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  Abstract 
Over the past couple of decades, fundamental semantic analysis has been outside of the purview of 
mainstream natural language processing, but the recent surge of interest in cognitive computing 
has returned the notion to center stage. However, what exactly is fundamental semantic analysis? 
What methods can be used to achieve it? What counts as a useful result? How does one measure 
progress? All of these issues, and many more, define the choice space for building semantic 
analysis systems. This paper describes key aspects of this choice space and suggests that published 
descriptions of systems should explicitly state both the choices made and the positive and negative 
consequences of those choices. This will counter the current tendency for system descriptions to 
tacitly reflect choices understood only by insiders without overtly motivating or justifying them. 

1. Introduction 
If we look at a given field at a given moment in history, certain beliefs can be so widely held that 
they are rarely if ever made explicit in the literature. For example, in the 1980s the natural 
language processing (NLP) community was pursuing the artificial intelligence (AI) challenge of 
automating human-level proficiency in natural language understanding, placing computational 
semantics squarely within its purview. Fast forward to the 2010s and one hardly finds traces of 
that original goal in reported work: the lion’s share of interest and resources in NLP have shifted 
to statistical, knowledge-lean methods applied to large corpora in service of applications that do 
not require fundamental language understanding. The dominance of this paradigm has become so 
complete that published contributions assume, without mention or justification, features that are 
routine to insiders but are in no way uncontroversial or self-evident. For example, it is taken as 
axiomatic that shallow processing of large corpora is preferred over deep processing of smaller 
texts; that low ceilings of quality are acceptable as long as the reported system exceeds its 
predecessors’ evaluation scores; and that manually providing prerequisites to systems for both 
training and evaluation of task-oriented competitions is acceptable even though the resulting 
systems cannot perform to their evaluated levels on new, raw inputs. These and similar opinions 
and preferences can, of course, be supported by argumentation; but so can the opposing views. 
This means that choices should be made explicit, along with their known benefits and drawbacks.   
 It is a good time to explicate the design space for semantically-oriented NLP because of the 
recent upswing of interest in computational semantics, fueled by the current popularity of such 
paradigms as cognitive computing and the application of statistical methods to semantics. 
Renewed interest does not imply identifying new needs: the needs of automating language 
understanding have been well understood since the early days of AI. The question is whether, this 
time, the community will face the considerable challenges imposed by natural language in a 
realistic way, without either looming pessimism or head-in-the-sand optimism. 
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One way to encourage developers to identify their choices in building semantic analysis 
systems is to make explicit the choice space, effectively turning an open-ended question into a 
multiple-choice one. The goal of this essay is to provide a scaffolding for that type of description. 
I say “scaffolding” because a full inventory of choices and options for realizing them could run 
into the hundreds or even thousands of elements, depending on the descriptive granularity; and 
the quickest way to squelch progress on understanding a problem space is to require that the 
treatment be complete. In sketching the design space for semantic analysis systems, I take counsel 
from the experience of organizing our home library: linger too long on the top-level classification 
– by language, historical period, strictly alphabetical, fiction or non-fiction, his or hers – and you 
will live with boxes indefinitely. Much saner to make decisions and live with their imperfections. 

