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Abstract
The ability to solve novel problems is a distinguishing feature of human intelligence. This capacity
has been replicated in both cognitive architectures and AI planning systems, but previous work has
ignored its adaptive character. In this paper, we review HPS, a cognitive architecture that searches
a space of hierarchical problem decompositions with parameters that support a variety of strategies.
Moreover, decisions made by these strategic parameters may be conditioned on information avail-
able during search, such as the depth, branching factor, and progress toward the goal description.
We examine three such parameters, one that decides whether to chain forward or backward when
retrieving operator instances, one that determines how far to backtrack upon failure, and another
that decides how deep to search before backtracking. In each case, we describe adaptive methods
for making these decisions and report experiments which compare their performance with that for
fixed strategies. In closing, we recount prior research on adaptive problem solving and propose
some directions for future work in this understudied area.

1. Introduction and Motivation

The AI literature on problem solving and planning is littered with different techniques. For in-
stance, early planning research emphasized methods that chained backward from goals, whereas
current systems rely mainly on forward chaining. Best-first search is a widely adopted control
scheme, but beam search and greedy techniques have also seen frequent use. Typically, authors
champion one approach over others, but they seldom mention the obvious – that different methods
may be preferable in different situations. There have been some publications on such tradeoffs (e.g.,
Langley, 1992), but studies of this sort are few and far between. Still, it seems likely that the relative
effectiveness of strategies will vary and that problem solvers can benefit from the ability to adapt.

The psychological literature reports numerous examples of strategy shifts, but these focus on
domain-level behavior (Siegler, 1989; Larkin et al., 1980). Simon and Reed (1976) observed strat-
egy changes on Missionaries and Cannibals, but otherwise there appears to be no formal evidence
for shifts in problem-solving styles on unfamiliar tasks, where domain knowledge cannot be used.
However, it seems clear that novices use strategies like means-ends analysis on the Tower of Hanoi
(Anderson, 1993) and ones like forward chaining in chess (de Groot, 1978). Similarly, people are
quite capable of systematic search with backtracking on simple problems like Tic-Tac-Toe but re-
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sort to methods that sample action sequences, such as progressive deepening (de Groot, 1978), on
more challenging games. We would like a computational account of such adaptation in problem
solving, although our aim is to demonstrate the same types of flexibility observed in humans rather
than fitting the findings from particular studies, which are rare in any case.

In this paper, we extend an existing architecture, HPS, to adapt its search strategies in response
to the characteristics of problems it attempts to solve. We begin by reviewing HPS’s hierarchical
representation of problem solutions, the organization of its search tree, the architecture’s basic de-
cision cycle, and the role of strategic parameters in guiding behavior. We then focus in turn on
three of these parameters. The first determines whether to retrieve candidate operators by chaining
forward from the state or backward from goals, the second controls backtracking by selecting the
node to visit when the current one is abandoned, and the third determines when such abandonment
occurs. In each case, we describe an adaptive method that invokes a different strategy depending
on problem features, along with experiments on its effectiveness during search. We conclude by
discussing related work on adaptive problem solving and proposing ideas for additional research.

2. Review of the HPS Architecture

We have explored our ideas about adaptation within HPS, an architecture for hierarchical problem-
solving (Langley et al. 2016). In this section we review the system’s representation of candidate
solutions, its organization of search trees, its cognitive cycle, and its parametric encoding for strate-
gies. The latter lets the framework reproduce many distinct search methods, much as Soar (Laird
et al., 1987), although the approach to specifying them is quite different. We must clarify how HPS
operates before we can explain the ways in which we have incorporated adaptation.1

2.1 Problem Decompositions and Search Trees

The HPS architecture encodes each candidate solution as a tree that decomposes a problem recur-
sively into subproblems. Each element in such an AND tree has two main components:

• A problem, which includes a state and goal description. The former uses literals like (on A B) to
specify a situation; the latter uses literals like (not (on ?any A)) to denote a set of desired states.
• A decomposition, which breaks the problem into three distinct, ordered elements:
◦ An operator instance O with a set of conditions, effects, and constraints on shared variables;
◦ A down subproblem that one must solve before applying operator O to satisfy its conditions;
◦ A right subproblem that one must solve after O ’s application to achieve the parent’s goals.

We refer to ‘down’ subproblems and ‘right’ subproblems because these terms reflect our graphical
notation for problem decompositions, which we will examine shortly.

Such a decomposition tree has a hierarchical structure, so that each subproblem may be broken
down further. A given tree maps onto a unique sequential plan, although a particular plan may be
decomposed in different ways. Not all decomposition trees solve the top-level problem fully, so
they are best viewed as partial plans. Special cases include a top-level problem statement, which

1. We will actually describe HPS/2, which differs slightly from its predecessor in its cognitive cycle and strategic
parameters, but which still shares many of the earlier system’s assumptions.
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Figure 1. A solution for problem P1 that decomposes it into four nontrivial subproblems (shaded circles) with
associated operators (rectangles). Each problem node has an associated state (on its left) and goal description
(on its right), whose labels refer to structures in the rightmost boxes. White circles denote trivial subproblems
in which the goal description matches the state. The corresponding sequential plan has four steps: (unstack
B C) , (putdown B) , (pickup A) , and (stack A B) .

has no operator or subproblems, and complete plans, which specify a sequence of operators that
transform the initial state into one that meets the top-level goals.

Figure 1 presents a successful decomposition of a Blocks World task that involves a top-level
problem (P1), three nontrivial subproblems (P2, P3, and P4), their selected operators, and the asso-
ciated state and goal descriptions. P2 and P4 are ‘down’ subproblems that must be solved before
applying the operators (putdown B) and (stack A B), respectively, whereas P3 is a ‘right’ subprob-
lem that remains after (putdown B) has been applied. This hierarchical decomposition maps onto
the sequential plan [(unstack B C), (putdown B), (pickup A), (stack A B)]. The figure also shows
five unlabeled terminal nodes; these are trivial subproblems in that their associated states satisfy
their goal descriptions, and thus require no further decomposition.

