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Abstract
Studies of human problem solving were one of the basic sources of insight for early AI research.
Unfortunately, this approach has been largely abandoned in recent decades. In this essay, I argue
that the cognitive systems community should put more effort into understanding and modeling hu-
man problem solving. I present examples of open research questions, discuss obstacles in pursuing
this type of research, and show how greater diversity of methods and problems would improve
understanding of on problem solving in both humans and machines.

1. Introduction

Attempts to understand human problem solving played a key role in early AI research. Seminal
work of Newell and Simon (1972) on this topic paved the way for one of AI’s most basic mech-
anisms: heuristic search through a problem space. Analyzing and drawing lessons from human
behavior is more important than ever for research in AI and cognitive systems (Langley, 2012b;
Lake et al., 2016). One reason is that people are the only entities we know that exhibit general intel-
ligence. Psychological studies have revealed that abstract thinking is central not only to high-level
cognition, but also to our ability to interpret events and react flexibly to them. The cognitive systems
paradigm, which aims to revive the original vision of AI, adopts this perspective. If our goal is to
implement computational systems that exhibit human-level intelligence, what is more obvious than
looking at people’s behavior for inspiration and guidance? Langley (2012a) explicitly includes links
to human cognition as a characteristic of many cognitive systems efforts, although not all research
in the area must make such connections.

Another motivation for understanding human behavior is the growing pervasiveness of embed-
ded computers and, with it, the growing need for intuitive interfaces. Early computers were fixed
to one location and people assumed that using them required special attention; in contrast, many
modern computers are designed for use by anyone in any place. We can no longer count on highly-
trained users who think like machines; we must devise machines that work like people, at least on
the level of their visible behavior. AI’s current focus on statistical machine learning has often led to
situations in which not even the AI experts who build a system can understand its behavior, which
in turn has led researchers to develop techniques for generating post-hoc explanations of opaque
statistical models. In contrast, methods that are inspired by insights into the nature of human prob-
lem solving are more likely, from the outset, to be understandable without such convoluted and
unnecessary rationalizations.
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The gradual shift to statistical approaches over the last few decades has been accompanied by
a change in the meaning of “problem”. Newell and Simon (1972) studied tasks that were asso-
ciated with a high degree of intelligence in humans (chess, cryptarithmetic puzzles, and logic).
Unfortunately, such analytical problems are relatively easy to model mathematically and some AI
researchers have recast them as optimization tasks. The result is that many people now associate
the term “problem” with well-defined analytical tasks that have a well-defined optimum. Simon
(1977) argues that most problems are inherently ill structured, even though their subtasks may in-
volve well-defined structures. The original intention was to understand the solution of intellectually
challenging problems in context by examining how humans approach them. In this view, problems
are suitable for our purposes if humans are good at solving them.

In this essay, I use the Traveling Salesperson Problem (TSP) as an example. This task involves
finding the shortest tour through a set of locations. It is both a classical problem and an abstraction
of many real-world tasks, such as planning a vacation tour (Tenbrink & Seifert, 2011) and running
errands in town (Hayes-Roth & Hayes-Roth, 1979), and it has been studied by cognitive psychol-
ogists (MacGregor & Chu, 2011; Best & Simon, 2000). First I present some examples of open
questions in the area of human problem solving, showing that much remains to be done that has
interesting scientific potential. Next I explain why this type of research is often difficult to pursue in
the current academic environment. Finally, I argue that adopting the principles of design thinking
may offer a way out of the current impasse. The core message is that science should foster diversity
in research questions, paradigms, and methods.

2. Research Topics

Recent decades have seen AI producing remarkable results in well-defined but niche areas. This
success led both to commercial exploitation of the responsible methods and increased research
funding. As Fahlman (2012, p. 6) puts it, “When one of these super-human technologies takes off,
it creates a ‘gold rush’ that attracts talent and resources away from the broader core problems of
AI”. Moreover, successes have been due partly to developments outside of AI, such as increased
processor speeds, larger and cheaper memory, and introduction of infrastructure like the internet.
This does not make them any less useful, but it suggests more rapid AI progress than has actually
occurred. Many basic questions that have been open for decades are still not remotely solved.

In this section, I review some research questions that Newell and Simon (1972) raised 45 years
ago, but that have received hardly any attention. I then propose some additional phenomena that
are worth examining. I should emphasize that these are only examples; impact will not come from
progress on them in isolation, but rather from advances on the entire set of problems and phenomena.

