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Abstract
In this essay, I consider the distinction between theories and models in research on cognitive sys-
tems. I start by reviewing some classic examples of theories from the history of science, and then
discuss four accounts of increasing specificity that focus on intelligent behavior. In each case, I
present the framework’s postulates concerning cognitive structures, its assumptions about mental
processing, and the form of models that connect it to particular domains. After this, I examine some
implications for papers on cognitive systems that follow from the difference between theories and
models, along with broader issues about the sources of explanatory power.

1. The Science of Cognitive Systems

The field of cognitive systems aims to understand the nature of intelligence and to reproduce it in
computational artifacts. By focusing on high-level mental abilities like problem solving, reasoning,
and language processing, it shares the goals and style of early artificial intelligence (Langley, 2012).
There are many different responses to this challenge, but researchers share a common interest about
those facets of the human mind that make us unique in the animal kingdom. However, our pursuit
suffers from a problem that has plagued AI since its inception over 60 years ago. If we hope to
claim status as a scientific discipline, then we must develop a body of theory, but cognitive systems
is an example of what Simon (1969) has called a science of the artificial. In such fields, researchers
study artifacts they construct, in this case programs that run on digital computers.

What form should theoretical accounts take in our discipline? They should not be the ‘theories’
associated with algorithmic complexity and other formal branches of computer science, as such
results are actually contributions to mathematics. Scientific theories cannot be proved correct; they
make empirical claims that can be refuted by observations. Some readers will be tempted to view
computer programs themselves as theories, since they may not behave as intended, but this stance
falls to a simple counterargument. Suppose a graduate student develops an innovative cognitive
system that exhibits some challenging ability and receives a PhD for the work. Two years later,
another student reimplements the core ideas in a different programming language and submits a
dissertation that describes it. Most would agree that the second person does not deserve a doctorate
because the contribution was not the code itself, but rather the more abstract insights it instantiates.
The program serves mainly to demonstrate that these ideas actually support the target abilities.
When I refer to ‘theory’ in cognitive systems, I am talking about this abstract level.
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In this essay, I examine more fully the distinction between theories and the models that are stated
within them. I start by reviewing some classic theories and associated models from the history of
science. After this, I consider four theoretical frameworks from the cognitive systems paradigm,
some of them dating back to the earliest days of the AI revolution. Next I discuss implications
of this analysis for research papers, which should state problems, describe theories and associated
models, and present evidence for them. Finally, I examine broader issues that arise when developing
accounts of complex phenomena, including those studied in the field of cognitive systems.

2. Theories and Models in Science
The conventional wisdom states that science examines relations between theory and data. In this
account, a theory leads to predictions that we compare to observations, which in turn let us evaluate
the theory’s adequacy and suggest ways to improve it. This closed-loop characterization of science
is alluring but incorrect because theories, by themselves, are not operational or testable. Their
abstract specification offers many advantages, but it means that, by themselves, they cannot produce
predictions or explain observations without additional assumptions. We often refer to a collection
of such assumptions as a model.

Some examples from the history of science will clarify this point. Newell and Simon (1976)
reviewed a number of important theories, although they used the phrase laws of qualitative structure.
One is Dalton’s (1808) atomic theory, which states that macroscopic objects are composed of many
tiny molecules, each of which contains one or more atoms of elements that cannot be decomposed
further. Chemical reactions transform molecules of some types into ones of different types by
rearranging their elements. Another is the germ theory (Pasteur, 1880), which says that diseases are
caused by microscopic organisms that invade and attack the body, and which are spread from one
host to another. A third is the geological theory of plate tectonics (Hess, 1962), which claims that
the Earth’s surface comprises a set of plates that move very slowly under, over, and against each
other, leading to mountains, trenches, and other formations.

Note that each of these theories is quite abstract, in that it describes generic types of entities
and qualitative relations among them. The atomic theory, at this level, cannot explain particular
substances like water or ammonia. This requires that one adopt more specific assumptions about
their constituent elements and their numbers. In the same way, the germ theory cannot, on its
own, predict which microorganisms lead to consumption or measles, or how these diseases are
communicated. This requires additional statements that particular species are responsible and that
they are transferred, say, by contact, air, or water. Similarly, the idea of plate tectonics does not
suffice to explain particular landforms or specific continental motions. For this, one needs postulates
about the size and location of plates, as well as the direction and rate of movement. Such modeling
assumptions must bridge the gap from abstract theory to testable predictions.