This sample decomposition is similar to those produced by means-ends analysis (Jones & Lan-
gley, 2005; Newell et al. 1960), but HPS is not limited to such structures. In particular, it can also
encode fully right-branching trees that reflect solutions found through forward chaining and fully
down-branching trees that would result from regression planning (McDermott, 1991). Different
problem-solving strategies produce different types of decompositions, which will be important for
some forms of adaptation. The example solution is also similar to plans generated from hierarchical
task networks (Nau et al., 2003), but HPS decompositions have a more constrained structure that
involves an operator, a down subproblem, and a right subproblem, and, as we will see shortly, they
do not depend on the use of domain-specific knowledge for their construction.

Naturally, HPS must search through a space of such hierarchical plans and it must somehow
organize these alternatives. The system stores candidates in an OR tree like that in Figure 2. Each
node denotes a partial or complete decomposition of the top-level problem into subproblems, with
every child introducing one new operator beyond those in its parent. For instance, the root N1
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Figure 2. An HPS search tree produced by a combination of means-ends analysis and depth-first search with a
depth limit of five. Numbers reflect the order in which nodes were generated and N33 refers to the hierarchical
solution in Figure 1. Each node expands on its parent by introducing a new operator instance and associated
subproblems. Terminal nodes N9 and N15 denote partial plans that HPS rejected due to goal loops.

includes the top-level problem P1 from Figure 1, N26 introduces the operator (putdown B) and
adds the down subproblem P2, while N27 adds the operator (unstack B C) and the subproblem
P3. Node N28 elaborates its parent by introducing (stack A B) and, because its conditions are not
met, subproblem P4. The lowest node on the shaded path, N33, adds the operator (pickup A),
which enables (stack A B) and solves both P3 and P1. This node corresponds to the the four-step
hierarchical plan shown in Figure 1. Alternative children specify different elaborations on their
parent’s partial solution. The numbers on nodes reflects their order of creation, which clarifies that
HPS generates children one at a time, rather than ‘expanding’ a node to produce all children at once.

2.2 Problem Solving in HPS

The structures just described are central to HPS’s problem-solving process, which involves search
through a space of alternative problem decompositions in an effort to transform the initial state
into one that satisfies the goal description. At the outset, the root node contains a single problem
with only state and goal descriptions. The architecture decomposes this problem recursively into
subproblems in different ways, adding new nodes to its search tree, with each child elaborating its
parent by introducing one operator instance. This process continues until it finds enough solutions
to satisfy its success criterion or until it abandons the effort.

A key notion here is the focus problem, which is a task or subtask in the hierarchical decom-
position that has not yet been solved. This may be a down subproblem D or a right subproblem
R of a problem P , but the latter can become the focus only after HPS has solved the former. A
child in the search tree always extends its parent by decomposing the focus subproblem. This may
introduce a new subproblem that becomes the focus in the child. When the system solves a given
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focus problem, it pops back to its parent P and either shifts to P ’s right subproblem or, if P has
also been solved, shifts to its parent. For instance, P1 in Figure 1 is the focus problem of node N1
in Figure 2, P2 is the focus of node N26 , P3 is the focus of N27, and P4 is the focus of N28 . All
problems and subproblems in the final node, N33 , are solved, which returns the focus to P1 .

The problem-solving architecture operates in discrete cycles, each of which applies one of nine
meta-level rules that advance the search process:

1. If there are enough problem solutions, no options remain, or resources are exhausted, then halt
and return the solutions that have been found.

2. If the top-level problem for current node N is solved (e.g., satisfies all the goals), then add N to
the solved list and select another node in the search tree.

3. If current node N is unacceptable (e.g., it is too deep or has a loop), has enough children, or has
enough failed retrievals, then add it to the closed list and select a new node in the search tree.

4. If focus problem F has no associated operator, then attempt to retrieve one by filtering candi-
dates, evaluating any that remain, and selecting an operator O from this set.

5. If retrieval has produced an operator O for the focus problem F of node N , then create a child C
of N with focus F and operator O , assign a score to C , and select a new node (possibly C ).

6. If focus problem F has an unapplied operator O whose conditions match the current state S ,
then apply O to S to generate a new current state for F .

7. If focus problem F has an unapplied operator O whose conditions C do not match current state
S , then create a down subproblem D with state S and goals C , and make D the focus.

8. If focus problem F with goals G has an operator that produced state S , and if S does not satisfy
G , then create a right subproblem R with state S and goals G , and make R the focus.

9. If focus problem F with goals G has an operator that produced state S , and if S satisfies G , then
mark F as solved and (unless it is the top-level problem) shift the focus to its parent.

This iterative procedure decides if the current node is acceptable or unacceptable, shifts to different
ones when it finds a solution or encounters obstacles, retrieves operators used to generate nodes that
elaborate their parents, and processes the focus problem to apply operators, create subproblems, and
shift the focus. The content stored at a given node changes over the course of problem solving, as
HPS applies operators and populates problems with the resulting states, but such steps do not pro-
duce new nodes in the search tree. Taken together, these activities search through a space of problem
decompositions that may transform the initial state into one that satisfies the goal description.