2.1 Uncharted Search Parameters

Newell and Simon (1972) identified search through a problem space as the basic mechanism of
human problem solving. This paradigm is well accepted in AI, but many “parameters” allowed by
the general framework have been forgotten. Russell and Norvig’s (2010, p. 77) textbook presents an
alluring abstraction in which search emerges entirely from the queuing function for expanded nodes.
However, there are parameters that this scheme does not consider, which I will now examine.
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Selective backtracking. There is no explicit notion of backtracking; search involves expanding a
node that has been generated earlier, with the one selected being determined by a priority queue.
Humans cannot use this strategy on even simple tasks because of their restricted short-term memory
capacity. Think-aloud protocols (Newell & Simon, 1972; Hayes-Roth & Hayes-Roth, 1979) show
that people sometimes reconsider earlier options, but only ones that “make sense” to them. “From
time to time, subjects abandon the current information state they have reached and return to a prior
state. They do not, however, retain the information that would permit them to return to any node
they have visited previously. On the contrary, at any given point in the search only one or two
nodes are commonly available as backup to the current one.”(Newell & Simon, 1972, p. 815). For
TSP solving, this translates into saving the unchosen action1 when two alternatives are regarded as
equally desirable. If later the path is found to be undesirable (e.g., when the only options that remain
have crossing edges), they return to the unselected branch and try to find a solution that includes it.
Figure 1 shows an example of how far people backtrack in this setting.

Branching. Russell and Norvig’s (2010) technique expands the current node by applying every
available operator. In an everyday context, this would mean that, when I think about how to walk to
the nearest door, I would have to consider every movement of which my body is physically capable.
Instead, I consider only a few well-trained leg movements. One can either put effort into choosing
which operators to apply or into evaluation of resulting states. Some cognitive architectures (e.g.,
Prodigy, Soar, Icarus) explicitly consider the choice of operator. The idea is much less common in
robotics, although a few researchers address it half-heartedly by sampling or filtering the actions
with some criterion, as in the Dynamic Window Approach for navigation (Fox et al., 1997). But
the explicit consideration of alternative operators is key to understanding how humans can solve
NP-hard problems such as the TSP with relatively little effort, making it a more promising approach
for incorporation in cognitive systems.

Abstraction. Newell and Simon (1972) observed that people sometimes switch between levels of
abstraction, but they offered no final answer about how this occurs. Obviously, humans somehow
abstract from a situation and ignore all but the “important” aspects. This process is often modeled
by grouping states into clusters, sometimes known as “state abstraction”, or organizing actions into
higher-level activities, sometimes called “temporal abstraction”, as in work on three-layer architec-
tures, hierarchical task networks, and hierarchical reinforcement learning. Researchers have applied
hierarchical approaches to the the TSP (Kong & Schunn, 2007; Best, 2006; Graham et al., 2000),
but analysis of human wayfinding instead points towards an interplay of different abstraction lev-
els (Wiener & Mallot, 2003; Tenbrink & Seifert, 2011). My own work (Kirsch, 2012) proposed a
heuristic approach in which abstract knowledge, consisting of regional clusters, serves as only one
factor for generating and evaluating alternative actions. This flat decision process used knowledge
about spatially meaningful regions to the same advantage as a hierarchical method, but it was more
stable when points were assigned randomly to regions. These examples serve to clarify that even
well-established paradigms like heuristic search have not been fully exploited to explain and model
the varieties of intelligent behavior.

1. Humans sove TSPs by incorporating one unvisited point after another into the tour, each step constituting an action.
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Figure 1. Trial of human behavior on the Traveling Salesperson Problem (Rach, 2017). The participant used
the “undo” functionality eight times to revise an earlier decision (left), so as to include the two points marked
in the red box earlier in the tour (right). This shows that backtracking is selective: the participant did not just
go back one step for revision, but rather to a particular node in the search tree that seemed promising.

2.2 Other Problems and Phenomena

Search is not the only paradigm that needs attention and the TSP is neither the ideal or the only
problem worth studying. But what are good problems to consider? And should we really focus on
problems, or rather on capacities such as attention and decision making? There is no ideal problem
that would give us enough insight to solve all the questions around cognition, or at least we are not
advanced enough to identify such a problem, even if it existed. But while we can proceed only one
step at a time, it is important to realize that individual problems are not usually the unit of interest.
They are only instances that can provide insight into underlying capabilities. Therefore, I suggest
that the research community should pursue a mixture of abilities on a mixture of problems.

