equation. If PMSI suggests simplify products, then the parse for the modified
problem would be:

<class variable x>,<class equation −3.5 · x2 − x+ 8− x2 = 3 · x>

<I solve equation>
(4)

For Expression 4, it would be useful for PMSI to suggest add like terms, which would put the equa-
tion into a form appropriate for apply quadratic formula. A component of PMSI might have learned
to chunk these two actions into a macro-operator and remove the original operators from consid-
eration, to reduce its hypothesis space. PMSI might not know that add like terms will definitely
enable apply quadratic formula to work, but humans generally do not know if their hunches will
work either. After suggesting this macro-operator, the Innerese would be:

<class variable x>,<class equation x = −1.85>,<class equation x = 0.96>

<I solve equations>
(5)

It would then be useful for PMSI to suggest check if solution is explicit, which is a special operator
because it decides whether the goal is met and can tell the system to stop.

This simple problem is a good illustration of how we want PMSI to work. Innerese is our model
for the language of human thought, and so PMSI is our model for how humans can gain and use
intuition for any problem they can think about.

3. PMSI Implementation

We have implemented PMSI in a reinforcement learning framework. The state is given by Innerese
for a problem and goal, the actions are macro-operators from the Self-Aware Problem Solver’s
actions, and the reward is the number of primitive operators needed to reach a solution, with fewer
steps counting as more desirable.
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3.1 Architecture

PMSI consists of a hierarchy of deep Q-networks, or DQNs (Mnih et al., 2015), that work together
to suggest insightful actions the Self-Aware Problem Solver should use. By hierarchy, we mean
that there is a stack of DQNs where the first DQN initially has control, but it can hand off control
to a DQN below it, and so on. A DQN is a neural network that outputs Q-value estimates for each
action that an agent can take; a Q-value is a score for an action given the current state of a problem.

All of PMSI’s DQNs have an architecture that takes Innerese for the current state of a problem
and goal as input. However, each DQN returns Q-values for a different set of actions, that is, K-
lines, as they are a realization of Minsky’s idea of the same name (1980). DQNs in PMSI are
arranged by increasingly smaller hypothesis spaces that are made of increasingly larger operator
chunks. Interactions between the DQNs are regulated by modules called B-brains, which are also
a realization of Minsky’s idea of the same name (1980). DQNs with the largest and fewest K-lines
are tried first, and a B-brain may cause a coarse DQN to yield control to a finer DQN if none
of the chunked suggestions seem helpful. During training, DQNs with existing K-lines spark the
development of new DQNs with more aggregated K-lines, as discussed in Section 3.2.1.

3.1.1 K-line Realization

For our purposes, K-lines are a way to reduce the hypothesis space of a problem-solving system in
a way that generalizes. If a system has access to a set of 20 operators, but it can learn that only
three different operator sequences from that set can solve all of its training problems, then it can
essentially reduce its hypothesis space to three.

Per this idea, our definition of a K-line in the context of PMSI is a learned macro-operator that
captures some amount of general applicability. The fundamental idea of macro-operators is not
new, but we choose to brand these as K-lines because of how they are learned and used. K-lines are
learned by combining other K-lines and are used with perceptual guidance from DQNs. A search
through the K-lines (and corresponding DQNs) can find Level Bands of abstraction.

3.1.2 DQN Design

Each DQN in PMSI is made of an encoder and a Q-value approximator. The encoder takes in a
sequence of Innerese for the problem and goal, and it produces a feature vector encoding. The
Q-value approximator then uses this encoding to estimate Q-values for the DQN’s K-lines.

Before entering the neural portion of the encoder, a sequence of Innerese expressions is turned
into tokens according to the Tokenizer module in Table 1. We use a dictionary of pre-trained word
embeddings to turn these tokens into vectors. The dictionary is also used in the Tokenizer itself.4

The Tokenizer treats special Innerese characters such as “<” as words and phrase structure hyphens
as spaces between words. The Tokenizer essentially translates Innerese to tokens word-for-word,
unless an Innerese word is not in our dictionary of embeddings. If it is not, then the module assumes
that the word is a special entity that deserves to be analyzed at the character level and treats its
component characters as words (an example of such a special word that will not be found in our

4. Pennington et al. (2014) provide an explanation of word embeddings.

102



THE PARTIAL MENTAL STATE INDUCER

Table 1. The Tokenizer module, which converts Innerese to tokens.