This control framework has much in common with those adopted by means-ends architectures
like GPS (Newell et al., 1960), PRODIGY (Carbonell et al., 1990), Eureka (Jones & Langley, 2005),
and ICARUS (Langley et al., 2009). One important difference is that HPS does not include a decision
step that selects a goal on which to focus; goals can influence operator selection, but this is not an
architecture-level commitment. Thus, although HPS shares with means-ends systems the idea of
search through a space of problem decompositions, the architecture can define these spaces in far
more flexible ways than its intellectual precursors.2

2. We should mention two other systems — PRL (Marsella & Schmidt, 1993) and SteppingStone (Ruby & Kibler, 1993)
— that search a space of problem decompositions, but, like HTN planners, rely on domain-specific knowledge.
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Table 1. Descriptions of the 12 parameters that HPS uses to specify its problem-solving strategy and the meta-
level control rules in which they appear. Each parameter can take on different settings from the specified
defaults to produce distinct search behaviors.

Parameter description Control rule Default setting

When has the search process found enough solutions? 1 one solution
When is the current node an acceptable solution? 2 goals satisfied
Which node should one select on finding a solution? 2 parent of node
When is the current node unacceptable? 3 loops, depth > 10
When does the current node have enough children? 3 30 children
When has operator retrieval at a node failed enough times? 3 10 failures
Which node should one select on rejecting a node? 3 parent of node
How should operator retrieval filter candidates? 4 conditions, unselected
How should operator retrieval evaluate candidates? 4 constant
How should operator retrieval select among candidates? 4 best score
How should one evaluate nodes in the search tree? 5 constant
Which node should one select on computing a node’s score? 5 current node

2.3 Modulating Problem-Solving Behavior

We have characterized the search process in generic terms, without specifying how decisions are
made, but naturally the architecture must select among alternatives at each choice point. To this end,
HPS incorporates 12 strategic parameters that determine the details of its search behavior. Table 1
provides brief descriptions of these parameters, some that involve Boolean tests, others that specify
how to select among nodes and operators, and still others that indicate how to score alternatives.
As the table indicates, each parameter is associated with one step in the problem-solving cycle
and influences decisions made at that stage. The italicized terms in the nine meta-level rules just
presented also mark the loci of these parameters.

We will not review all of these decision points in detail, as they are not our emphasis in this
paper. Instead, we will focus on three parameters that lend themselves to adaptation and that play
central roles in experiments reported later. These choice points include:

• Operator filtering. When attempting to retrieve an operator instance for the current node’s focus
subproblem, HPS calls on a parameter that determines which candidates to consider. Two basic
options include retrieving operators whose conditions match the current state and ones whose
effects would achieve at least one goal. The first setting leads to forward-chaining behavior that
produces right-branching problem decompositions. The second results in means-ends analysis
that creates down subproblems when selected operators are inapplicable and right subproblems
after they have been applied. This parameter option led to the hierarchical solution in Figure 1.
• Node selection on failure. When HPS decides that the current node in the search tree is unac-

ceptable, it invokes a parameter that selects a new node and thus controls backtracking. One
natural scheme is to shift attention to the current node’s parent, while another is to return back to
the root node. The first alternative leads to depth-first search, which produced the node ordering
shown in Figure 2. The second option results in iterative sampling (Langley, 1992), a search
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method that repeatedly samples the problem space using a greedy technique. The latter behavior
is similar to progressive deepening, which de Groot (1978) observed in human chess play.
• Node unacceptability. When HPS visits a node in the search tree, it calls on a third parameter

that decides whether the node is unacceptable in some way. Two straightforward options here
are rejecting a node when its position in the search tree exceeds a depth limit and, in settings
where operators have some cost, when the total expense is greater than some threshold. The
search tree shown in Figure 2 resulted from setting this parameter to a depth limit of five, which
led the system to reject nonsolution nodes N6, N7, N8, and others at that level.

These examples illustrate how HPS uses parameters to support a variety of fixed problem-solving
strategies. The approach is similar in spirit to how parameters in the PRISM environment (Langley,
1983) let it specify many distinct production system architectures. However, there is no inherent
reason why parameters must describe fixed behaviors and, as we will see shortly, they can also
support ones that respond adaptively to the solver’s situation.

The strategic flexibility of HPS has implications for traditional notions of soundness and com-
pleteness. The architecture never applies a selected operator until it achieves a state that satisfies
its conditions, so any hierarchical decomposition that achieves the top-level goal description will
be sound in that its operator sequence transforms the initial state into the target specification. This
even holds for less stringent solution criteria, such as those needed for partial-satisfaction planning,
which consider achieving a subset of top-level goals as success. The guarantees for completeness
are much weaker. We can ensure that HPS will find all possible solutions to a given problem, at
least those constrained by termination criteria like a depth limit, but only with particular parameter
settings. For instance, the value for ‘enough solutions’ must be set to infinity, as must the parameter
for ‘enough children’. In addition, operator filtering must always return both all candidates whose
conditions match the current state and ones with effects that would achieve one or more goals. Of
course, human problem solvers seldom find all possible solutions and their answers may not always
be sound, and we view HPS’s ability to reproduce such behavior not as a bug but as a feature.

2.4 Theoretical Postulates and Implementation Details

The HPS architecture incorporates a number of linked theoretical tenets. The framework builds on
two standard assumptions, both due to Newell and Simon (1976): the physical symbol system hy-
pothesis – that intelligence relies on representing and manipulating organized symbol structures, and
the heuristic search hypothesis – that it involves guided search through problem spaces. However,
HPS introduces four additional postulates:

• Candidate solutions are structured as recursive decompositions of problems, each with an asso-
ciated operator, down subproblem, and right subproblem.
• Such candidates are organized as nodes in a search tree where each child elaborates on its parent

by introducing one operator and any subproblems that result.
• Problem solving involves search through a space of alternative decompositions that aim to trans-

form the initial state into one that satisfies the goal description.
• Details of this search behavior, including evaluation and selection of operators and nodes, as

well as criteria for success and failure, are determined by strategic parameters.
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Thus, HPS retains the key ideas of means-ends problem solving without its commitment to chaining
only off operators that achieve goals. The framework replaces this control scheme with parametric
options, with traditional means-ends analysis being a special case. Here we add another postulate:
the search process adapts parameter settings in response to characteristics of the problem being
solved. Although each of these ideas has appeared elsewhere, HPS is the first architecture that
combines them into unified theory.