Many scientific theories are qualitative in character, but the same points hold for quantitative
accounts like Newton’s theory of gravitation. This revolves around two key postulates. The first
is that an object will continue to move in a straight line, at a fixed velocity, unless some force is
applied. The second is that the gravitational force between two objects is directly proportional to
the product of their masses and inversely proportional to the square of their distance. The actual
motion of any object is the resultant of these two factors. However, despite its explicit numeric
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equations, we cannot use these relations alone to anticipate the orbits of the moon or planets. For
this purpose, we must introduce assumptions about the masses, positions, and velocities of the
bodies whose trajectories that we want to predict. The standard description of the solar system is a
model that specifies these quantities for the Sun, the planets, and their satellites. Such models are
stated within a theory, but they extend it in ways that make it testable and refutable.

Note that each of these theories includes statements about structures, which specify a set of
entities and relations among them, and processes, which operate to maintain or alter them. The
atomic doctrine states that molecules are made up of elements and that reactions rearrange elements
to produce new ones. The germ theory assumes that microscopic organisms reside in some human
bodies and that disease spreads by transferring them to other bodies, where they reproduce. Plate
tectonics postulates that the Earth’s surface is composed of large, interconnected segments, which
shift over time to form mountain chains and trenches. We will see that a similar division between
structures and processes arises in theories of intelligent behavior.

3. Theories and Models in Cognitive Systems
Now that I have introduced the distinction between theories and models in science, I can clarify its
relevance to cognitive systems research by analyzing a series of examples. In each case, I review
the core postulates of a familiar theory, first discussing its mental structures and then the processes
that operate over them. The section also provides instances of models stated within each theoretical
framework. I start with an abstract theory of intelligence and present more specific ones that retain
their predecessors’ assumptions and introduce new constraints.

3.1 Physical Symbol Systems

Artificial intelligence and cognitive systems are concerned with the structures and processes that
enable intelligent behavior. Research on these topics has relied on list processing, a distinctive
approach to computing that has played a central role in the design and construction of AI systems.
In revisiting their early contributions to the field, Newell and Simon (1976) recast their ideas in
more general terms, leading to the claim that physical symbol systems offer the means for general
intelligent action.1 This idea, which they called the physical symbol system hypothesis, has been a
core enabler of AI progress since its introduction, in less explicit terms, in the late 1950s.

Newell and Simon elaborated on what they mean by physical symbol systems, starting with
their structural characteristics. Such a system incorporates:

• Symbols – physical patterns that remain stable unless they are modified by some activity.
• Symbol structures – organized sets of such symbols that, taken together, form expressions.
• Designations – symbol structures which denote or link to other structures or processes that

reside in internal stores or that occur in the external world.

These ideas are agnostic about the substrate of the physical patterns; equivalent structures can reside
in radically different media, including neurons, vacuum tubes, silicon chips, paper, and blackboards.
Any persistent set of physical patterns can serve in this capacity.

1. The presentation here differs slightly from Newell and Simon’s version. For instance, they referred to ‘necessary and
sufficient’ means, but these modifiers are not important to the aims of the current discussion.
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The theory of physical symbol systems also includes postulates about processes that operate
over these building blocks. These include:
• Interpretation. A symbol system can ‘execute’ or ‘run’ structures that designate processes by

carrying out their specified steps.
• Creation and modification. Interpreting such designated processes can create new symbol struc-

tures and modify existing ones.
• Extended operation. A symbol system operates over time to produce an evolving collection of

symbol structures.
Newell and Simon pointed to four developments during the 20th century that led to the theory
of physical symbol systems: formal logic and symbol manipulation, Turing machines and digi-
tal computers, the concept of a stored program, and list processing languages like IPL and Lisp.
List processing played a key role in AI’s development because it could encode arbitrarily complex
structural descriptions, create new structural descriptions dynamically, use them to designate other
structures, and interpret the structures to produce behavior. These abilities supported the abstraction
of complex content beyond the specific hardware on which they were implemented, and they proved
crucial in the construction of early cognitive systems.