1: tokens← []
2: for Innerese expression in Innerese sequence do
3: for word in Innerese expression do
4: if word in embeddings then
5: tokens.append(word)
6: else
7: for character in word do
8: tokens.append(character)
9: tokens.append(special expression ending character)

10: return tokens

embeddings is a math equation). We assume that our set of embeddings contains every character
and many English words, as Innerese uses English words to represent meanings.

The tokens are then translated into embeddings by the embedding layer, which uses 50-dimensional
pre-trained GloVe embeddings (Pennington et al., 2014). Because Innerese is hierarchically struc-
tured, we hope to capture hierarchical dependencies by feeding the sequence of embeddings into a
bidirectional Long Short-Term Memory Cell, or LSTM (Hochreiter & Schmidhuber, 1997). A bidi-
rectional LSTM takes input in the forward direction, then the backward direction, and concatenates
the outputs from both directions. We then apply a Max Pool across all of the hidden states produced
by the LSTM to get our vector encoding. It has been shown that pooling over all LSTM hidden
states can construct a better encoding of a problem from natural language than the final hidden state
for the purpose of answer selection (Lei et al., 2016). An example of the pooling procedure is

h0 = [

LSTM forward︷ ︸︸ ︷
1 2 0 −4

LSTM backward︷ ︸︸ ︷
5 2 6 −1]

h1 = [5 9 1 6 −3 0 −5 0]

h2 = [0 7 4 −1 −1 3 6 4]

Max Pool across this dimension

=⇒ enc = [5 9 4 6 5 3 6 4]

(6)

where hi are hidden states of the bidirectional LSTM and enc is the resulting encoding.
The red component in Figure 1 illustrates a neural encoder. This encoder is applied once on the

Innerese sequence for the problem and again (with the same parameters) on the Innerese sequence
for the goal. The final encoding is the concatenation of these two encodings, which is then passed
into two fully connected layers with a ReLU activation (Nair & Hinton, 2010) in between. These
layers serve to take the encoding for the state and estimate a Q-value for each of the DQN’s K-lines,
as shown by the blue component in Figure 1.
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Figure 1. The PMSI architecture, which consists of a stack of DQNs. Each has an encoder (red), Q-value
approximator (blue), and B-brain (green). The DQNs work together to suggest K-lines to the Self-Aware
Problem Solver. (The Innerese parser and Tokenizer are not shown.)

3.1.3 DQN Hierarchy, B-brain Realization, and Finding a Level Band

PSMI is composed of several DQNs that are arranged from largest hypothesis space (where K-lines
correspond to single operators) to smallest hypothesis space (where there are fewer K-lines that are
composed of substantially chunked action sequences). Initially, PMSI will use the top-level DQN
(smallest hypothesis space) to suggest K-lines to the Self-Aware Problem Solver, but a B-brain may
choose to switch DQNs. Each one has an associated B-brain, which is designed to detect if that
DQN gets stuck and thus recover the problem-solving process. Our implementation of a B-brain
can help in two ways:

1. B-brain Prevent
When a DQN suggests a particular K-line, the B-brain remembers that K-line until that DQN’s
Innerese encoding changes. If the DQN tries to suggest the same K-line before this happens,
the B-brain will force the DQN to select the K-line with the highest Q-value that has not been
tried since the last time the encoding changed (assuming there is one). The B-brain does this
because it is a mistake for the DQN to suggest the same K-lines over and over if they do not
alter the perceived state of the problem. Because the B-brain looks at the DQN’s encoding of
the problem instead of the actual Innerese, the idea should still work as a good heuristic if the
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DQN is made recurrent to better handle partially observable Markov decision processes, as we
plan to explore in our future work.

2. B-brain Yield
Because the top-level DQNs use macro-operators and do not consider the component operators
individually, it is possible that they will encounter a problem that they cannot solve, but that
a lower DQN can solve. For example, if the Self-Aware Problem Solver has access to several
actions for robot planning, such as “pick” and “place”, but a top-level DQN has a hypothesis
space that chunks “pick, place” as a sequence, then it cannot actually command the robot to pick
anything up and will need to hand off control to a lower-level DQN. This is a particularly bad
scenario, and we expect these hand-offs to be rare in practice if the K-lines are chunked in an
insightful way. Regardless, this issue is addressed by the B-brain. Each B-brain has a manually
specified hyperparameter, n, such that if its DQN suggests enough K-lines to add up to n or
more single operators, and the problem is still not solved, the B-brain will give up control to the
DQN and its B-brain at the next lower level. B-brain Yield can be seen as a way to recover from
capture errors (Reason, 1990).