One well-established phenomenon worth studying is the use of heuristics in decision making,
following up on Newell and Simon’s (1972) original research and revisiting common assumptions
about the exploration of problem spaces. Search is a powerful concept, but it is well known that
people only consider a small portion of the space. It is quite possible that human search is more
like sampling, where representation of the space becomes more important and memory retrieval
becomes a central factor (Jones & Langley, 2005). Note that this view differs drastically from
mainstream AI’s systematic exploration of search spaces. Recent psychological studies of heuristic
decision making have occurred in behavioral economics (Samson, 2014). Although this field has
revisited some basic assumptions about human behavior, it still lacks a theory of heuristics that is
detailed enough for use in formal models.2 Experimental designs typically involve single decisions
with a specified set of alternatives. Computational models can enrich this research paradigm by
proposing specific mechanisms, incorporating well-defined heuristics, and studying their effects.

Another alternative paradigm to search, related to heuristics, involves the concept of habits.
In 2016, I co-organized an interdisciplinary workshop on this topic.3 The meeting revealed that,

2. Gigerenzer (2001) and Shah and Oppenheimer (2008) present some promising accounts of heuristic decision making.
3. The workshop on “Technology and Routines at the Individual and Organizational Level”, held at the Bavarian

Academy of Sciences and Humanities, was co-organized with Jutta Stumpf-Wollersheim.

16



LESSONS FROM HUMAN PROBLEM SOLVING

although the field of economics distinguishes between (individual) habits and (organizational) rou-
tines, I could not find any recent AI publication that explicitly mentioned these ideas. Miller et al.
(1960) explored the topic in the seminal book, and one could argue that case-based reasoning uses
habits, but current research in the area does not make this connection (Richter & Weber, 2013).
Since habits are such an integral part of human cognition, we should try to understand them as a
powerful mechanism that reduces cognitive and computational load. Their use can also produce
more predictable behavior and let systems classify, understand, and adapt to human regularities.

Habits depend on representing and storing sequences of actions. AI offers frameworks such as
HTNs, temporal logic, and Markov chains, but such sequences involve many attributes that must
be encoded, including the order of actions, their duration, their absolute times, and their locations
(Roor et al., 2017b). One complication in analyzing activities is that humans follow habits loosely;
another is that they divide sequences into meaningful subsequences, such as the routine of preparing
for work and another for going to one’s workplace. Psychologists have found interesting patterns in
how people parse sequences in movies (Huff et al., 2014) that could inspire computational systems.
Such phenomena arise in different contexts. For instance, habits are the basis of many everyday
tasks and can be observed in smart environments, and mobile devices offer a plethora of sensor
information that could be used to study habitual behavior (Roor et al., 2017a).

In addition to such complex, real-world tasks, researchers can study targeted problems that lend
themselves to greater experimental control. Games have long been a favorite subject for research, as
they combine a set of well-specified rules, mostly observable environments, and well-defined goals.
In addition, people typically enjoy playing games, which makes it reasonably easy to collect data.
We have implemented a game that makes users solve instances of the TSP (Rach & Kirsch, 2016)
for precisely this reason.

3. Obstacles to Progress

If there are so many open questions about problem solving, why is more research not being done
in this area? In this section, I describe three obstacles to progress: the difficulty of finding appro-
priate problems to pursue, which holds for all of AI and cognitive systems research; the narrow
computer science view on solution quality in terms of formal optimization criteria; and the research
environment, in which scientific quality is equated with publishing and fund-raising success. These
obstacles reduce the number of career opportunities and limit the funding available to researchers
who develop cognitive systems compared to those who make incremental enhancements to existing
algorithms for narrow tasks. In Section 4, I propose one way out of this impasse.

3.1 The AI Dilemma

In AI and cognitive systems, one of the most difficult challenges is to find appropriate problems
to tackle. If a problem is too simple, then it can always be engineered and thus does not really
require AI methods. If it is too complex, then its solution requires a variety of techniques and their
appropriate combination; thus, success or failure cannot be attributed to any single component.