We can view any program implemented on a digital computer as a model stated within the theory
of physical symbol systems. Each such program specifies details that, when run on some hardware
platform, will generate behavior. Not all such computer programs will exhibit intelligence, but the
many examples of implemented cognitive systems – from the early Logic Theorist (Newell, Shaw,
& Simon, 1957) to the recent AlphaGo (Silver et al., 2016) – provide evidence of the theory’s ability
to explain and reproduce many aspects of the mind. These successes do not prove that the theory’s
tenets are the only such account, or that it can explain every aspect of intelligence, but the number,
breadth, and abilities of implemented cognitive systems offer strong support for them.

3.2 Production Systems

Although widely adopted, the physical symbol system hypothesis is a weak theory that provides few
constraints on the construction of intelligent systems. Consider some well-established features of
human cognition: they exhibit flexible, conditional behavior; they balance stimulus-driven and goal-
driven activity; and they acquire new expertise in an incremental, piecemeal manner. These suggest
that human intelligence, at least, does not rely on the types of procedural constructs adopted by
mainstream programming languages, despite them being examples of physical symbol systems. In
response, Newell (1966) introduced a more constrained version of the theory – production systems –
that addresses these observed characteristics of the human mind.

The framework includes several new theoretical assumptions about the memories that underlie
cognition and the structures they contain:
• Modularity. Each memory comprises a set of separate, modular elements that are encoded as

symbol structures.
• Working memory contains concrete, descriptive elements that encode beliefs, goals, or other

specific structures and that change rapidly over time.
• Production memory contains generic rules that specify the conditions under which to take cer-

tain actions and that remain static or change very slowly.
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These representational tenets are very different from those adopted by traditional, procedure-oriented
programming languages. There is a much stronger connection to behaviorism’s notion of stimulus-
response pairs that link perceptions to actions, although production systems replace perceptions
with elements in working memory and responses with commands to alter them.

The production system framework also makes assumptions about the mechanisms that operate
over these mental structures:

• Recognize-act cycle. Cognitive processing alternates among finding productions whose condi-
tions match working memory, selecting a subset of them, and executing their associated actions.

• Pattern matching. Production rules are accessed by matching their conditions against elements
in working memory.

• Conflict resolution. When there are multiple matches, features of the matched elements or the
rules themselves determine which ones to select.

• Dynamic composition. Production rule application alters working memory in ways that enable
other matches on later cycles, including composition of matched elements into new entities.

Despite these additional constraints, production systems have the same computational power and
generality as many other frameworks, although they make it easier to produce some types of behav-
iors and more difficult to handle others.

The introduction of production systems had a major impact on both AI and cognitive psychology
starting in the late 1970s. They became widely used for the creation of expert systems (Hayes-Roth,
Waterman, & Lenat, 1983), which were connected to AI’s first commercial successes. They also
played a key role in early research on machine learning, especially in areas like problem solving and
language processing. Many cognitive architectures (Langley, Laird, & Rogers, 2009) have either
been cast in the production system framework or adopted its assumptions about the recognize-act
cycle and pattern matching. Neches, Langley, and Klahr (1987) trace the evolution of production
systems during the framework’s first two decades. This period saw many specializations of the the-
ory, often descended from OPS (Forgy & McDermott, 1978), that incorporated further constraints on
representation and processing. More recent well-known variants include Soar (Laird, Rosenbloom,
& Newell, 1987; Laird, 2012), ACT-R (Anderson, 1993), and EPIC (Kieras & Meyer, 1997).

Each of these architectures comes with a programming language whose syntax embeds theoret-
ical assumptions about memories and the representation of their contents. The syntax itself is no
more part of the theory than Newton’s notation for integrals was part of universal gravitation, but
it nevertheless reflects key intellectual commitments. One can also describe the production system
framework at different levels of abstraction. Traditional architectures in this paradigm take posi-
tions about conflict resolution and learning mechanisms, but Langley’s (1983) PRISM environment
included a number of parameters whose combined settings determined system behavior and defined
a space of candidate architectures.