The overall goal of the B-brains is to find what Minsky referred to as Level Bands (1980). The
Level Band is an area of the mind that contains the appropriate mental agents for a given problem.
If PMSI uses a DQN that has a hypothesis space that is too large, then it risks entering a search
space that is not feasible for the amount of training that the DQN has had. A DQN in this region
may have overfit on the training set and “hallucinate” about its training problems, entering infinite
loops of action choices on test problems. If PMSI uses a DQN that has a hypothesis space that is
too small, then it risks causing capture errors. Figure 1 shows the B-brain and DQN arrangement.

3.2 Learning Procedure

PMSI learns in several stages and the number is adjustable via a user-controlled hyperparameter
s. The system starts with a single DQN, with Q-value outputs that correspond to the Self-Aware
Problem Solver’s operators. PMSI is connected to the Self-Aware Problem Solver and given a
few training problems. This system iterates through several epochs of these training problems,
treating each one as a reinforcement learning task that can be solved with a path of K-lines. During
training, it turns off its B-brains (to not disturb Q-value learning) and uses only the top-level DQN
for action selection. Once the DQN from a given stage has completed training, PMSI switches into
an evaluation mode that enables it to use its full problem-solving capabilities and runs a module
called the K-line Compiler.5 The K-line Compiler can use PMSI’s solutions to the training problems
to insightfully chunk actions into K-lines that represent a smaller hypothesis space than that of the
current top-level DQN. A new one is initialized with this hypothesis space, which is then added to
the stack as the new top-level DQN. The next stage of learning then commences to train the new
network, and so on.

During training, PMSI cannot use B-brains to find a good Level Band and prevent itself from
getting stuck in capture errors. To compensate, there is a user-specified hyperparameter, f , such that,

5. In our experiments, we found that it was not too damaging to simplify this procedure and just give the compiler
access to the top-level DQN’s capabilities.
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if a DQN takes more than f steps and it still cannot solve a problem, then the problem is removed
from the training set while that DQN is learning and corresponding backpropagation updates to the
network are undone.

To learn a good policy during the training mode, a DQN is given a probability of picking a
random action that starts out as the hyperparameter εstart and converges to εend. The probability is

εend + (εstart − εend)e−εcurrent/εdecay , (7)

where εcurrent is the current epoch and εdecay is a parameter that specifies the speed of decay. If a
random action is not taken, the K-line corresponding to the DQN’s highest Q-value is taken.

Our optimization procedure uses a target network as well as a policy network, as this has been
shown to stabilize the learning process (Mnih et al., 2015). The target network has an associated
hyperparameter that specifies how often it should be updated with the weights of the policy network.
The loss L is calculated as

δ = Qp(s, a)− (r − γmax
a′

Qt(s′, a′)) (8)

L(δ) =

{
1
2δ

2 for |δ| ≤ 1,

|δ| − 1
2 otherwise.

(9)

L =
1

|B|
∑

(s,a,s′,r)∈B

L(δ) (10)

In Expression 8, Qp is the Q-value estimate function from our policy network, Qt is the Q-value
estimate function from our target network, s is the state before taking action a, r is the reward from
taking action a, γ is the discount factor, and s′ is the state after taking action a. The maximization
produces the Q-value estimate for the next step, assuming that the agent will take the best action,
a′. δ is known as the temporal difference error and, per the Bellman equation for reinforcement
learning, its magnitude should be minimized (Mnih et al., 2015). In our case, the reward, r, is −lc
if the K-line did not solve the problem and p − lc if the K-line did solve the problem, where c and
p are positive hyperparameters and l is the number of operators comprising the K-line. This reward
function encourages PMSI to use the fewest operators to solve a problem.

In Expression 9, L(δ) is the Huber (1964) loss, which can minimize the magnitude of the tem-
poral difference error while keeping large values from having a huge impact on the optimization.
Expression 10 denotes the final loss that we hope to minimize, where B represents a batch of tran-
sitions (state, action, next state, reward) that are sampled from memory replay. We use memory
replay (which stores a history of transitions that the DQN generates) because it can stabilize the
learning procedure (Mnih et al., 2015). Finally, we use the Adam optimizer (Kingma & Ba, 2015)
to minimize L.

Before we conclude this section, we would like to emphasize that a small number of training
examples does not mean that PMSI takes a short amount of time to train. However, compared to
other neural net systems, PMSI is fairly fast. Our experiments used a laptop GPU, on which it took
roughly an hour to train on individual domains and several hours to train on all domains at once.
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Table 2. The K-line Compiler module, which creates a reduced hypothesis space in a helpful way.