This dilemma applies especially to understanding problem solving: if we examine problems
from a narrow angle, we can model anything. The result of a psychological experiment can be di-
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rectly turned into a computational model that mimics exactly the observed behavior. Unfortunately,
such narrow models fail to explain intelligence. Developing more general accounts encounters at
least two basic hurdles. First, psychologists take great pains to control conditions in their exper-
iments. This makes absolute sense in order to identify specific situations that produce specific
behaviors. But it is a small, well-defined setting, and any small, well-defined problem can be engi-
neered; this does not require us to understand intelligence. Second, showing that a computational
approach is general requires its application to, and testing on, different problems. Since the whole
purpose of such an approach is not to “overfit” to a specific task, it will typically perform worse on
any particular problem than methods that are handcrafted for that problem.

I can illustrate this point with the TSP example, which I have been trying to model with a
heuristic decision-making approach for several years (Kirsch, 2011, 2012; Rach & Kirsch, 2016).
On one hand, it is too simple, in that it involves a fully observable, abstract problem that, in its
pure form with points and lines, has little to do with everyday human tasks. And it can be solved
effectively by algorithms that find optimal solutions for problems with thousands of points and
near-optimal answers for ones with millions of points, which is far beyond human capabilities.

On the other hand, the TSP is too complex. I chose this problem because I wanted to study
decision making with minimal concern for issues of knowledge representation. But I realized that,
when people solve (artificially presented) TSPs, they seem to treat it as a pattern-matching exercise,
trying mainly to produce an aesthetic figure out of the points rather than optimizing for a short tour
(Vickers et al., 2006). To model more realistic variants of the task, one would need to consider
more cognitive processes and forms of knowledge representation. Do we use the same mechanisms
to solve abstract TSPs as when planning a vacation? How do people represent distances, points of
interest, and preferences? Also, evaluation is a challenge. Even if we could clearly specify whether
a specific TSP instance is solved well enough, it would not tell us much about the heuristic solution
process. The success or failure of solving TSPs could be due to the heuristics themselves or to the
decision mechanism that uses them.

3.2 The Myth of Optimality

I have broadened the definition of “problem” to include any task that arises in the context of real-
world activities. This is a rather big step for many AI researchers, who are used to dealing with
well-defined tasks that may be intractable in computational terms but at least have a well-defined
solution or optimum. Simon (1993) explains that there are three steps in decision making: the
choice of problems or subtasks to attend to; the generation of alternatives; and the selection of
an alternative. Like economists, AI researchers usually focus on the third step and often define
rationality as choosing the alternative with the highest expected utility. However, “[m]aximizing
utility bears no resemblance whatsoever to what we human beings actually do”.

A critical factor is the knowledge involved. Gigerenzer and Gaissmaier (2011, p. 452–453) refer
to Savage (1954) to distinguish between ‘small’ and ‘large’ worlds: “In large worlds, part of the
relevant information is unknown or has to be estimated from small samples, so that the conditions
for rational decision theory are not met, making it an inappropriate norm for optimal reasoning
(Binmore, 2009)”. This differentiation may at first glance be just a technical one. But the critical
point is that most researchers in AI implicitly assume that methods which are optimal in small
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worlds also produce good solutions in large worlds. Gigerenzer and Gaissmaier provide compelling
examples that “small-world theories can lead to disaster when applied to the large world”.

A common fallacy is to ignore the modeling step and then expect optimal solutions. Whenever
engineers must solve a problem in the real world, they first build a more or less detailed model of the
task. For example, one could model the planning of a vacation trip as a TSP, maybe with a modified
cost function to account for personal preferences or beauty of the landscape. From this point on,
most AI researchers would be obsessed with finding optimal solutions. Suboptimal solutions are
only accepted due to intractability. However, a model never represents the world perfectly and there
is no way to establish a formal mapping between reality and the model. If there is such a subjective
step in the process, why should we insist on optimality for the rest of the process?