Even specialized architectures like Soar and ACT-R remain abstract theories that must be com-
bined with models to produce behavior, with different sets of production rules and initial contents
of working memory playing this role. Researchers often develop such models to demonstrate their
theory’s implications for behavior in different domains or on various problems in a given domain,
but they can also encode alternative strategies for solving a class of problems. Assumptions about
the contents of production and working memory effectively specify a program that we can run us-
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ing the production system interpreter to produce behavior traces, which we can then compare with
target behaviors to evaluate their adequacy. The status of architecture implementations is less clear
cut, as they must introduce choices about data structures and methods, such as whether to use itera-
tion or recursion when defining a function. At first glance, these choices seem similar to modeling
assumptions. However, as long as different implementations produce the same behaviors, they are
better treated as alternative statements of the same architectural theory than as distinct models.

3.3 Heuristic Search

Human intelligence includes the ability to solve novel problems never before encountered. Plato
first posed this apparent conundrum in his Meno: How can we find solutions to problems when we
do not already know the answers? One response, familiar to all AI researchers, is that we separate
the generators of candidate solutions from the mechanisms that test them. This division eliminates
the apparent paradox, but it requires the ability to represent candidate solutions mentally and to
explore the resulting space of possibilities. Yet such spaces can be incredibly large, which in turn
means that we cannot in practice store them in advance or enumerate them explicitly.

This insight and challenge led Newell and Simon (1976) to propose their heuristic search hy-
pothesis, which, despite its name, is actually another theory. We can paraphrase its structural pos-
tulates as stating that a problem solver relies on:

• Candidates, which describe patterns that may or may not be acceptable solutions;
• Test criteria, which specify how to determine if a candidate is an acceptable solution;
• Generators, which indicate how to generate new candidates from scratch or from existing ones;
• Heuristics, which characterize the quality of generator steps or candidate solutions.

One can represent candidate solutions, tests, generators, and heuristics in different ways, but they
always take the form of symbol structures, making it an elaboration of the physical symbol system
hypothesis. Another central element of the theory is a problem space, which is the set of candidate
solutions. Strictly speaking, this is not itself a symbol structure, as it is defined implicitly in terms
of the other elements. A subset of the problem space may be constructed during problem solving,
but it often contains so many candidates that it is best treated as virtual.

Naturally, Newell and Simon’s theory of problem solving also postulated a set of mental pro-
cesses that inspect and manipulate these symbol structures. Their framework included three inter-
acting component mechanisms:

• Searching through the implicit problem space by generating candidate solutions;
• Testing candidates to determine whether they constitute acceptable solutions; and
• Using heuristics to guide search through the problem space, making it tractable.

There are many routine tasks that do not require one to carry out search through a problem space,
but nearly any nonroutine task can be viewed usefully in these terms, provided it does not have
trivial or obvious solutions.

The heuristic search framework has been applied repeatedly in the construction of AI systems
and has led to many successes. Application areas have included automated reasoning, planning,
game playing, design, scheduling, and language processing. Each of these adopt modular repre-
sentations for candidate solutions, involve large problem spaces, specify criteria that solutions must
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meet, and use heuristics to guide search. Even approaches that emphasize numerical processing,
like many methods for statistical learning, almost invariably rely on search as one of their core
techniques. In fact, the theory of heuristic search has become so widely adopted in AI that many
researchers have difficulty imagining any other account of problem solving, despite alternatives
offered by Gestalt theory (Koffka, 1935), which emphasized the role of spontaneous restructuring.

Although the heuristic search theory is certainly more constrained than the framework of phys-
ical symbol systems, it remains very general, so it is not surprising that researchers have developed
more specialized accounts that make additional assumptions. These include:

• Planning, in which candidate solutions are partial plans that attempt to link an initial problem
state to a goal description and the generator adds domain operators to existing candidates. Both
partial-order and total-order approaches fall in this category.

• Problem-reduction search, in which candidate solutions are AND trees that decompose a prob-
lem into subproblems and the generator uses domain rules to elaborate existing candidates.
Most theorem provers take this approach, but means-ends analysis also fits in the framework.