1: subpaths← getCommonSubpaths(solution paths)
2: subpaths← filterSubpaths(subpaths)
3: subpaths← topEDiverseSubpaths(subpaths)
4: new K-lines← subpaths ∪ existing K-lines
5: new K-lines← filterNewKlines(new K-lines)
6: return new K-lines

3.2.1 K-line Compiler

The goal of the K-line Compiler is to take a list of PMSI’s solutions to the training problems at
the end of a stage and use them to generate the K-lines for the next stage’s top-level DQN. The
compiler should create a further reduction in hypothesis space size (or at least a space of the same
dimensionality) compared to that of the previous top-level DQN and produce K-lines that have
general applicability. Table 2 provides pseudocode for the K-line Compiler module, which has five
main subroutines:

• solution paths is a list of PMSI’s solutions (as a sequence of single operators) for each of the
training problems;
• getCommonSubpaths returns a set of longest shared operator sequences, excluding any that are

the same as already known K-lines, from all possible path pairings (with the exception of the
same path paired with itself);
• filterSubpaths removes subpaths that are superpaths of other subpaths in the collection. This

routine helps PMSI to avoid creating unnecessarily long K-lines;
• topEDiverseSubpaths returns the top e (or less, out of necessity) most frequently occurring

subpaths, where frequency is measured as the number of solutions in which the subpath occurs
and e is a hyperparameter. It skips over subpaths if they do not contain at least one of the
current top-level DQN’s K-lines as a strict subsequence, such that the K-line is not contained in
an already selected subpath. By selecting for subpaths that are very frequent (and sufficiently
diverse) across many solutions, it should capture those that are general enough to be useful;
• new K-lines is momentarily the union of the current top-level DQN’s K-lines with the output

of topEDiverseSubpaths, which is then filtered such that K-lines that are subsequences of other
K-lines are removed.

Because all of the new K-lines from topEDiverseSubpaths each have at least one different K-line
from the current top-level DQN as a strict subsequence, filterNewKlines will always return a number
of K-lines which is less than or equal to the number in the current top-level DQN. This satisfies our
requirement that the DQNs in PMSI be arranged from the least chunked and largest hypothesis
space to the most chunked and smallest one.

Also note that the K-line compiler can use human-provided solutions to generate another DQN,
instead of relying on PMSI’s solutions. Human solutions could be better than PMSI’s at some stages
and so could enhance the learning procedure.
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4. Experiments and Discussion

In this section, we report tests of PMSI in three different problem domains. We present the results
of training on each domain individually (with only the relevant operators) and also training on all
domains at once (with all of the operators). These tests show that our unique Innerese-interpreting
DQN architecture is successful in the three domains and also that the hierarchical DQN arrangement
in PMSI is useful, because a single DQN, with Q-values corresponding to the operators, fails in our
data-starved training environment. We use the lowest-level full hypothesis space DQN of PMSI as
the comparison DQN; we refer to this as the single DQN.

For each of the domains, we constructed 50 problems, all of which are solvable by some com-
bination of operators from the Self-Aware Problem Solver. Each group was randomly divided into
a training, development, and test set of 20, 15, and 15 problems, respectively. The tests use many
of the same hyperparameters,6 although some hyperparameters were tuned on the development set.
The number of learning stages, s, is tuned, along with the K-line compile cutoff, e, for each stage.
The values for each B-brain yield threshold, n, are also tuned. We discuss the necessity of tuning
these parameters in Section 4.5.

The development set is also used to determine if some amount of random sampling via a Soft-
max over Q-value outputs is necessary for agents to solve unseen problems. Neural agents may
get stuck in loops where they keep suggesting the same action(s); this issue may be caused by a
lack of training data, and we show that this is a serious problem for the single DQN. One way to
prevent loops is by choosing actions according to a sample from a Softmax (Bishop, 2006) over the
Q-values, instead of always taking the action with the highest Q-value (in PMSI B-brain Prevent
may limit the action candidates, but the same idea holds). The Softmax is

P (aj) =
eaj∑K
k=1 e

ak
for j = 1, ...,K, (11)

where there are K Q-values and aj is a Q-value. Note that, although we perform some tuning of
hyperparameters, we do not spend significant effort to give PMSI small percentage improvements.
In all of our experiments, both PMSI and the single DQN achieve near perfect performance on the
training set, so it is indeed the case that we give each of them an environment in which they learn
well; the single DQN just cannot learn a policy that generalizes.