2. “Semantics” in Non-Cognitive Systems, Briefly  
Although the focus here is on semantics for cognitive systems, which involves computing the 
contextual meaning of language utterances in terms of the agent’s world model, we begin with the 
briefest overview of how the term “semantics” has been used in statistical NLP.   
 In statistical NLP, the object of analysis is uninterpreted text strings: there is no level of repre-
sentation beyond actual words. This means that core semantic phenomena such as ontologically-
grounded lexical disambiguation, semantic compositionality, ellipsis, implicature, indirect speech 
acts, and many more are outside of purview. The reason why such exclusions do not halt the 
works is that developers of such systems select application areas in which useful results can be 
achieved despite bypassing meaning. For example, both state-of-the-art machine translation and 
question-answering systems tend to rely on large, redundant corpora. For machine translation, the 
corpora include parallel texts in the source and target languages – and if no such corpora exist, 
then the methods either do not apply or perform poorly. Question-answering systems, for their 
part, exploit the redundancy of large corpora by orienting around linguistically simple 
formulations of responses rather than those that would require semantic analysis. For example, to 
answer “Where was John F. Kennedy born?” such a system will seek a relatively direct 
formulation such as “John F. Kennedy [or President Kennedy, or JFK] was born in Brookline, 
Massachusetts”. If the only assertion of that fact in a corpus was is “That is where his son, the 
future president of the United States, was born a year later”, such a system will certainly miss it.   
 If “semantics” is undertaken by statistical systems, it is not defined as computing the full, 
contextual meaning of inputs but, rather, as leveraging some select, individual feature(s) that can 
improve a given application. Let us briefly consider just two semantic subtasks that have proven 
beneficial to statistical NLP systems: semantic role labeling and distributional semantics.  
 Semantic-Role Labeling. Semantic roles, otherwise known as case roles, indicate the main 
participants in an event, such as the agent, theme, instrument and beneficiary. Although the roles 
themselves are semantic entities, in a statistical environment they are used to link uninterpreted 
text strings; so the only semantics in this approach is the role label itself. If a semantic-role 
labeling system is provided with a set of paraphrases, it should be able to establish the same 
inventory of semantic role assignments for each. For example, given the sentence set Marcy 
forced Andrew to lend her his BMW, Andrew was forced by Marcy into lending her his BMW, and 
Andrew lent his BMW to Marcy because she made him, a semantic role labeler should recognize 
that there is a lend event in which Andrew is the agent, his BMW is the theme, Marcy is the 
beneficiary, and Marcy caused the event to occur. Semantic role labeling systems are typically 
trained using supervised machine learning, relying on the corpus annotations provided in such 
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resources as PropBank and FrameNet. Among the linguistic features that inform semantic role 
labelers are the verb itself, including its subcategorization frame and selectional constraints, 
aspects of the syntactic parse tree, the voice (active vs. passive) of the clause, and the elements’ 
linear positions. As Jurafsky and Martin (2009: 670–1) report, semantic role labeling capabilities 
have improved performance on tasks such as question answering and information extraction.  
 Distributional Semantics. As Clark (2015) notes in his historical review, distributional 
semantics operationalizes the intuitions that “a word is characterized by the company it keeps” 
(Firth, 1957), and “words that occur in similar contexts tend to have similar meanings” (Turney & 
Pantel, 2010). Distributional models are good at computing similarities between words – e.g., 
they can establish that cat and dog are more similar to each other than either of these is to 
airplane, since cat and dog frequently co-occur with many of the same words: fur, run, owner, 
play, etc. Moreover, statistical techniques, such as Pointwise Mutual Information, can be used to 
detect that some words are more indicative of a word’s meaning than others: whereas fur is 
characteristic of dogs, frequent words like the or has, which appear in texts with dog, are not. 
Although distributional semantics has proven useful for such applications as document retrieval, 
it is not a comprehensive approach to computing meaning since it only considers the co-
occurrence of words. Among things it does not consider are the ordering of the words, which can 
have profound semantic implications (X attacked Y vs. Y attacked X), their compositionality, 
which is the extent to which the meaning of a group of words can be predicted by the meanings of 
component words (The old man kicked the bucket, may he rest in peace has nothing to do with the 
act of kicking an open container),1 or hidden sources of meaning like ellipsis and implicatures.  

To sum up, when a statistical NLP system is called “semantic”, this typically means that one 
or more meaning-related features, which can be computed from uninterpreted text strings, are 
appended to an engine whose main problem-solving power lies elsewhere. As discussed by 
Zaenen (2006), it would be unrealistic to expect that the same supervised learning methods that 
have proven useful for knowledge-lean applications can be applied to computational semantics. 
The problem is that supervised machine learning requires corpus annotation, and annotating 
semantic features is orders of magnitude more difficult than annotating syntactic features. 
Moreover, even if semantic annotation were possible, it is far from clear that the learning 
methods themselves would work very well over a corpus thus annotated since the annotations will 
necessarily include meanings not overtly represented by text strings. The answer cannot be that 
more and more annotations are needed, since that would undermine the statistical community’s 
insistence that its approach to NLP is superior to knowledge-based approaches due to less 
reliance on manual knowledge acquisition.  