• Constraint satisfaction, in which candidate solutions have values associated with each target
variable and the generator assigns possible values to those variables. Candidates that violate
specified constraints are eliminated from consideration.

• Repair-space search, in which one starts with a candidate solution that is unsatisfactory in some
way and the generator produces variant structures in an attempt to find a solution. Case-based
reasoning, ‘local’ search methods, and evolutionary techniques all incorporate this idea.2

These formulations makes different commitments about the character of candidate solutions, the
generators that produce them, and the heuristics that guide choice. Each is a specialization of the
heuristic search theory, but they are not mutually exclusive. For instance, constraint satisfaction
is often combined with repair-space search, and planning systems may invoke problem reduction.
One can also combine production systems and heuristic search in different ways, using the former
to specify both generators and heuristics (e.g., Langley & Ohlsson, 1984; Laird et al., 1987).

As before, we must introduce modeling assumptions before a given heuristic search theory
can produce behavior. This means that we must specify some notation for candidate solutions and
commit to particular generators, test criteria, and heuristics for use during processing. For a planning
system, we must specify an initial state, a goal description, and a set of operators for generating new
states, as well as heuristics for guiding search. A problem-reduction system also requires a set
of decomposition rules that it can use to break tasks into subtasks. Heuristics play a crucial role
in these specialized theories because exhaustive search is impractical for large problem spaces.3

These may take the form of symbolic rules that propose, reject, and order solution candidates or
their transformations; alternatively, they may be stated as numeric functions that evaluate structures.
Some theories make commitments about the form of heuristics, but their content is part of the model.
Once we have specified these details, we can treat the model as a computer program and run it to
produce behavior, which we can then examine for effectiveness during the search process.

2. One can also view hill-climbing and gradient-descent methods as examples of repair-space search, although genera-
tors for the latter compute the next candidate directly, rather than considering a number of alternatives.

3. As Langley (2017) has noted, the term heuristic originally denoted criteria that do not guarantee finding the best
solution or, indeed, any solution at all, but that in practice lead to reasonable results with reasonable effort.
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3.4 The HPS Architecture

The heuristic search theory reflects important insights about problem solving, but we know much
more about the structures and processes involved that it enumerates. For example, there is strong
evidence that humans often rely on means-ends analysis (Newell, Shaw, & Simon, 1960) to tackle
novel problems, although they do not use this strategy in all settings. The HPS architecture (Langley,
Barley, & Meadows, in press) offers an extended theory of problem solving that builds on Newell
etal.’s insights. The framework incorporates both the physical symbol system hypothesis and the
heuristic search hypothesis, but also introduces four structural postulates:

• Problems are specified as an initial state that comprises a set of relational literals and a goal
description that includes a set of generic literals that denote a class of states.

• Domain operators describe the generic conditions under which a given action will have partic-
ular effects on states; these serve as generators for new candidate solutions.

• Candidate solutions are structured as hierarchical decompositions of problems, with each de-
composition including an associated operator and optional ‘down’ and ‘right’ subproblems.4

• Candidates are organized as nodes in an OR tree in which each child elaborates on its parent by
introducing one operator and zero, one, or two associated subproblems. Alternative children
specify different elaborations on their parent’s partial solution.

The first and second statements identify the HPS theory as a specialization of the planning paradigm
discussed earlier, although it is not limited to action-oriented tasks. The third assumption reveals
its close kinship with means-ends analysis, which introduced the idea of using domain operators
to decompose problems into subproblems. The final assumption shows its relation to refinement
approaches to plan generation (Kambhampati, 1997), which emphasizes this idea.

The HPS theoretical framework also makes assumptions about the processes that inspect, create,
and modify these mental structures:

• Problem solving involves search through a space of alternative hierarchical decompositions that
aim to transform the initial state into one that satisfies the goal description.

• Search operates in discrete cycles that either return found solutions, mark a candidate C as a
solution or unacceptable, attempt to retrieve an operator for C, create and evaluate a child of C
with an operator, use an operator to create subproblems, or mark a subproblem as solved.

• Strategic parameters are the locus of heuristic control during search, determining the evaluation
and selection of operators and nodes, as well as criteria for success and failure.