We have implemented these theoretical ideas in Common Lisp. The processing cycle outlined
above relies on iteration through a sequence of conditional statements, with HPS carrying out the ac-
tions associated with the first satisfied alternative. Both conditions and actions used in the cognitive
cycle refer to strategic parameters, which support considerable variety within a single problem-
solving architecture. Each setting for a parameter corresponds to an executable Lisp function that
returns a result appropriate for later processing. These functions inspect, create, and modify infor-
mation about nodes, problems, states, goals, and operators, but they are domain independent in the
sense that they do not refer to domain predicates. Moreover, the parameter settings are intrinsically
composable, so that different combinations of them can reproduce many distinct strategies.

Parametric functions carry out only local computations to ensure tractability. For instance, typ-
ical options for node selection return the parent of the current node or the root. The most expensive
alternative, used to produce best-first search, finds the highest-scoring node on the open list. The
cost of operator retrieval is linear in the branching factor for each focus problem. Some of the
adaptive options reported later involve extra calculations, but these are minor and remain local. As
a result, HPS avoids the substantial overhead found in early approaches to meta-level control (e.g.,
Genesereth et al., 1981). Like many planning systems, HPS generates a set of possible operator
instances at the outset of problem solving. The implementation uses type information about entities
to constrain this process and depth-limited chaining on operator’s effects to eliminate impossible
combinations. Grounding operators lets the system rely primarily on equality tests during operator
retrieval rather than on relational pattern matching, which can be substantially more expensive.

3. Empirical Studies of Adaptive Problem Solving

We are interested in whether adaptive versions of HPS’s parameters can enable more effective prob-
lem solving than ones with fixed methods. To this end, we implemented new settings for operator
retrieval, node selection after failure, and node abandonment that condition their decisions on prob-
lem characteristics. In this section, we describe these adaptive elements and report experiments that
compare their behavior to fixed strategies. However, first we must review the domains used in these
studies and present our general experimental design.

Our aim was to demonstrate that the HPS framework supports interesting forms of adaptation,
and that such adaptive strategies have the potential to produce more effective search than their fixed
analogs. However, we will not claim that our adaptive techniques are the only ones possible or
the best, and, as we discuss later, others have explored alternative approaches to adaptive search.
Moreover, even negative results would be informative, as they can clarify the conditions under
which adaptation is useful and when fixed strategies are preferable. Our work’s main theoretical
contribution lies in providing a framework that supports adaptive problem solving and identifying
three decision points that have potential to benefit from such meta-level control.
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3.1 Domains and Experimental Design

Our experiments draw on four problem-solving domains: the Blocks World, Logistics planning,
inferring Kinship relations, and the Five Puzzle. The first domain involves changing one config-
uration of blocks that rest on a table into another configuration that satisfies a goal description.
Logistics planning requires one to transport packages from initial to target locations using operators
for loading and unloading trucks and airplanes, along with driving and flying these vehicles. Both
are classic planning tasks that will be familiar to researchers in that subfield. In the Kinship domain,
one infers relations like uncle, grandparent, and ancestor from primitive ones like parent and male.
This involves purely monotonic inference, as the ‘operators’ are datalog rules that only add literals
to the state. The Five Puzzle involves sliding numbered tiles from their initial arrangement to a
target configuration. As in the Eight Puzzle, there are nonmonotonic operators for moving a title
up, down, left, and right, but only five tiles and six cells are present.

For each domain, we presented HPS with multiple tasks of varying complexity,3 as measured
by the number of steps in the minimal solution. We examined its problem-solving behavior with
both fixed and adaptive strategies, making this our primary independent variable. On each run, we
measured the number of nodes generated during search before finding a solution and the associated
CPU time. Because node selection in HPS relies on local computation, such as finding the parent
or root, we expected run time to correlate well with the node count, so we generally report only the
latter. We limited the search process 10,000 nodes, recording this number when the system failed
to find a solution. Unless stated otherwise, we used the default parameter settings from Table 1. In
the absence of heuristic criteria, HPS carries out ‘uninformed’ search and selects among candidate
operators at random, so we ran the system 20 times on each task and averaged the results.

3.2 Fixed and Adaptive Operator Retrieval

As we have noted, one of HPS’s core parameters determines how the system retrieves candidate
operators for use in decomposing the current focus problem. In previous work, we had implemented
two fixed schemes for this aspect of decision making. The first considers only operator instances
whose conditions match the current state. This produces the familiar strategy of forward-chaining
search, which leads HPS to create a succession of right subproblems. The second considers only
operator instances whose effects would achieve at least one currently unsatisfied goal. This gives the
backward-chaining strategy that underlies traditional means-ends analysis. When the current state
does not satisfy the operator’s conditions, it leads HPS to introduce a down subproblem, although
the system may also create a right subproblem after operator application.