One answer is that evaluation of a method is much easier for the model than for the original
task. Verifying whether a method provides good answers in everyday tasks requires feedback from
users and measurements in the environment. Thus, we would have to move from a clean mathe-
matical task into messy empirical research. Again consider the Traveling Salesperson Problem as
an example. In the model world, the quality criterion is clear: the length of the tour. But most
real-world TSP variations cannot be mapped onto such a simple measure. If computers are to give
advice to people, we should have some measure of comparing human solutions with computational
ones. Tak et al. (2008) point out that, even for classical TSPs, length of the tour is an inadequate
measure, because tours with the same length can differ in structure and vice versa. Also, number of
crossings has limited use, because humans rarely produce solutions with crossing edges. The next
best thing would be to find different ways to compare tours structurally, say by the number of edges
that overlap, but any such method is rather arbitrary. The ultimate test for a TSP method would be
its application to a generalized TSP task in which costs are less clear than in the formalized version,
then to have people rate the quality of solutions. But this would require the effort of running a
psychological experiment and reduce the result to the specific instance tested in the study.

Note that this type of evaluation disadvantages, in three ways, researchers who are not willing to
adopt a mathematical model with well-defined optimality criteria. First, they need more time to do
their research, reducing the number of publications produced per time unit. Second, methodological
flaws are more likely to occur in a paper covering the whole pipeline, from modeling a problem
to testing an implemented approach empirically, than in one that solves a well-defined problem
theoretically under unrealistic assumptions. This again makes it more likely that a paper will be
rejected. Third, if the ultimate test lies in observing human responses, then the testing criterion is
not accessible at the time of method development. Thus, such a test may produce “negative” results,
in the sense that the method fares worse than expected or produces worse results than existing, more
finely-tuned niche solutions. From a scientific perspective, such results are just as valuable as ones
finding that a method works well, but they are more difficult to publish than reports of incremental
improvements on specific tasks.

3.3 The Research Environment

I have shown how the unique dilemma faced by AI requires the study of a diverse spectrum of
problems and phenomena. Overcoming the myth of optimality would require a variety of methods,
particularly for evaluation. Unfortunately, in a world where researchers are pressured to publish
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as much as they can in the smallest time possible, this diversity is difficult to achieve. Many AI
subfields agree on a specific set of methods, often with some notion of optimality. Other methods
are regarded as unscientific, leading to rejection of papers and research proposals. Some fields even
rely on a common set of problems. For example, in the AI planning literature, problems used for
evaluation are often unexplained; they are simply references to the latest planning competition.

The preference for niche-AI research over broader topics has its analog in behaviorist ap-
proaches to psychology. Both are connected to a general trend in science that favors reductionist
explanations, which has been criticized in multiple scientific fields (Breckler, 2006; Kaiser, 2011).
Hopkins et al. (2016) have shown that reductionist explanations are often regarded as more scien-
tific even when they are irrelevant to the problem. Thus, some types of explanations appear more
scientific than others and receive preferential treatment.

Moreover, science seems to be echoing a trend in Western societies by following the narrative
of ever-faster, ever-bigger success. To aggravate the situation, researchers face increased competi-
tion as research funding focuses more on short-term results than on long-term progress and basic
research infrastructure. This is leading to a veritable arms race among researchers for who has the
longest publication list and the most funding. This in turn encourages researchers to choose top-
ics that can be published quickly and easily, and ones that fit well into the “mainstream” of their
research paradigm (Lawrence, 2007).

One rare example where findings from human problem solving have been used is research on
cognitive architectures. Some architectural theories have a development history of decades. In gen-
eral, good research needs time to think thoroughly about possible implementations and to discover
which methods work and which do not. Geman and Geman (2016) compare the current practice of
science with constantly taking selfies: “In fact, many of us spend more time announcing ideas than
formulating them. Being busy needs to be visible, and deep thinking is not”.

In this context, research on cognitive systems and human problem solving entails a high risk of
being disadvantaged in funding and career decisions: identifying suitable problems and performing
empirical tests takes more time and is less highly regarded than work on well-defined, established
problems with formal evaluation criteria. This leads directly to lower acceptance of papers and
research proposals. However, if enough researchers agreed on the importance of this type of re-
search, we could build a community with a different set of values and methods. For example, the
online journal and annual conference Advances in Cognitive Systems provide venues for research
that follows the original quest for general-purpose, human-level AI (Langley, 2012a).