Using the term “semantic” to describe primarily non-semantic systems that use just one or two 
semantic features is unfortunate, in the same way as it is unfortunate that the internet, enhanced 
by select metadata tags, is called “The Semantic Web”. The problem with this use of the term 
“semantics” is that the meaning becomes diluted, much the same way as the term awesome can be 
used in modern-day American English to describe a tasty cup of coffee. Although semantic shift 
is natural in languages, this naming practice means that systems that actually attempt human-level 
meaning analysis must then be renamed accordingly, as treating real, full, deep, actual, human-
level semantics. Similarly, the internet, when it eventually represents the results of such meaning 
analysis, will need a new name as well: perhaps the Super-Semantic Web?  
                                                
1 Work is underway to extend distributional semantics to exploit compositionality (Goyal et al., 2013). 
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This ends the discussion of how aspects of semantics are being appended to primarily statis-
tical systems. Now we proceed to full semantic analysis and the rich choice space available for 
developers of cognitive systems who are seeking to operationalize it.  

3. Semantics for Cognitive Systems 
What is semantics for cognitive systems? The best way to answer this question is to work 
backwards from the meaning-related needs of cognitive systems overall:  

• The agent must interpret the results of all perceptual inputs – language, simulated vision, 
sensors, etc. –  in terms of its model of the world. That is, whether an agent sees that a 
chicken crossed the road, is told this fact by a trusted source, or hears the unmistakable pitter-
patter of chicken feet on concrete, it must integrate that knowledge into its memory using the 
same knowledge representation language. 

• The agent must use its resident model of the world – including its current plans, goals, 
mindreading of the interlocutor, and understanding of the context – to guide its interpretation 
of perceptual inputs, since they are often highly ambiguous.  

• The agent must dynamically integrate its interpretations of multiple channels of perception 
since, for example, visual stimuli can help to disambiguate language input and vice versa.  

• The agent must store all of the new content interpreted in this way so that it can use this 
information for reasoning about action.  

Positing this broad definition of semantics does not imply that all work on semantics for cognitive 
systems must embrace all aspects at once or to the same degree. That would impose an 
impossibly heavy burden on anyone attempting to solve any of the subproblems. However, since 
cognitive systems research naturally gravitates toward the big picture, it is best to begin here, 
prior to exploring the more specific choices presented below in Sections 3.1 to 3.8.  

3.1  Deep Semantics: AI-NLP or Computational Formal Semantics? 

Work on deep semantics for agent systems can be roughly divided into two paradigms, which we 
consider in turn: AI-NLP and computational formal semantics. 
 AI-NLP is natural language processing carried out with the goals of achieving human-level 
artificial intelligence. It requires cleaning up the messiness of natural language by translating 
elliptical, ambiguous, often ill-formed utterances into well-formed, ontologically-grounded 
propositions that convey the full contextual meaning that would be understood by a person.  

For the past half century, the machine reasoning community has worked under the assumption 
that the NLP community would succeed in automating this process; and, in the interim, devel-
opers have manually crafted knowledge structures as input to machine reasoners. (For a historical 
discussion, see Nirenburg and McShane, 2016.) However, nothing about the translation process is 
easy: the agent must resolve lexical and referential ambiguities, detect and reconstruct elided cat-
egories, recover from production errors (e.g., repetitions and false starts), detect indirect speech 
acts, analyze non-literal language, reason about implicatures, and properly incorporate what it has 
learned into its ever-evolving knowledge about types and tokens in the world. 

Because of this complexity, AI-NLP is best suited to smaller domains for which agents can be 
supplied knowledge and reasoning capabilities analogous to those used by people. But this has 
raised the issue of the cost of knowledge acquisition, referred to by those preferring statistical 
techniques as “the knowledge acquisition bottleneck”. The problem with this moniker is that it 
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misrepresents the situation. Agents need knowledge not only to understand language but also to 
make sense of visual stimuli, a highly expectation-driven process in humans (Nilsson, 2014), to 
make decisions about action, and other intelligent behaviors. So the “knowledge acquisition 
bottleneck” argument – which derailed work on computational semantics – only makes sense if 
one asserts that all agents must be able to process all texts in all domains. This is just as 
unreasonable as saying that any given robot must be able to carry out any imaginable task. 