Human problem solvers appear to use both retrieval methods (Anderson, 1993; de Groot, 1978),
and it seemed likely that goal-driven chaining would be more effective on some tasks and state-
driven chaining on others. We tested this prediction by running the two strategies on problems from
the four domains. The left graph in Figure 3 presents the results of this experiment in terms of a
scatter plot, with forward chaining on the x axis and means-ends analysis on the y axis. Each point
denotes the average number of nodes generated for both strategies, which means that goal-driven re-
trieval was more effective for those below the diagonal line and state-driven retrieval fared better for

3. These included 20 Blocks World tasks with solutions of four to ten operators, ten Kinship problems needing two to
eight inference steps, 12 Five Puzzle tasks with four to eight moves, and ten Logistics tasks with three to ten steps.
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Figure 3. Scatter plots that compare the number of nodes generated by HPS using state-driven operator re-
trieval (forward chaining) and goal-driven retrieval (means-ends analysis) on problems from four domains.
The left graph shows the mean number of nodes, in logarithmic scale, generated for each problem; the right
graph shows the numbers for each separate run. Points below the diagonal denote problems in which goal-
driven operator retrieval generated fewer nodes than did state-driven retrieval. Items at the x and y boundaries
indicate problems that a method failed to solve given the nodes allocated.

those above it. The graph shows both measures in log scale to retain visibility for simpler problems.
The trends are clear: neither approach is uniformly superior to the other, with the preferable method
depending on the task. Two clear results were that backward chaining always did better on Kinship
problems, while forward chaining was always more efficient on the Five Puzzle, although behavior
on the Blocks World and Logistics tasks was less regular. Standard errors were high, but adding
error boxes to the graphs would make them unreadable; the right graph in Figure 3 shows pairs of
values from indivdual runs that support these conclusions despite the considerable variation.

These results suggest that an adaptive method might outperform the uniform use of either strat-
egy in isolation. A natural criterion for deciding whether to chain off operator conditions or effects
is the branching factor for each option. If goal-driven backward chaining produces fewer alterna-
tives than does state-driven forward search, then the first scheme should reduce the search needed
to find a solution and vice versa. For instance, this held for the Kinship domain, where the for-
ward branching factor was 34 and the backward one was never greater than four. We implemented
an adaptive method for operator retrieval in HPS that works along these lines. For each node in
the search tree, it examines operator instances that result from chaining forward from the state and
chaining backward from unsatisfied goals, then selects an operator from the smaller set, falling back
on state-driven retrieval when ties occur.

This decision about how to proceed is local to the focus subproblem. If the number of choices in
one direction is always greater than in the other, the system will mimic strict forward search or pure
means-ends analysis. However, if the ratio of branching factors varies enough, then the strategy
will alternate between forward and backward chaining, as one direction or the other becomes more
constrained. In these cases, the system should examine, on average, fewer nodes than either fixed
strategy. Taken together, these observations suggests a testable conjecture:
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Figure 4. Scatter plots that compare the number of nodes in logarithmic scale generated with (left) adaptive
operator retrieval vs. state-driven retrieval (forward chaining) and with (right) adaptive operator retrieval vs.
goal-driven retrieval (means-ends analysis). Points below the diagonal denote problems in which adaptive
retrieval created fewer nodes during the search process.

• Hypothesis: Adaptive operator retrieval will require no more, and sometimes less, search to find
a solution for a given problem than fixed state-driven or goal-driven retrieval.

To test this prediction, we ran HPS with this adaptive method on the same problems as used in
the first study. The scatter plots in Figure 4 compare the search behavior of adaptive retrieval with
forward chaining (left) and means-ends analysis (right). As before, each point represents an average
over 20 runs, with the value on the x axis denoting the nodes generated by a fixed strategy and the
value on y axis giving the nodes for the adaptive one.

The results are quite encouraging. Adaptive operator retrieval explores about the same number
of nodes as forward chaining on the Blocks World and Five Puzzle, but it takes substantially less
effort on all Kinship tasks, which we know cause difficulty for forward-chaining search, and on most
Logistics problems. The benefits over means-ends analysis are weaker but still clear cut. The two
strategies do nearly the same on Kinship problems, and on many Blocks World and Logistics tasks,
but adaptive retrieval requires less search on some of the latter and on all Five Puzzle problems.
We should examine more closely the four Blocks World tasks that fall above the diagonal, but the
results are generally positive and support our hypothesis. The correlation between between nodes
generated and CPU time was 0.87 on 3,120 distinct runs, confirming our expectations on this front.

Note that our approach to adaptive operator retrieval differs from standard bidirectional search
techniques (e.g., Lippi et al., 2012; Holte et al., 2016), which typically assume fully specified goal
states and which rely on ‘state-space’ methods. HPS instead carries out a form of ‘plan-space’
search (Kambhampati, 1997), with the choice on each step being whether to elaborate a hierarchical
plan by adding a down subproblem or a right subproblem. The system decides not the direction in
which to search, but rather the direction in which to chain when considering operators it should use
to refine a partial solution. We discuss the essential differences between bidirectional methods and
our approach at greater length in the section on related research.
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3.3 Fixed and Adaptive Backtracking

We have seen that another key parameter in HPS determines how the system backtracks when it
decides the current node is unacceptable. One alternative simply makes the failed node’s parent the
new focus of attention, which produces traditional depth-first search. Another option instead returns
to the root node and continues search from there. This leads to iterative sampling, a strategy that
carries out repeated greedy search until it finds a solution or exhausts its resources. This method
is interesting because it is similar to progressive deepening, which de Groot (1978) has observed
in human chess players. Langley (1992) reported formal analyses and experimental studies that
identified the situations in which iterative sampling will, on average, explore fewer nodes than
depth-first search. Briefly, the latter does worse when the cost of making incorrect choices early on
is high, which holds when solutions are clustered in a few regions of the search tree. The cost of
errors for iterative sampling is independent of the depth at which they occur.

We decided to see whether similar results held on the Blocks World, Logistics, Kinship, and
Five Puzzle domains, so we ran HPS with both node-selection settings on the same problems as
earlier. We set operator retrieval to adaptive chaining and used the default settings from Table 1 for
other system parameters. The leftmost graph in Figure 5 shows the results in a scatter plot, with
depth-first search on the x axis and iterative sampling on the y axis, using the number of generated
nodes, in logarithmic scale, as the performance measure. On many problems, the two backtracking
methods behaved comparably, but iterative sampling outperformed depth-first search substantially
on many Blocks World and a few Kinship tasks, while the opposite held for only one Blocks World
problem. We have designed synthetic domains that reverse this trend, but our sample tasks do not
appear to have problem spaces with the same characteristics.