4. Design Thinking for Cognitive Systems Research

Winograd (2006) draws a line between AI and human-computer interaction not so much in their
research questions, but in terms of their methodologies. The HCI community uses ideas from design
research to foster diversity of ideas. “Design thinking” has become a buzzword for an iterative
development process in which divergent and convergent thinking alternate, with a strong emphasis
on prototyping. This approach contrasts with following steps in a preconceived plan or script. In
software development, this change has been instantiated by a shift away from linear development
frameworks like the waterfall model towards agile software development.
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A basic feature of design thinking is to place the user and task at the center of attention. As
the implementation details of products is not a central concern of scientific research, this may seem
unimportant. But many researchers in niche AI communities have forgotten or never even consid-
ered the larger context to which their research contributes. Design thinking can remind us to take
time on occasion to consider why we are examining a certain intellectual ability or why we are
trying to solve a certain class of problems.

As noted, the design process alternates between divergent and convergent thinking. Niche AI
typically emphasize the latter in its efforts to improve methods incrementally. However, this should
not be a blind optimization process, but rather a sequence of conscious decisions about which in-
cremental steps lead to the most desirable improvements and whether the current method needs
substantial changes or extensions. In addition to convergent thinking, the design process empha-
sizes divergent cognition: proposing many alternative ideas, either for the construction of complete
intelligent systems or for automating component abilities. The design movement encourages people
to think not only along known lines, but also to “think outside the box” and even consider unlikely
or crazy ideas. The approach draws on prototyping to determine quickly and cheaply which alterna-
tives are most promising for further exploration. This explicitly includes the possibility of following
blind alleys, at least for limited time, and recognizes the inability to predict the consequences of any
alternative without having tried them in enough detail. Therefore, determining that some technique
does not work as expected is just as valuable as finding that it does.

A major challenge in this process is determining whether a path is promising and which di-
rections to extend it. The only answer I can give, which may be unsatisfying to scientists familiar
with quantitative measures and fixed evaluation procedures, is to rely on common sense. Science
involves searching through a very large space and we need heuristics to find our way. Luckily, the
human mind comes equipped with a set of very useful heuristics; these fail in certain cases (Tversky
& Kahneman, 1974), but they usually lead to appropriate decisions (Gigerenzer & Brighton, 2009).

The cognitive architecture paradigm – a direct descendant of Newell and Simon’s research on
human problem solving – offers a good example of design thinking (Langley, 2017; Langley et al.,
2009). Research in this area aims to develop unified theories of human cognition and/or intelligent
agents, which it pursues over long periods (Kotseruba & Tsotsos, 2016). Convergent thinking may
refine specific elements of an architecture, such as mechanisms for efficient memory retrieval. But
divergent thinking reminds one tht each such component function can be instantiated in different
ways, such as sorting items through a discrimnation network or spreading activation through mem-
ory. Moreover, these elements are subject to review and change, with entire architectures being
tested on a wide range of problems that serve to ensure their generality.

Cognitive architectures provide a good example of a research paradigm that satisfies many of
my criteria, but we also need diversity at more detailed levels. The holistic view of cognitive ar-
chitectures should be complemented by reductionist approaches, to better understand how specific
mechanisms can be integrated into a unified theory once they have proved promising. However,
in the current research environment, reductionist schemes are overemphasized and pursued outside
such a holistic context. Although not everyone must develop a cognitive architecture, they should
be aware that component techniques are building blocks for complete systems, and they should be
developed and evaluated in this broader context.
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5. Conclusion

In this essay, I argued that the connection between research on human problem solving and artificial
intelligence has been largely abandoned, while theoretical optimization has gained importance. This
has led to a situation in which holistic progress is hardly visible from outside niche fields, while
other important topics receive little or no attention. To some extent, the cause lies in the difficulty of
AI itself, especially the key task of finding appropriate problems. This inherent challenge has been
aggravated by goals and incentives that misdirect AI research and science more generally.

This impasse can only be overcome by pursuing greater diversity of both methods and problems.
This requires an openness of mind from researchers, but it can also be supported by the paradigm
of design thinking. With a clear focus on the original goals of AI and cognitive systems, every type
of research, be it a single method or a complete cognitive architecture, should be regarded in the
context of the overall endeavor. A mixture of divergent and convergent thinking, with conscious
decisions about how to proceed, would lead to increased diversity and progress in the field.

When researchers test their methods on different problem instances, such tests will sometimes
reveal that a method does not work well. The concept of prototyping captures the benefits of trial and
error; if more researchers embraced it, concerns about “negative” results would arise less often or
disappear altogether; any result would be equally welcome, since it advances the field’s knowledge.
In short, embracing prototyping by applying different research methods to various problems would
lead to more robust systems and help banish the notion of negative results.
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