Consider the capabilities a robotic kitchen helper would need to interpret the statement, “No, 
wooden, it’s Teflon” as meaning “Don’t use the metal utensil you just picked up, use a similar 
one made of wood because if you use the metal one you might scratch the Teflon”. We would 
expect our robot not only to understand and follow such instructions but also to learn that metal 
utensils, in principle, are not to be used with Teflon, which should inform its future decision 
making about utensil selection. It is noteworthy, sociologically speaking, that although specialists 
and nonspecialists alike applaud robotic systems for succeeding at individual tasks such as grasp-
ing and moving objects with particular features, they show a baffling resistance to embracing so-
phisticated language processing if any domain constraints are imposed – which explains the over-
whelming preference for statistical systems. 

A difficult theoretical and practical question in AI-NLP is ‘Where does semantics end and 
general reasoning begin?’ Consider a line from a recent pop song: My momma don’t like you and 
she likes everyone.2 Formally, this is a contradiction but, of course, it is not: “everyone” here does 
not mean all humans. Instead, it refers to the set of humans the mother happens to know who are 
not completely awful. Even she does not like the awful ones – the singer’s former girlfriend 
included. Although it goes without saying that the cognitive agent must understand such 
implicatures, it would be unfair to impose on the AI-NLP community responsibility for chasing 
them all down before claiming any success. So, although I heartily agree with Jackendoff (2007: 
257) that if linguists do not take responsibility for the interactions between language, knowledge 
of the world, and reasoning, then nobody else will, we must offer AI-NLP practitioners mile-
stones for success prior to achieving across-the-board modeling of human cognition. 
 Early examples of AI-NLP, undertaken before the field’s shift toward statistical methods, are 
Conceptual Dependency theory (Schank, 1972) and Preference Semantics (Wilks & Fass, 1992). 
Current approaches, whose utility is being validated through incorporation into comprehensive 
cognitive systems, include the theory of Ontological Semantics, as implemented in OntoAgents 
(Nirenburg & Raskin, 2004; McShane & Nirenburg, 2012), and the LUCIA language understand-
ing system used by the robot ROSIE (Lindes & Laird, 2016).  

Computational Formal Semantics. The issues treated in computational formal semantics 
largely parallel those of non-computational formal semantics: determining the truth conditions of 
declarative sentences, interpreting non-declarative sentences based on what would make the 
declarative variant true, and interpreting quantifiers and other elements of the logical vocabulary. 
Of course, only a small part of language understanding actually involves truth conditions, 
meaning that computational formal semantics cannot be considered an all-purpose approach to 
natural language understanding. Rather, it seeks to solve a specific set of reasoning-oriented 
problems that are related to language insofar as human thought is expressed in language. One of 
the topics that distinguishes the computational version from its non-computational counterpart is 
the use of theorem provers to determine the consistency of databases (Blackburn & Bos, 2005). 

                                                
2 From “Love Yourself”, written by Justin Bieber and Ed Sheeran. 
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Computational formal semantics develops methods to reason specifically and only about 
unambiguous propositions (Blackburn & Bos, 2005). However, since unambiguous propositions 
are rare in natural language, computational systems cannot use natural language as a metalan-
guage for representing meaning. Instead, other metalanguages must be used, such as first-order 
logic. Although the translation from natural language into an unambiguous metalanguage would 
ideally be carried out automatically using AI-NLP, in practice the inputs to formal semantic 
reasoning engines are typically written by hand, making these systems – at the current stage of 
development – only partially automatic. This raises two important issues that divide practitioners 
of NLP: the judgment of the acceptable germination time between obtaining research results and 
attaining practical utility, and the acceptable inventory of as-yet unfulfilled prerequisites for a 
system. Formal semanticists who cast their work as computational assume a long germination 
time and require nontrivial prerequisites to be fulfilled—most notably, a perfect disambiguating 
translation from natural language to the metalanguage required for reasoning. Still, they are 
attempting to treat difficult problems that must be handled by advanced intelligent agents, 
whenever that stage of development is reached. The alternative point of view, as Church (2011) 
notes, is that NLP is a purely technological pursuit that should concentrate on near-term results of 
even minimal utility. Both views have their proponents and are being actively pursued.  