The remainder of the section analyzes and discusses PMSI’s performance, with our numerical
results shown in Figure 2 and Table 3. The latter reports the fraction of development set problems
that PSMI and the single DQN failed to solve in each domain (without using Softmax sampling), as
well as when presented with all four domains in one training run. The table also displays the mean
and variance of the solution length on the test set, with systems that use Softmax sampling added
as deemed necessary from the development set. For more information, we provide a GitHub link
that has all of the training, testing, and development problems and goals, as well as the hypothesis
spaces that our test PMSIs learn.7

6. Unless otherwise specified, the hyperparameters were: Bidirectional LSTM hidden layer size = 20, Q-value approx-
imator hidden layer size = 20, γ = 0.99, c = 0.1, p = 0.6, εstart = 0.9, εend = 0.1, εdecay = 30, batch size = 20,
memory replay size = 300, target net update frequency = every 14 problems solved, f = 1000, epochs = 30.

7. See https://github.com/TristanThrush/pmsi_problems.
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4.1 Natural Language Queries

In our natural language query domain, a goal has the form “verify that x is before y”, and a problem
is in the form of a story in English, as in the example

Adam got his first ticket because he was speeding. He had lunch after he got his first ticket.

Verify that “Adam was speeding” is before “Adam had lunch.”
(12)

Problems and goals in the domain are converted into Innerese by the START parser (Katz, 1997).
This experiment includes six operators:

• years to after
• after to before
• because to before
• in-back-of to in-front-of
• in-front-of to before
• chain “before” relations to verify the goal

The “g to h” actions insert entailed h relations from g relations. For instance, years to after means
that, if the problem has “WW1 ended in 1918” and “WW2 ended in 1945”, then “WW2 ended after
WW1 ended” would be added.

We chose s = 4 (meaning that four DQNs were constructed), with e (K-line compile threshold)
values of 3, 2, and 1. Furthermore, PMSI did not need Softmax sampling, as it could solve all of
the development problems without becoming stuck. This contrasts with the single full-hypothesis-
space DQN, which could not solve five out of 15 of the development problems without sampling.
Consequently, we used the single DQN with Softmax sampling on the test set to give it better per-
formance. We also found that on the development set PMSI only needed the top DQN to effectively
solve every problem, so this DQN’s B-brain yield threshold, n, was set to∞.

The K-lines of this PMSI were chunked by the K-line Compiler as action sequences that were
generally applicable. In the top DQN, all of the operators dealing with the spatial interpretation
of “before” were chunked into one K-line (with Action 6 at the end), and all of the other actions
were chunked into two K-lines (also with Action 6 at the end). The result was that this DQN could
solve any problem in the test set with either one or two K-lines. In this domain, we observed a
very chunked hypothesis space to be extremely useful on its own, without much, or any, need for
the B-brain actions. This is likely because actions cannot set the problem back; if incorrect actions
are chosen, they just do nothing, or generate “before”, “in-front-of”, or “after” relations that are
irrelevant for satisfying the specific goal.

4.2 Equation Solving

In the equation-solving domain, a goal takes the form of “solve the equation(s)”, and a problem
has the form of English statements that designate the equation(s) and variable of interest. All of
the problems involve first or second order polynomial equations. This is the same problem domain
from the worked example in Section 2.4. We again found that on the development set PMSI needed
only the top DQN to effectively solve every problem, so this DQN’s B-brain yield threshold, n, was
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(a) (b) (c)

Figure 2. The length of solutions found by PMSI and by the single on each of 15 test problems, for the
three domains. Plots (a), (b), and (c) correspond to language queries, equation solving, and robot planning,
respectively. For brevity, we have not included plots for training the systems on all domains at once.

set to∞. In this case, we set s = 2, with an e value of 3. PMSI did not need Softmax sampling,
although our single DQN still did; without sampling it failed to solve six out of 15 problems on the
development set.

PMSI’s K-lines were generally applicable in this scenario as well. In the top DQN, one K-
line contained most of the generic equation-simplifying operators, another handled the specifics
of solving simplified first order equations, and another handled the specifics of solving simplified
second order equations. In this domain, actions also cannot set the problem back; each action will
either simplify a problem more or do nothing. In a way, this domain is easier than the natural
language domain, because an action here cannot produce a useless addition to the problem. We
therefore expected both a very chunked hypothesis space and B-brain Prevent to be useful, which
is what we observed.