The final postulate lets it retain the key ideas of means-ends analysis without its commitment to
chaining only off operators that achieve goals. HPS replaces this control scheme with parametric
options, with the traditional approach being a special case. Otherwise, it makes very similar as-
sumptions to PRODIGY (Carbonell et al., 1990) and ICARUS (Choi & Langley, 2018), architectures
that combine means-ends problem solving with logical formalisms for states and goals.

Modeling assumptions for the HPS theory are similar to those adopted for planning systems.
This includes specifying representations for the states and goal descriptions used in problems, along

4. A given candidate solution maps onto a unique sequential plan, although a particular plan may be decomposed in
different ways. Not all decomposition trees solve the top-level problem fully, so they are best viewed as partial plans.
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with one for the operators used to generate new states and decompositions. Any model must also
indicate settings for parameters that control the evaluation of operators and nodes, how the system
uses these scores to select among candidates, and how it decides whether it should reject a candidate
or accept it as a solution. Given these details, we can run the HPS architecture on particular problem-
solving tasks and examine its search behavior.

3.5 Other Examples from Cognitive Systems

I should also consider briefly some other well-known classes of theories with relevance to cognitive
systems. One widely adopted paradigm, which I will call derivation systems, assumes that knowl-
edge is encoded as inference rules and that beliefs and queries take the form of relational literals.
Given some query, a reasoning mechanism attempts to find derivations or proofs that connect an-
swers to the initial beliefs through the available rules. Derivations are organized as AND trees in
which nonterminal nodes correspond to inferred beliefs that follow directly from instantiated rules
with antecedents that match other derived or given beliefs. Constructing derivations typically in-
volves search through a space of possible proof structures, making it a special case of both physical
symbol systems and heuristic search. Models take the form of particular sets of inference rules, ini-
tial beliefs, and queries, along with assumptions about their representation. This framework, one of
the oldest in AI, has seen many successful applications, from proving theorems about logic (Newell
et al., 1957) to answering questions posed in natural language (Waldinger et al., 2018).

Another theoretical paradigm – analogical reasoning – is less widely reported but equally gen-
eral. This postulates that knowledge is stored as a set of cases, each comprising a set of relational
literals that may share arguments. Given a new, partially described case C, the analogical process
retrieves similar structures from memory and determines how each of these candidates maps onto
C. Based on the quality of these mappings, it selects one of the candidates and uses its content to
make inferences that elaborate on C ’s material. Each model in this framework is stated as a specific
set of cases, along with assumptions about their encoding. Analogical reasoning has been used to
understand narratives, solve novel problems, and generate scientific explanations. This theory is
a specialization of physical symbol systems, but it assumes larger-scale structures than production
systems and it views reasoning not in terms of search through a problem space but rather as a variety
of retrieval from episodic or long-term memory.

A final class of theories – recurrent neural networks – has received increased attention due to its
association with the ‘deep learning’ movement. This paradigm assumes that knowledge is encoded
as a multilayer neural network, with short-term memory corresponding to activations on its nodes.
The network structure links the output nodes to some of the input nodes, ensuring they have the
same activations. Processing occurs in cycles, with activation spreading through the network from
inputs to outputs, which in turn determine some inputs on the next round. Recent variants have
included a ‘long short-term memory’ that uses specialized elements that retain previous activations
across many cycles. Learned models associate specific weights with links in the network, with
details depending on the training cases encountered. Recurrent neural networks have been applied
successfully to speech recognition, language translation, and robotic control. Despite claims to
the contrary, the framework is a special case of physical symbol systems and, although it adopts a
distributed representation, it also bears a strong resemblance to production system architectures.
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4. Reporting Research on Cognitive Systems

Now that we have examined the character of theories and models that arise in cognitive systems
research, we can turn to the implications for publications that report them. This section considers
briefly how authors can productively specify the abilities they aim to reproduce, describe the theory
that attempts to address them, present models cast within that theoretical framework, and report
evidence about their joint adequacy and plausibility.