3.2  Coverage of Linguistic Phenomena  

At any given time, there are hundreds of linguistic phenomena that a system could consider inside 
or outside its purview. For example, a system may or may not understand sentences that include 
topic fronting (Chipmunks I like!), reduced relative clauses (The flavor I chose is the one I like 
best), metonymies (Tell the baseball bat that we’re about to start), new lexical coinages using 
productive affixes (He’s so anti-balloon), or highly elliptical utterances (Another?). Moreover, 
for each such phenomenon, “treatment” could be defined in various ways. We begin with short 
overviews of some phenomena that have been more widely discussed in the NLP literature. 
 Word Sense Disambiguation. This involves selecting the correct contextual meaning for each 
polysemous word and phrase. Since most nontechnical words are, in fact, polysemous, this can be 
quite challenging. Two of the subchoices involving word sense disambiguation are: (a) whether to 
use a highly polysemous lexicon that forces the agent to carry out contextual disambiguation or to 
artificially constrain the agent’s lexicon to the senses expected in the application; and (b) whether 
to assume that the existing lexicon is complete or to require the agent to learn new words and 
word senses on the fly (cf. learning below).  
 Semantic Role Labeling. As explained earlier, this establishes the semantic relationships 
between events and their participants, with the actual inventory of semantic roles (agent, theme, 
instrument, etc.) being chosen by developers. For agent systems, in contrast to statistical systems, 
the semantic roles must link interpreted meanings rather than uninterpreted text strings. Semantic 
role labeling is thus most naturally undertaken in conjunction with word sense disambiguation.  
 Reference Resolution. In agent systems, resolving reference involves linking mentions of 
objects and events to their anchors in the agent’s memory. Textual coreference resolution – a 
topic extensively pursued within statistical NLP – can sometimes offer useful heuristic evidence 
toward making the necessary link to memory. Since there are many classes of referring 
expressions, a given agent system can, at any time, cover all or only a subset of them: personal 
pronouns, reflexive pronouns, proper names, definite descriptions (noun phrases with the in 
English), indefinite descriptions (noun phrases with a/an in English), demonstrative pronouns 
(this, that), referential verbs, and elided referring expressions. These categories can be further 
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broken down semantically or functionally. For example, a system might treat only those instances 
of the personal pronoun it that are referential and that have a nominal textual antecedent, as in 
Look at my new dress. Do you like it? Such a system would not be able to treat examples in 
which it was either pleonastic (It is raining) or referential with a propositional antecedent (I asked 
him to sharpen all the knives. Did he finish it?).3 
 Ellipsis Detection and Resolution. Ellipsis is the non-expression of a category that can be 
understood from the linguistic or real-world context. In each language, some types of ellipsis are 
canonical and found in all language genres, whereas other types are constrained to informal 
genres. For example, in English, verb phrase ellipsis is canonical (Sally got a new bike but 
Charlie didn’t __ ), whereas subject ellipsis is used only informally (Sorry, __ didn’t get your 
message in time). Automatically detecting ellipsis is just as challenging as resolving it once 
detected, particularly in informal genres, in which the extensive use of ellipsis can make 
utterances look like cobbled together fragments of meaning (Me, yeah, but not now) rather than 
semantically complete structures with elements removed.   
 Nominal Compounds. These are combinations of two or more nouns whose semantic 
relationship is not lexically indicated. Given a compound, like dining room window screen, an 
agent, like a person, should understand this is a screen for a window in the dining room. Of 
course, since natural language prepositions like for and in are ambiguous, the actual meaning 
needs to be grounded in an unambiguous ontological metalanguage such as: WINDOW-SCREEN 
(PART-OF-OBJECT WINDOW (LOCATION DINING-ROOM)). The meaning of a compound is 
predictable to varying degrees: it can be lexically fixed (attorney_general), suggested by a typical 
ontological pattern (FRUIT + TREE indicates a tree that bears the given type of fruit: apple tree), or 
open to various interpretations depending on the real-world context (e.g., Microsoft lecture could 
mean a lecture <at, about, given by an employee of, for an employee of, etc.> Microsoft). In some 
cases, representing the full meaning of a nominal compound requires more than a single relation 
linking the given concepts: for example, shrimp boat means ‘a boat that is the location of fishing 
events whose theme is shrimp’ (McShane, Beale, & Babkin, 2014). When analyzing nominal 
compounds, the agent must disambiguate all component nouns and establish their semantic rela-
tionships. It is worth noting that when nominal compounding is undertaken by the statistical NLP 
community, component nouns are not semantically analyzed, leading to a clash of entity types 
like that with case role labeling: non-semantic entities (text strings) are linked by semantic labels.   
 Indirect speech acts. These occur when the form of an utterance does not align with its 
illocutionary force (i.e., intended meaning). For example, a declarative statement can be used as a 
request (I’d really appreciate a cup of coffee) or as a question (I’d love to know why you came 
two hours late). For practical purposes, we can divide indirect speech acts into at least three 
categories: lexically canonical, ontologically canonical, and noncanonical. The two examples 
above represent lexically canonical patterns: I’d really appreciate…; I’d love to know why… 
Although these do not always represent indirect speech acts, that is one of their regularly avail-
able analyses, and adding associated phrasal senses to the lexicon is akin to recording multiple 
senses of table in the lexicon: it provides the options for analysis, which the agent must evaluate 
contextually. Ontologically canonical indirect speech acts can be detected by relying on ontolog-
ical scripts and related rule sets: for instance, mentioning a negative state of affairs may actually 
                                                