4.3 Robot Planning

Our third experiment examined a robot planning domain, in which a high-level simulator returns
object locations without the need for actual perception modules. A goal has the form of “ensure
that x is on top of y”, and a problem takes the form of the robot’s view of the world, which includes
the location of objects relative to each other. We used START to translate the natural form of goals
(English) into Innerese. For the problems, we had to program another parser that translates a robot’s
simulated perception outputs into Innerese. This experiment used four operators:

• attempt to place x on y
• unstack item that is above x, to reach x
• unstack item that is above y, to make room for x
• update Innerese representation of the world from simulated perception
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Table 3. Empirical results for PMSI vs. a single DQN that encodes the entire hypothesis space. The single
DQN fails to solve a greater fraction of development set problems than PMSI and, for the tasks it solves, has
substantially higher means and variances for lengths of test set solutions. ‘Random’ denotes an agent that has
access to all of the operators in a single DQN, but that chooses them at random from a uniform distribution.

Language
Queries

Equation
Solving

Robot
Planning

All Domains
at Once

No. Unsolved Dev. Set PMSI 0/15 0/15 1/15 6/45
Problems (no sampling) DQN 5/15 6/15 7/15 27/45

Mean of Solution Length
PMSI 4.80 4.93 7.20 28.32
DQN 13.67 25.13 14.93 73.74
Random 15.73 24.07 36.20 67.44

Variance of Solution Length
PMSI 13.9 5.46 30.63 8571.55
DQN 22.69 228.85 103.87 22507.68
Random 213.33 180.80 5222.09 6393.15

The effects of these operators are conditional. For instance, if there is an object above x, the
place operator fails. If there is an object above y and y can only hold one object, place counter-
productively moves x on top of that object; x will then need to be unstacked. place also reports
whether the goal is met. The unstacking operations only unstack one item at a time, so several such
operations may be necessary.

Note that this domain differs from those in the other experiments because the hypothesis spaces
of DQNs near the top level of PMSI may be incapable of solving certain problems (Action 1 can be
destructive), so the B-brain Yield capability may be essential.

In this case, we set s = 4, with e values of 3, 2, and 1. We decided to provide Softmax sampling
for tests of PMSI, because it got stuck on one of the 15 development problems. Our single full-
hypothesis-space DQN was still much worse; it failed to solve seven out of 15 problems in the
development set, so we used Softmax sampling on tests for this agent as well. This time, we set
PMSI’s B-brain yield thresholds to∞, 20, 10, and 1 from the lowest to top DQN.

In general, the generated K-lines were chunks of many unstacking operations, sometimes with
the place action as the final move. This makes sense, because it is important for PMSI to clear
the appropriate surfaces, before trying to move the relevant object to the relevant place. place can
otherwise set the problem back by moving an object to an undesired location.

4.4 Multiple Domains at Once

In the tests above, we only gave PMSI operators relevant to the domain that in which we tested it.
However, in many situations, nobody tells a human which subset of their many operators is relevant
to solving a domain of problems. The notion of a domain is a bit fuzzy anyway; for example,
we could have separated our mathematical equation domain into two domains, one for first-order
polynomials and another for second-order polynomials.
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For this reason, we ran another experiment that placed the system under more stress. We
trained PMSI on all three domains at once. In this case, we made s = 6, e = 9, 6, 4, 2, 1 and
n = ∞, 1, 1, 1, 1, 60 (where the e and n values are from lowest to top DQN). We also changed the
memory replay size to 900, batch size to 60, both hidden layer parameters to 60, and f to 150. Ad-
ditionally, we added Softmax sampling to the four lowest DQNs (including the single lowest DQN
used for comparison). The result of this training was that the learned K-lines mostly contained
actions for one of the domains and were generally applicable to many problems in that domain.

Even though the multi-domain PMSI is still an improvement over the single DQN, it is doubtful
that it offers a good model for all human intuition. Early in the training, the system tried to perform
actions such as picking up equations and combining like terms of physical objects. It seems strange
for a human to even think about trying such actions as they learn, which indicates that a better
model for human intuition might include commonsense reasoning and clustering at a higher level
than PMSI. These high-level procedures would try to extract subsets of operators that are helpful
for specific domains. Then, several PMSIs could be trained with domain-specific operators, just as
in our first three experiments.