These results suggested that adaptive backtracking may not be as productive an arena as oper-
ator retrieval, but it still seemed worth exploring. Langley’s (1992) analysis took into account the
branching factor b, the solution depth d, and the number of solutions s, from which he calculated the
expected number of nodes generated by each strategy before finding a solution. We will not review
the results in detail, as HPS makes somewhat different assumptions. In particular, the analysis as-
sumed that iterative sampling has no memory of previous passes and so might regenerate nodes. In
contrast, HPS retains nodes in its search tree and, although it may revisit them, it does not recreate
them. Moreover, it does not create all possible children of a node at once, as in most heuristic search
systems, but rather, like humans, generates them one at a time.

Given a problem with branching factor b, search depth d > 0, and s solutions, we can calculate
the expected number of nodes generated by depth-first search recursively as

Edfs(b, d, s) = I(b, d, s) ·N(b, d− 1) + Edfs(b, d− 1, s) + 1 ,

where I(b, d, s) = max(0, b − d
√
s)/( d
√
s + 1)) is the expected number of incorrect choices and

N(b, d) = bd+N(b, d−1) is the number of nodes in the subtree it will consider exhaustively when
this occurs. We can compute the expected number of nodes generated by iterative sampling as

Eis(b, d, s) = [(d+ 1) · J(b, d, s)] + Eis(b, d− 1, s) + 1 ,

where J(b, d, s) = (d+ 1) · bd/s is the expected number of samples taken before this method finds
a solution path. We can use these expected values to control which node HPS selects upon failure,
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Figure 5. Scatter plots that compare the average number of nodes, in logarithmic scale, that HPS generates
(left) using fixed strategies for iterative sampling vs. depth-first search and (right) using globally adaptive
backtracking vs. depth-first search. Points below the diagonal denote problems in which the first alternative
in each case explored fewer nodes than its competitor.

as when it detects a loop or reaches a depth limit, but its use requires estimates for b, d, and s.
The first is trivial, as the problem solver knows the number of operator choices at the current node.
We can estimate depth, the steps to reach a solution, as the number of unsatisfied goals from the
current problem’s goal description. We can estimate the number of solutions by finding all ways
that entities in the state can match the goal description. Thus, given the goal description ((on ?x B)
(on B ?y)) and three blocks – A, B, and C – there are two ways to satisfy the former – ((on A B) (on
B C)) and ((on C B) (on B A)). This ignores the possibility that multiple paths can produce a given
solution, and also that some candidate solutions may be unreachable, but it has some merit.

There are two distinct ways to incorporate this idea into HPS. The most obvious involves esti-
mating b, d, and s for the top-level task, selecting depth-first search or iterative sampling, and then
using this consistently during problem solving. A more sophisticated approach makes completely
local decisions. Note that we can predict the number of nodes generated to find a solution not only
for the top-level problem, but for any subproblem. This means that, when the current node fails, we
can examine its parent P and, if depth-first search at this level appears better than iterative sampling,
we select P as the new node. Otherwise we shift to P ’s parent and repeat the test there, continuing
until we reach the root or an ancestor that favors a depth-first strategy. We refer to this approach as
local adaptation of backtracking to contrast it with the global version described earlier.

We implemented both of these conditional strategies in HPS as new settings for the parameter
that controls node selection after failure. We expected that global adaptation would be more effective
than the fixed backtracking strategies, and that local adaptation would make even better choices,
giving us the conjecture:

• Hypothesis: Globally adaptive backtracking will require no more, and sometimes less, search
to find solutions than fixed depth-first search or iterative sampling. Moreover, locally adaptive
backtracking will require no more, and sometimes less, search than global adaptation.
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Figure 6. Scatter plots that compare the average number of nodes, in logarithmic scale, generated by (left)
globally adaptive backtracking vs. iterative sampling and by (right) local adaptation vs. global adaptation.
Points below the diagonal correspond to problems in which adaptive the first alternative in each case created
fewer nodes than its competitor.

We tested both predictions on the same domains and problems that we used earlier. We ran HPS on
each task with four distinct settings for backtracking: depth-first search, iterative sampling, global
adaptation, and local adaption. We set the parameter for operator retrieval to use adaptive chaining
and set all other architectural parameters to the defaults in Table 1. As before, we gave the problem
solver a depth limit of ten and told it to terminate after considering 10,000 nodes, running it 20
times on each task. Figure 5 and 6 present the average results for each experimental comparison.

The studies reveal no clear benefits of adaptive backtracking. In fact, Figure 5 shows that fixed
iterative sampling does better in relation to depth-first search than does global adaptation, and the
left graph in Figure 6 clarifies that the latter is itself dominated even more by iterative sampling.
Since global adaptation simply selects which of the two fixed backtracking methods to apply on a
given problem, the results imply that it often makes the incorrect choice. The right graph in Figure 6
indicates the situation is even worse for local adaptation, which produces substantially more search
than the global variety on many Blocks World and Logistics problems. The reasons for these disap-
pointing results are unclear, but one plausible explanation is that HPS’s estimate for the depth d or
the number of solutions s is inaccurate. Both alternatives seem likely, as the method currently used
does not consider that each goal may require multiple steps or that different sequences of operators
may produce the same goal state. We can track down the culprit with synthetic domains that let
us vary systematically the branching factor, solution depth, and number of solutions. Inspection of
choice points where alternative methods make different backtracking decisions should clarify why
the adaptive techniques do no better than depth-first search or iterative sampling.