3 The MUC co-reference task definition incorporates complex rules that exclude many eventualities from its purview 

(Hirschman & Chinchor, 1997). 
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be asking the interlocutor to offer assistance in alleviating it (I’m freezing!). Finally, there are 
instances of indirect speech acts that are so idiosyncratic that even people can fail to understand 
what is implied: “I just saw the mailman drive by. [No response.] Aren’t you going to go out and 
get the mail?” “Why should I? You get it if you want it.” A semantic analysis system might be 
tasked with treating a broad or narrow inventory of indirect speech acts. In addition, it might be 
asked to only detect the potential for an indirect speech-act interpretation or to make the final 
assessment of whether that interpretation was contextually appropriate.  

A continuation of this list of linguistic phenomena would include multiword expressions, 
typical and novel metaphors, metonymy, implicatures, sarcasm, irony, humor, and the full invent-
tory of canonical and noncanonical syntactic structures. In fact, we could unpack each language-
processing module (preprocessing, morphology, syntax, semantics, pragmatics), each knowledge 
base (lexicon, ontology, fact repository), and each rule set (for parsing, reference resolution, etc.) 
into its own choice space. Of course, neither here nor in published system reports is it realistic to 
cite a full inventory. However, it is realistic to explain to readers what is going on. For example, 
if a lexicon contains 50 single-sense words and one word with two senses, then it would not be 
appropriate to call it a robust, polysemous lexicon that validates the agent’s capability for lexical 
disambiguation. It does not matter if a logician would tell us that this statement is formally true; 
pragmatically speaking – and we cannot disregard pragmatics – that claim would be misleading. 
The reason that true reporting is so important is that overselling led to disillusionment with AI-
NLP 25 years ago, and could doom current work if the scientific community does not make its 
voice louder than that of industry’s crack advertising teams.   

3.3  Incremental or Sentence-Level Analysis 

The analysis of speech or text input can be carried out incrementally (word by word) or at the 
level of full sentences. Over the history of NLP, most syntactic parsers have worked at the level 
of full sentences, since this greatly reduces complexity. However, incremental analysis (e.g., Ball, 
2011) is psychologically more plausible and permits the agent to begin acting before an utterance 
is complete. For example, if someone tells a helper robot, “Take the knife and” the robot can start 
reaching for the knife before hearing what comes next. Similarly, if it fails to understand 
something in the middle of an utterance, it should be able to interrupt imme-diately, as a person 
would. However, incrementality comes at the cost of increased ambiguity in processing 
subsentential fragments. For example, take is a polysemous verb whose meaning is specified only 
when its arguments are known (Sally took the knife / a break / my pulse). Before the direct object 
has been indicated, take will have dozens of candidate interpretations; moreover, when multiple 
ambiguous words contribute to a fragment, the ambiguity increases accordingly.  
 The way to cut through this ambiguity is through modeling the agent’s expectations, which 
must derive from its dynamically changing understanding of its own plans and goals, its 
interlocutors’ plans and goals, and the speech situation. For example, if a nurse approaches a 
person with a blood pressure cuff saying, “I’m going to take…”, that person has a pretty good 
idea what is coming next. So, too, should an intelligent agent; but the work involved to 
operationalize this capability is clearly not limited to language understanding. 