Scientific papers often start by presenting a problem that motivates the authors’ research. In
the natural sciences, the problem typically involves explaining some interesting or challenging phe-
nomena or behavior. In sciences of the artificial (Simon, 1969), the problem involves replicating
or generating some desired behavior in a construct. In cognitive systems, we are concerned with
explaining and reproducing aspects of intelligence in computational terms. One natural way to
describe cognitive abilities and behaviors is to specify their inputs and associated outputs. For in-
stance, we can specify the ability to understand a language in terms of inputs – knowledge about
the language and a sentence in that language – and results – one or more meanings of the sentence.
Similarly, the inputs for planning include knowledge about domain actions, an initial state I, and
a goal description G, whereas the output is one or more plans that transform state I into another
satisfying G. We can specify learning abilities in much the same way, except they must occur in the
context of some performance task on which improvement should occur. Such problem descriptions
set the stage for theoretical accounts of the abilities they specify.

Once an author has stated a problem in terms of desired abilities, he can present a theory de-
signed to address them as a set of linked assumptions. Some statements will be definitions, while
others will postulate relations or interactions that hold among the defined elements. Not all tenets
need be novel; theories often builds on earlier ones, incorporating key ideas from predecessors.
Some researchers will choose to convey their theory in formal terms, using logical expressions or
equations to define elements and describe relations, but natural language is also acceptable. Either
way, they should state their assumptions clearly enough that they are unambiguous to readers. As
noted earlier, it makes sense to focus on structures before processes. For papers on cognitive sys-
tems, it is natural to first note the memories a theory assumes, such as a dynamic short-term store
and a stable long-term one, along with the types of entities that populate them, such as beliefs,
goals, and production rules. Authors can then present postulates about processes that act upon these
structures, including statements about high-level control and others about component mechanisms.
Thus, authors might describe the recognize-act cycle for a production system, along with processes
for pattern matching and conflict resolution.

As we have seen, theories are intentionally abstract, so we must combine them with models to
produce particular behaviors, which we can then compare with targets to gain evidence that sup-
ports or refutes the abstract account. This is distinct from describing the theory’s implementation
in some programming language, although that is also important; authors should provide some in-
formation about their software, but high-level facts will typically suffice. However, papers should
offer more details about modeling assumptions for particular domains and scenarios. Some infor-
mation will encode general knowledge about the domain, such as the grammar for a given linguistic
theory or operators for a given planning framework. Other content will describe particular tasks,
such as sentences that the parser should interpret or problems that the planner must solve. For the-
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ories of learning, authors should describe observations or instructions that the system encounters.
Publications on cognitive systems should state clearly what form these elements take, what content
they contain, and how they connect the implemented theory to particular scenarios or test cases. Of
course, papers do not have enough space to give details about every problem or domain, but they
should include examples that clarify such design decisions for readers.

The abstract character of theories makes them difficult to evaluate directly, as we can only mea-
sure directly the adequacy of models stated within them. This does not mean such evaluation is
impossible, only that it is seldom an open and shut case. Papers on cognitive systems should pro-
vide evidence that a theory supports the desired abilities, but presenting results on multiple domains
or test cases is more compelling because, to the extent they involve different models, it suggests
the theory provides the source of explanatory power. Theories are difficult to refute outright, as
this would mean showing that they fail to explain the target phenomena with any possible modeling
assumptions. However, if researchers must complement their theory with complicated models, anal-
ogous to Ptolemaic epicycles, they are less plausible. Authors should state the criteria they will use
to evaluate their theory, present results that buttress or undermine it, and explain how they reached
their conclusions. Detailed analysis of system behavior on a few cases can often reveal more about
the contribution of postulates than aggregate results on many tasks. The distinction between theories
and models raises many issues for evaluation that deserve more extended treatment, but generally
authors should be wary of drawing overly strong conclusions in a single publication.