3.4 Fixed and Adaptive Termination

A third important HPS parameter controls when the architecture should abandon a node in the
search tree rather than elaborate it further. We will refer to this as the termination criterion, which
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is distinct from another system-level switch that determines when to halt problem solving entirely.4

The classic criterion for such node termination is that the search tree has reached a maximum depth.
A common generalization of this idea assigns costs to each operator and halts when the total cost
of a node exceeds a threshold. Both are instances of fixed problem-solving strategies, and it seems
natural to ask whether adaptive termination schemes would be more effective at reducing search.

We have explored an approach based on rate of progress. This requires some measure of each
node’s quality, such as the degree to which it satisfies the goal description. For example, given the
Blocks World goals ((on a b) (on b c) (on c d)), a node which produces a state that satisfies the
goal (on c d) but not the others might receive a score of 1, whereas a node that satisfies all three
goals might have 3 as its score. Other measures are possible; the important point is that node values
should increase with the number of goals they satisfy. Given such a metric for node quality, we can
measure progress toward the goal description as the rate of change in scores between a node in the
search tree and the root node from which search started. For instance, a node that achieves one goal
per level of depth should have a higher rate than one that achieves a goal every two levels.

The elements we need for such a progress measure include a goal-oriented score R for the root,
an analogous score C for the current node N, and the depth D of node N. Given these, one reasonable
definition for progress P is (C – R + 1) / (D + 1). Let us return to the earlier goal description, assume
that the node score is the number of goals satisfied, and consider two nodes at depth 3 in the search
tree. At one extreme is a node N1 whose operators have produced a state that matches all three
goals; this has a progress value P = (3 – 0 + 1) / (3 + 1) = 1. At the other extreme is a node N2
that does not satisfy any of the goals, so that P = (0 – 0 + 1) / (3 + 1) = 1/4. The deeper that search
proceeds without achieving any goals, the lower this rate would become.

HPS can use such a measure of progress to decide when to abandon further search. Rather
than backtracking when exceeding a specified depth, it would instead halt on dropping below an
acceptable level of progress. The need to specify a threshold remains, but such a strategy is adaptive
in the sense that it will explore the search space to different depths depending on their promise. This
suggests another conjecture:

• Hypothesis: Progress-bounded search will require no more, and sometimes less, effort to find a
solution for a given problem than depth-bounded search. Moreover, the advantage of adaptive
termination will increase with the fixed depth limit.

This involves a somewhat different form of modulation than those we examined earlier, as it does
not involve shifting among fixed strategies. Nevertheless, the approach alters the depth of search
depending on how well each path appears to be doing, which arguably is a form of adaptation.

We tested this hypothesis on the same domains and problems as those in our previous experi-
ments. We ran HPS with three settings, one that used a depth limit of ten as the termination criterion,
another with a fixed depth limit of 14, and a third that abandoned nodes when their rate of progress
fell below 0.15. We configured the system to use adaptive chaining and globally adaptive backtrack-
ing, but we kept settings for other strategic parameters at the defaults in Table 1. Again, we told the
problem solver to continue search until it found a solution or considered 10,000 nodes. We ran each
version of HPS 20 times per problem, recorded the number of nodes generated, and computed the

4. Even best-first search methods, which do not backtrack in the traditional sense, require some termination criterion.
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Figure 7. Scatter plots that compare the number of search nodes, in logarithmic scale, generated by progress-
bounded and depth-bounded termination strategies. The left and right graphs show results when the fixed
depth limit was ten and 14, respectively. Points below the diagonal denote indicate in which adaptive termi-
nation created fewer nodes.

mean for each strategy-problem pair. Figure 7 gives the results of this comparison, again presented
in the form of scatter plots for average system behavior on each problem.

The left graph reveals that, as predicted, the adaptive mechanism typically requires less search
before finding a solution than the fixed method. Progress-bounded termination generates substan-
tially fewer nodes than depth-bounded halting on most Block World and Five Puzzle tasks, but
there was no benefit on the Kinship or Logistics domains. The first was presumably because adap-
tive chaining was already so effective on the inference tasks that there remained little search, while
the second was probably because Logistics included at most two goals, making progress a poor
criterion. On two Blocks World and three Logistics problems, shown at the top of the graph, the
adaptive method failed to find a solution within 10,000 nodes. Inspection revealed that these re-
quired multiple operator applications before achieving any goals, which in turn produced lower
progress scores. This led HPS to abandon search at a shallower depth than was necessary to achieve
the top-level goal description. This buttresses our earlier point that progress-bounded search still
depends on a threshold that influences behavior, although it usually appears far less sensitive to this
number than does the depth-bounded approach.

The right graph in Figure 7 shows that the benefits of adaptive termination over depth-bounded
problem solving becomes somewhat greater as one increases the fixed depth limit. As before, there
is little difference on Kinship and most Logistics problems, but the results for most Blocks World
and Five Puzzle tasks on the scatter plot are slightly further below the diagonal. The absolute
changes appear small, but remember that the graphs use logarithmic scale, so they offer some ad-
ditional evidence that progress-bounded termination lets HPS mitigate the exponential character of
problem solving by keeping the system from searching deeper than needed. In summary, the exper-
iment generally supported our hypothesis that adaptive termination, at least this particular variety,
leads to less effort than traditional depth-limited alternatives.
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4. Related Research

The HPS framework is certainly not the first to support multiple problem-solving strategies. For
instance, Soar (Laird et al., 1987) demonstrated the ability to mimic many different weak meth-
ods with generic control rules, and FLECS (Veloso & Stone, 1995) extended PRODIGY to support
both backward and forward chaining. But the main topic of this paper is adaptation in problem
solving, which has received far less attention. There has been substantial work on learning in this
setting, much in the context of cognitive architectures. However, the emphasis has been on acquiring
search-control rules or macro-operators that reduce effective branching factor or depth of solutions.
In contrast, we are concerned with adaptation in response to generic problem characteristics that, in
principle, should reduce effort independently of whether learning occurs. Anderson’s (1990) anal-
ysis of problem solving comes closest to our approach, as it showed how changing probabilities of
success in the forward and backward direction can produce strategy shifts, but it assumed estimation
over multiple solution attempts rather than our immediate form of adaptation.