4.5 Tuning the Partial Mental State Parameters

We found that our system can be sensitive to the tuning of s, e, and n. This is expected, because
these parameters play a large role in the partial mental states that are developed and how they are
used. If PMSI constructs too many DQNs, then a Level Band would take a while to find, and if it
constructs too few DQNs, then a good Level Band might not be found at all. If e is not suitable,
then a good Level Band might not be constructed regardless of the number of DQNs (e can adjust
the size and chunking of DQN hypothesis spaces). These parameters are especially important in
domains where falling back on multiple DQNs is a necessity, as in robot planning.

To examine PMSI’s sensitivity to these parameter values, we ran another study in which we
varied the setting for each while holding the other two constant. We used Softmax sampling in all
of the tests to reduce the effects of an occasional outlier problem that cannot be solved otherwise.
In a few cases, parameters depend on each other, so fixing two was not possible. Table 4 presents
development set results in each of the individual domains. The table shows that perturbations in the
partial mental state parameters can lead to considerable performance differences. PSMI’s score in
robot planning can drop almost to that of a random agent.

5. Intellectual Precursors to PMSI
As we have asserted throughout this paper, PMSI models how a person learns and uses intuition
when engaged in problem solving within a domain. We have already discussed our primary sources
of theoretical inspiration (K-lines and Near-Miss Learning), but these concepts are part of a partic-
ular school of thought that is tied very closely into the AI and cognitive systems literature. In this
section, we provide additional theoretical motivation for PMSI from a cognitive and learning psy-
chology background. We suggest that it can be seen, in part, as an integration of the Gestalt notion
of restructuring with problem-space search, which is a more typical theory of problem solving in
the information-processing community. We also examine motivation for PMSI from a classic study
of a human that learns from experience and work on a general theory of human problem solving.
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Table 4. Development set solution length averages and variances (in number of single operators) for PMSI
with different parameter choices, with n and e values arranged from lowest to highest DQN.

Language Queries Equation Solving Robot Planning

s = 6, e = 5, 4, 3, 2, 1
Avg: 8.27
Var: 36.93
(Top n =∞)

Avg: 10.8
Var: 22.36
(Top n =∞)

Avg: 32.00
Var: 1435.27
(n =∞, 20, 10, 1, 1, 1)

s = 4, e = 5, 4, 3
Avg: 11.8
Var: 173.16
(Top n =∞)

Avg: 8.13
Var: 29.38
(Top n =∞)

Avg: 27.67
Var: 1224.02
(n =∞, 20, 10, 1)

s = 4, e = 3, 2, 1
Avg: 6.6
Var: 10.84
(Top n =∞)

Avg: 9.47
Var: 14.05
(Top n =∞)

Avg: 5.27
Var: 7.20
(n =∞, 20, 10, 1)

s = 4, e = 3, 2, 1
Avg: 7.53
Var: 35.92
(n =∞, 12, 8, 4)

Avg: 9.73
Var: 40.40
(n =∞, 12, 8, 4)

Avg: 6.54
Var: 18.32
(n =∞, 12, 8, 4)

5.1 Elements of Human Problem solving

Newell, Shaw, and Simon’s (1958) paper on a theory of human problem solving reviews several
concepts from cognitive psychology that have influenced PMSI. They postulate that problem solving
involves several memories that contain symbolized information, that there are primitive operators
which act on these memories, and that there are rules for combining such processes. Their paper
described a computer system, the Logic Theorist, that could prove theorems in symbolic logic.
The authors argued that the Logic Theorist exhibited several characteristics of human cognition,
including preparatory set, directional set, utilization of hints, heuristics (or “insight”) to reduce the
search space, and hierarchies of process.

However, the authors indicate that the Logic Theorist does not show concept formation because
it is mainly a performance system; the system could not learn how to perceive similarities in classes
of problems. PMSI extends the Logic Theorist in this way, as there is some evidence that it can
learn new concepts. We have seen in our experiments that PMSI constructs K-lines that can tackle
general categories of problems (e.g., that can handle first-order and second-order polynomials).
Furthermore, when trained on multiple domains, PMSI mostly creates K-lines that only contain
actions within the same domain.

5.2 Restructuring

According to Ohlsson (1984a), restructuring is the process of changing a mental representation of
a problem as a way to solve it. This theory is relevant to PMSI because Gestalt psychology views
restructuring as a way to provide immediate intuition during problem solving. His account includes
several principles that, together, constiture the (somewhat vaguely worded) theory of restructuring.
These principles include:
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1. Every situation contains important structural relations.
2. Problems are situations with structural gaps between them.
3. Restructuring closes structural gaps in a mental representation of a problem.
4. Restructuring is involuntary and just “happens”, often suddenly and dramatically.
5. A restructuring event always makes progress toward a solution.
6. A restructuring event becomes more likely after a problem and goal have been analyzed more

deeply and after several unsuccessful solution attempts.
7. Restructuring leads to perceiving a problem differently.