An interesting question is whether syntactic parsers that were trained on full sentences can 
offer useful heuristic evidence when run incrementally in service of a semantic analyzer. We are 
exploring this issue in the OntoAgent system, using CoreNLP (Manning et al., 2014), and we are 
finding that syntactic evidence thus acquired can be useful if the agent treats it as overridable. 
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3.4  Channels of Perception 

As mentioned earlier, virtual or robotic language-using intelligent agents can be endowed with 
channels of simulated perception that can provide the nonlinguistic evidence needed to support 
full understanding in dialog applications. For example, visual input would permit an agent to 
interpret gestures, facial expressions, and deictic references to elements of the physical environ-
ment (“Give me the green one”), haptic input would enable it to interpret references to the shapes, 
textures and temperatures of objects (“Hand me the coldest one”), and non-linguistic audio 
perception would permit it to interpret environmental sounds like crashes and gunshots (“If you 
hear a gunshot, evacuate”). The earliest AI researchers recognized the need for multimodal inputs 
to language understanding; however, like other problems that are most naturally approached 
using knowledge-based modeling, this one has been postponed by the community at large. 
Current efforts to integrate perceptive inputs are manifest by Lindes and Laird’s (2016) ROSIE 
robot; Scheutz et al.’s (2017) one-shot-learning cognitive robot; Nirenburg, McShane, and Beale's 
(2008) simulated virtual patients; and Nirenburg and Wood’s (2017) language-based learning 
support for a furniture-building robot.  

3.5  What and How Much to Understand?  

Although one might think that intelligent agents should fully understand everything that every 
human in their presence says, this is not characteristic of human behavior, given the messy nature 
of human speech. Like humans, artificial agents should pay attention to what is in their scope of 
interest and not exert undue effort to decode what might well defy understanding anyway. What 
an agent pays attention to, and how confident its understanding must be before acting upon it, 
depend on the application, which can range from low risk, such as keeping an older person 
company through conversation (Wilks, 2010), to high risk, such as acting on instructions to 
detonate explosives. For each domain, agents will have an inventory of capabilities and respon-
sibilities, and must extract relevant inputs from a potentially largely irrelevant language stream. 
For example, a robot mechanic’s assistant might hear: “Shoot, this thing is so stuck… Damn… If 
I could only… only… Ouch! The wrench, give it here, now!” Here the robot should ignore all of 
the self-talk – and certainly not ask the human for clarification of what so stuck means, which 
would really aggravate him – and wait for something to which it can actually respond: a request 
to give the speaker the wrench. In short, task-related reasoning must be threaded into the 
language understanding process (Nirenburg & McShane, 2015), but exactly how that is done – in 
terms of modeling plans, goals, expectations, and confidence – may vary widely. 

3.6  Issues of Domain  

We have already established that deep language understanding is most feasible in smaller 
domains for which we can provide the agent with the knowledge bases and reasoning engines 
needed to extract full contextual meaning. However, in order to debunk the criticism that “It’s 
only a toy system”, developers should explicitly describe each system’s domain, scale, and 
extensibility. Among the relevant data points are the number of words, phrases and ontological 
concepts covered, whether lexical ambiguity is being treated or avoided (as by recording only one 
sense for each word and phrase), the man-hour expense of acquiring the knowledge bases, how 
much of the knowledge is applicable to other domains, the strategy for porting to other domains, 
and whether the agent independently engages in “lifelong learning” of new words and concepts.  
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In short, although “toy” has acquired a negative connotation in AI, small systems can have plenty 
to boast about, but it is the job of developers to provide – not readers to guess at – this context.  