5. Concluding Remarks

Before closing, I should discuss some issues about theories of cognitive systems that the earlier treat-
ment did not address. The first concerns the character of postulates about structures that underlie
intelligent behavior. The theories we have examined emphasized the form of individual items, such
as production rules or working memory elements, and their organization in memory, such as search
trees. However, some accounts instead make claims about the content encoded in an intelligent sys-
tem’s memories. An early example was Schank’s (1972) conceptual dependency framework, which
posited 12 ‘primitive’ relations responsible for encoding sentence meanings. In a similar vein, Cas-
simatis (2004) reported an account of language understanding that involved reasoning over spatial,
temporal, componential, and other relations. Such content theories may not take stances about the
details of processing, making them closer to Newell’s (1982) ‘knowledge level’ than to classical
cognitive architectures. However, the two approaches are complementary, and researchers should
consider bringing them both to bear in efforts to explain intelligence.

Another issue, already discussed in passing, is that theories occur at different levels of abstrac-
tion. For example, we have seen that the HPS account of problem solving is a specialization of
heuristic search, which in turn elaborates the physical symbol system hypothesis. More abstract
theories are less constrained, which effectively means they have more degrees of freedom to repro-
duce target behaviors and place a greater explanatory load on modeling assumptions. This makes an
abstract theory more difficult to refute, as its proponents can always claim the problems lie with the
model. Examples of such reasoning are common in the history of science, from Ptolemy’s addition
of epicycles to preserve the assumption of circular motion to variations on the phlogiston theory to
defend its view of heat as a fluid. As a discipline progresses, it seems natural for theories to become
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less abstract and more constrained. If the extended accounts remain consistent with a broad set of
phenomena as this takes place, it lends them greater credibility than their vaguer predecessors.5

This leads naturally to a third issue. In some cases, the main source of explanatory power lies
not with the theory itself, but with modeling assumptions. Consider the NETtalk system (Sejnowski
& Rosenberg, 1987), which learned to predict the phonemes for letters in English sentences from
their surrounding context. Although word pronounciation is a sequential process, the system used
a moving window to transform it into a classification task that it mastered with backpropagation,
a supervised method for learning multilayer neural networks. Many in the research community
concluded that the latter was responsible for NETtalk’s success, but it seems likely that other tech-
niques, such as decision-tree induction, could have done just as well when coupled with a moving
window, which was a modeling assumption. Another example involves the interactive activation
model (McClelland & Rumelhart, 1981) and EPAM (Richman & Simon, 1989) accounts of word
and letter recognition. These theories adopted quite different postulates about representation and
processing, yet both fit experimental results very well, possibly because they assumed the same hi-
erarchical encoding for words. Researchers should be careful when drawing conclusions about the
sources of their theories’ explanatory power.

A special case of this problem arises with reductionist accounts of complex behaviors. This
paradigm typically combines a simple, abstract theory with a model that includes many elements,
then shows how target behaviors follow from their interactions. The field of meterology adopts this
approach to explain and predict weather from a few basic equations and a fine-grained spatial grid.
Reductionist accounts are also popular with advocates of statistical induction, especially ones in the
‘deep learning’ movement, which relies on training systems with many parameters on very large
data sets. The learning theory itself is abstract and simple, but different methods often produce
similar results on the same data. This suggests that the explanatory power resides not in the theory
of learning but in the training cases, which effectively serve as modeling assumptions. Researchers
who adopt such reductionist schemes usually view them as superior to accounts that incorporate
stronger constraints, but this reveals a misunderstanding of theories’ role in science.

In the previous pages, I claimed that theories and models play different roles in scientific re-
search and that it is important to delineate them. I reviewed some examples from the history of
science, arguing that theories propose abstract principles and models introduce enough additional
assumptions to make them operational. After this, I described four theories relevant to cognitive
systems, in each case stating their postulates about mental structures, the processes that operate
over them, and the form taken by associated models. I also examined implications of the theory-
model distinction for papers in our discipline, along with issues related to the sources of explanatory
power. Theories come in different forms and occur at many levels of abstraction, but even the most
detailed accounts remain incomplete without models to elaborate them. At the same time, models
always exist in the context of some theory that they serve to make operational. Both have central
roles to play in the field of cognitive systems, but it is essential that we keep these roles distinct in
both our research activities and our publications.

5. This may not always be possible. Modeling assumptions are more complex in biology than in physics or chemistry,
partly from variations among species and partly from the contingent character of evolution. Given the variability of
human cognition, there are good reasons to expect similar complexity of modeling assumptions in our field.
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