Some of these ideas appear to be too strongly stated. Among other criticisms, Ohlsson (1984a) noted
that there is evidence to the contrary of Principle 5. Additionally, empirical tests of restructuring
are limited because there is no known way to reliably trigger restructurings in test subjects, without
also driving the solution in a specific direction.

Nevertheless, it is evident that restructuring does happen to some extent in human problem
solving, and it is paramount in some cases. This idea is illustrated well with a geometry example that
Ohlsson (1984b) provides. A person may discover that a geometry problem involving complicated
overlapping shapes can be broken into simpler shapes, such as triangles. This realization might
completely change the person’s perception of the problem; the person may now search for a solution
in a space involving theorems that are related to triangles instead of complicated shapes. Another
restructuring event may build off the first one, and enable the person to piece together the triangles
to form squares, so they no longer need triangle theorems.

The geometry example highlights an important point: humans use hybrid search and restruc-
turing. People can search through a typical problem space using operators that change a problem’s
state, but they can also search through a description space (a space of restructurings), which changes
their perception and applicable actions, but not a problem’s state (Ohlsson, 1984b). The decision
to trade off between search in the problem space and the description space is supposedly guided by
meta heuristics in a way similar to the principles presented above.

In PMSI, the meta heuristics that provoke restructurings are B-brains. It is important to note
that it is difficult to interpret restructuring as simply the creation and utilization of macro-operators
alone (Ohlsson, 1984b). However, B-brains actually trigger the switching of neural networks that
have been trained with different actions (albeit all actions are chunks from some basic set of opera-
tors), and therefore each have distinct perceptions of a problem. Additionally, B-brains can trigger
the utilization of neural networks that break macro-operators into their component parts at many
different levels of granularity.

5.3 Learning by Doing

Anzai and Simon (1979) present a careful analysis of mechanisms involved in a test subject’s ability
to learn how to improve at the Tower of Hanoi problem, which was novel to the subject before the
testing started. Even though they study one subject and one task, the authors discover processes that
they assert are generally useful for learning to solve problems.

There are four successive problem-solving episodes that the subject undergoes. The authors
make these observations, some of which have analogs in PMSI:
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1. Even in the first episode, the subject’s initial behavior was not random; she did not form goals,
but she knew to avoid action loops and successive movements of the same disk.

2. The subject clearly had a different strategy in the second episode. She guided herself by explic-
itly mentioning intermediate goals and avoided making mistakes from the first episode.

3. In the third episode, the subject formulated recursive subgoals (goals that are triggered as a way
to satisfy larger goals) and began chunking moves together.

4. In the fourth episode, the subject began speaking of sets of disks and moving chunks of them.
It was evident that her perception of the problem had changed to view collections of disks as
pyramid-like units, instead of individually.

The use of Innerese is an analog to part of the subject’s behavior, because both PMSI and the
subject can, to some extent, explain themselves in natural language. Additionally, PMSI does not
use random search either, even if it has not been trained. B-brain Prevent, although simple, can
provide task-independent deliberation to prevent wasteful loops.

Finally, PMSI shares part of the subject’s ability to chunk actions and build different strategies
from experience. It seems that, at least in the fourth episode, the subject was able to learn an obvious
perceptual shift: a restructuring of the problem. In the previous section, we mentioned that PMSI
can restructure by shifting to lower DQNs. However, PMSI can also learn new restructurings by
creating and training new DQNs with different hypothesis spaces.

6. Conclusion and Contributions
Our paper shows that the development and use of intuition in human problem solving from lim-
ited training data can be modeled by a fusion of high-level problem-solving theories and low-level
pattern-matching techniques. Humans use inexplicable hunches to help solve problems in ways that
can beat extensive searches. Although there is more work to be done, particularly on implementing
commonsense procedures to help PMSI separate distinct domains before it starts training, PMSI can
learn human-like intuition for general-purpose problem solving. Our model for a language of human
thought and our realization of K-line Theory are important to PMSI’s success in our three experi-
mental domains (and combinations of them); they enable PMSI to learn like a human in a training
environment that is too data starved for a typical DQN to work. Not only is PMSI quantifiably
successful, but it also exhibits several human behaviors observed in cognitive psychology.
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