We should also consider work that relates to our specific adaptation methods. Our approach to
selecting forward or backward chaining resembles techniques for bidirectional search, but there are
important differences. Most of these systems (e.g., Lippi et al., 2012; Holte et al., 2016) assume a
fully specified goal state, whereas HPS can solve problems with abstract goals. A few techniques
(e.g., Torralba et al., 2014) use binary decision diagrams to encode abstract goals, but even they
carry out search through a state space, as opposed to HPS’s traversal of a plan space. This means
they must deal with two separate search trees, each with its own frontier, to ensure that a forward
and backward path eventually meet. Felner et al. (2010) report a bidirectional method that retains a
single frontier of state-goal pairs and that favors the direction with a lower branching factor, making
it closer to HPS than other approaches. However, their system operates over fully specified states
and only considers backward operators whose entire effects match the goal state. This makes it
closer to a combination of forward-chaining search and regression planning, whereas our extension
adaptively combines forward search and means-ends analysis.

HPS’s mechanisms for adaptive backtracking, especially the one that makes local decisions,
is similar in spirit to classic techniques for dependency-directed backtracking (Stallman & Suss-
man, 1977) and dynamic backtracking (Ginsberg, 1993). But these methods focused on constraint-
satisfaction tasks rather than planning problems, and they reasoned about specific choices made dur-
ing search to select an ancestor node, rather than examining high-level problem statistics. There is
potential for incorporating such reasoning into HPS’s backtracking strategy, but this would involve
a very different approach from the one we have described, which supports a continuum between
depth-first search and iterative sampling. There has been less related work on adaptive termination
criteria. The closest is Bhatnagar and Mostow’s (1994) FAILSAFE-II, which learned control rules
from failures it encountered during problem solving. This system declared a node as failed when
search exceeded a specified limit without achieving a goal or encountering other signs of activity. As
a result, it explored the space to different depths, although it did not use our definition of progress.

Portfolio methods for planning (e.g., Cenamor et al., 2016; Gerevini et al., 2009) also support a
form of adaptive problem solving, but again the resemblance is misleading. These invoke a number
of different search techiques in parallel and return the first solution found. In contrast, HPS carries
out a single search through its problem space but adapts its strategy to the problem or subproblem
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at hand. Techniques for automated configuration or tuning of problem solvers (e.g., Fawcett et al.,
2011) are much closer, as they select a specific combination of parameters in a general framework.
However, these methods base their tuning on behavior over a set of training problems, whereas HPS
adapts its strategies to the current problem, without need for training cases.

In summary, the AI literature contains few examples of adaptive problem solving of the type
reported here. There is anecdotal evidence that humans alter their strategies in response to prob-
lem characteristics. People use means-ends analysis on some tasks but resort to forward chaining
on others, they adopt systematic exploration and repeated sampling in different settings, and they
carry out search through problem spaces to variable depths. However, apart from Simon and Reed’s
(1976) early documentation of strategy shifts in novice behavior on puzzles, the psychology litera-
ture is mute on this important phenomenon, and the role of adaptation in problem solving merits far
greater attention from both research communities.

5. Concluding Remarks

In the preceding pages, we described HPS, an architecture for problem solving that searches a space
of decompositons to transform an initial state into another that satisfies a goal description. We saw
that the system includes parameters whose settings determine its search strategy, but also that these
elements are fixed. In response, we developed adaptive methods for the parameters that control
operator retrieval, backtracking when a node fails, and when to abandon a node. Experiments
with adaptive retrieval on four domains showed that it often produced less search than either state-
directed forward chaining or goal-directed means-ends analysis. Studies of adaptive backtracking
were less promising, with both global and local adaptation doing nearly the same as fixed depth-first
search and iterative sampling. The results for adaptive termination were stronger, with progress-
bounded search not only more effective than depth-bounded halting, but with increased depth limits
heightening the effect. These results are positive enough to encourage further work on a topic that,
as we have seen, has received little attention in either AI or cognitive psychology.

There are many avenues for additional research. Our highest priority should be understanding
the reasons that adaptive backtracking is sometimes ineffective, but we should also replicate our
positive results on additional domains. These should include both synthetic classes of task that al-
low systematic control and more established ones that are familiar to the AI planning and search
communities. We should also examine problems that have been studied by cognitive psychologists
to strengthen our links to their literature. In addition, the compositional character of HPS’s strate-
gic parameters suggests that we examine interactions between methods for operator retrieval and
backtracking. In some cases, adaptive backtracking appears to be more effective with backward
chaining than forward search, and we should explain this behavior and look for similar phenomena.
Moreover, we should study more fully variants of HPS that can adapt simultaneously on multiple
fronts, looking for both synergies and interference in their joint effects on problem solving.

Finally, we should explore adaptive variations on other parameters. One candidate is responsible
for selecting a node after finding a problem solution, which plays a role when multiple answers are
desired. Here meta-level criteria like a desire for solution diversity might affect how far to backtrack
after success. Another is the parameter that controls selection of operators after they have been
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filtered for relevance, which can introduce more or less randomness into the search process. A third
is the parameter responsible for determining a node’s acceptability as a solution. Upon encountering
especially difficult problems, an augmented HPS might weaken this criterion, effectively lowering
the system’s aspiration level to enable satisficing. These extensions may lead to additional insights
about the adaptive character of problem solving in cognitive systems.
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