3.7  Confidence and Explanation  

An important and much discussed question involves when, why, and to what extent people will 
trust agent systems and, if they do, whether that trust will be justified. One way to make agent 
systems trustworthy is by enabling them to estimate confidence in all aspects of their processing 
and to explain both their outputs and their confidence estimations to their collaborators.  
 The least helpful type of confidence judgment is over a corpus treated as a whole, which is 
commonly used to evaluate statistical NLP systems. For example, an average of 80% accuracy on 
reference resolution says nothing about the system’s confidence in the resolution of a particular 
referring expression in a particular context. More helpful are confidence judgments at the level of 
individual sentences or dialog utterances. Still better are confidence judgments supplied with 
human-readable explanations of the reasons for a particular level of confidence. For example, 
assume a system is asked to analyze the sentence A monkey is eating a banana. Assume further 
that the system’s lexicon contains only one sense for each of the words, and that the constraints in 
the corresponding lexicon and ontology entries align perfectly for an interpretation that means 
“An animal of the type monkey is ingesting a fruit of the type banana”. The system could readily 
provide a very high confidence score as well as this trace of reasoning. By contrast, an input like 
It made it because of that presents a much more difficult ambiguity resolution challenge, due to 
the presence of the vague and multi-functional expressions it and that, as well as the light verb 
make, which has dozens of productive and idiomatic senses. In this case, the system’s 
interpretation should have lower confidence due to the complexity of the disambiguation process. 
 The need for explanation by AI systems has not been central to the field's agenda until 
recently, as seen by a push toward “explainable artificial intelligence”. The problem is that people 
are increasingly being asked to trust systems whose decision making – based on statistical 
learning – defies human-tractable explanation (Knight, 2017). When decisions thus made carry 
weighty consequences – invest in this stock, take this drug – people want reasons they can 
understand. With respect to explanatory power, intelligent agents that emulate the thinking, 
learning and decision making of humans have a clear advantage over mathematical approaches. 
Optimizing the granularity, nature, and even presentation of those decisions remains a wide-open 
area for research but, clearly, it is best explored through actual systems rather than through high-
level theorizing about imagined preferences of imagined system users.  

3.8  Evaluation 

Evaluation of cognitive systems is a difficult problem. Although most developers would agree 
that the gold standard is to evaluate an agent’s performance on its intended task (Jones, Ray, & 
van Lent, 2012), there are two problems with casting this as a hard requirement. First, many agent 
projects that pursue truly sophisticated capabilities have a long incubation period during which 
developers must show progress to keep their programs viable. Second, work on individual agent 
capabilities that can contribute to many agent systems is also progress even if it is not 
immediately integrated for evaluation. A productive alternative to requiring formal evaluations of 
end systems has been adopted by the Advances in Cognitive Systems journal and conference 
series, which encourage authors to formally state claims and the evidence for them – a framework 
that embraces a much broader scope of contributions. 
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4. Conclusions 
Although the watering down of word meaning is a natural diachronic process of language, it is 
particularly striking when the newly vacuous term is “semantics” itself. These days, calling a 
computer system “semantic” says nothing about how it defines or computes meaning. In fact, the 
term carries meaning only among like-minded developers who often fail to adequately explain the 
details of their work. This essay has sketched out the design space for semantic analysis in 
computer systems and has argued that descriptions of “semantic” systems need to define what is 
meant by a semantic interpretation, which linguistic phenomena are covered, the extent to which 
the approach is extensible across domains, and so on, following the inventory of parameters 
detailed in Section 3. Without this grounding, it is impossible for people within the field – not to 
mention the public at large – to make sense of reports of scientific and technological advances.  

Maintaining a healthy research program on the long-term problem of emulating human-level 
language understanding in computer systems is as challenging tactically as it is scientifically, 
particularly since the actual state of the art bears little resemblance to the story of cognitive 
computing being sold by industry. Although serious researchers favor sober, unadorned reporting 
– not to mention papers reporting negative results – we all know that they are a hard sell. The 
goal of this paper is to champion the practice of telling it straight as the norm for the still young 
cognitive systems community. To the extent that understanding the choice space for semantic 
systems can foster a movement in this direction, this essay will have achieved its goal. 
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