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Abstract
In this essay, I consider the important role of heuristics in research on artificial intelligence and
cognitive systems. After clarifying the different senses of this term, I recount how views on heuris-
tics have changed since their introduction, leading many in the AI community to see them in a very
different light than intended originally by the field’s founders. In addition, I present four claims
about how heuristic methods and structures can influence high-level cognition and how these pos-
tulates differ from mainstream views on the topic. In closing, I propose some actions that cognitive
systems researchers can take to redress the situation and restore heuristics, in the original meaning,
to their rightful place in the computational study of intelligence.

1. Variations on a Meme

One of the central features of cognitive systems research is its incorporation of heuristics. This
notion was central to early work on artificial intelligence and crucial to differentiating it from con-
temporary developments in computer science. In some cases, AI research was even equated with
heuristic programming (e.g., Slagle, 1971), a phrase that contrasted the field with the algorithmic
methods associated with other areas of computing. This suggests that the topic deserves closer
attention from the primary inheritor of AI’s original vision – the cognitive systems community.

In the sections that follow, I discuss the origins of this meme and state some theoretical claims
about heuristics’ relation to intelligent behavior. These will be familiar to many readers of this
journal, as they are often assumed in cognitive systems research. But they are less widely adopted
by what has become mainstream AI, so in each case I also examine how views on the topic have
changed since the field’s inception in the 1950s. Before proceeding further, I should clarify what I
mean by the term heuristic. A careful reading of the AI and psychology literature reveals at least
three distinct but related senses, and they deserve a brief review before I turn to their implications for
AI and cognitive systems. I will not propose formal definitions in this essay, as they could distract
from conceptual matters, but I will attempt to state things clearly enough to avoid ambiguities.

The most generic sense of heuristic refers to some method or strategy for making a decision
or solving a problem that typically produces useful results at reasonable computational cost. Such
techniques do not invariably find the best solution or, indeed, any solution at all, but they often work
well in practice. These are often contrasted with algorithms that are guaranteed to find solutions,
in some cases ‘optimal’ ones. A classic example from decision making is the take the best strategy
(Gigerenzer & Goldstein, 1996) for selecting an item from a set of alternatives. Here one orders
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attributes by importance and chooses an item based on the most important attribute that discrimi-
nates among them. Another example involves greedy search (Cormen, Leiserson, & Rivest, 1990)
in which one attempts to solve a multi-step problem by selecting the best alternative on each step.
Reasoning by analogy (Gentner & Forbus, 1991; Polya, 1957) is another familiar heuristic method.
Each approach often produces acceptable results while requiring low computational resources.

A narrower sense of the term heuristic is a rule of thumb. This is often associated with frame-
works like production systems that encode knowledge as condition-action rules, although they may
be stated in any symbolic formalism, from Prolog clauses to larger scripts or frames. Such struc-
tures can encode various forms of content that aid decision making and search. On simple choice
tasks, rules that specify preferences (e.g., for solid colors over stripes) can be combined with a take
the best strategy to decide among shirts. For problem-solving tasks like planning and design, rules
that prefer, select, and reject goals, states, and operators can guide search through large spaces. Ex-
periments with Soar (Laird, Newell, & Rosenbloom, 1987) and PRODIGY (Carbonell, Knoblock, &
Minton, 1990) have demonstrated such control rules can be effective in solving difficult problems.

A third meaning of heuristic refers to evaluation criteria. These are central to decision-theoretic
approaches to simple choice tasks, where they are called utility functions, but they also appear
regularly in work on heuristic search and game playing. These play the same role as symbolic
rules of thumb that specify preferences, but they produce quantitative scores for choices rather than
a qualitative ranking on them. They also assume a very different format, typically an equation
that combines a set of numeric features or attributes that are provided, measured, or calculated.
Evaluation functions are favored by AI researchers who are attracted to continuous mathematics,
and they have been used successfully not only for problems that involve sequential action, like
planning and game playing, but are also commonly adopted for tasks like design and scheduling.

Each sense of the term is equally legitimate, and the meaning intended in a given publication is
usually clear from its context. Nevertheless, it is still important to acknowledge the distinctions and
to understand how they relate to each other, as this will help in stating theoretical claims about how
heuristics relate to structures and processes that arise in cognitive systems. However, the importance
of these postulates will be more transparent if I first review how the heuristic approach began and
how views about it have changed over time.

2. The Development of Heuristic Thought
As already noted, heuristic processing was an early defining feature of AI research and played a
valuable role in the field’s development, but the idea originated in disciplines that predated the AI
revolution of the late 1950s.1 For example, the psychologist Selz (1927) proposed an early account
of human problem solving in terms of tasks to be solved, mental transformations, and goal-oriented
‘schematic anticipations’. As ter Hark (2010) has observed, these foreshadowed later ideas on
heuristic search through a problem space. Similarly, Simon’s (1947, 1956) concept of satisficing,
which he introduced initially under a different name, also prefigured the later adoption of heuristic
techniques. Both sets of ideas found their way into early AI systems like the Logic Theorist (Newell,
Shaw, & Simon, 1957), although it is unclear whether the latter’s authors were aware of Selz’s work
at development time (Simon, 1981).

1. Less formal usage of the term goes back much further to the original Greek word heuriskein, which means to find.
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Another precursor was Polya (1957), whose well-known book, How to Solve It, contained ad-
vice for addressing problems in his field, mathematics. He used the word heuristic to refer to a
diverse set of methods that, although not stated in fully operational terms, include many techniques
of considerable generality. Although the book did not appear until after implementation of the first
running AI system, Polya taught courses on the topic in the 1940s and Newell (1983) reports taking
one when he was a freshman. Newell also notes that he was not consciously aware of this work
when designing the Logic Theorist, but nevertheless believed that it influenced his thinking. Many
AI researchers have read Polya’s book, but very few have attempted to incorporate his detailed
heuristic methods into their systems.

In many ways, early research on AI proceeded independently from efforts on what came to
be known as computer science, with the first championing heuristic approaches and the second
emphasizing algorithmic methods. Indeed, until the 1980s, both paradigms would have viewed
the phrase heuristic algorithm, now widely accepted, to be an oxymoron. Remember that few
departments of computer science were founded until the 1970s, which meant that many seminal
dissertations on artificial intelligence were done with little exposure to views later associated with
computer science and vice versa. Only in the 1980s, when computer science departments grew
rapidly and began to hire AI researchers, regardless of their background, did the two communities
come into intimate contact. This was partly a marriage of convenience, as computer science needed
energetic professors and AI researchers had few other options for academic homes.

Unfortunately, the resulting union had negative impacts on some of AI’s central tenets, espe-
cially its commitment to heuristic solutions. Many departments of computer science had grown
out of mathematics units, which led formal analysis and provable results to receive higher priority
than alternatives. Once the majority of the AI community had been trained in such settings, many
adopted the view that, unless an approach offered formal guarantees, it was unprincipled and ad
hoc. In such circles, heuristic approaches have become persona non grata, despite their crucial role
in AI’s early development and their clear advantages in building intelligent systems. This climate
indicates a need to state explicitly some theoretical postulates about heuristics that, 30 years ago,
would have been obvious, but that have been rejected or forgotten by modern researchers.

3. Heuristics and Tractability

As already implied, a key characteristic of heuristic methods relates to their functional role in cog-
nition. High-level mental processing – the types of intellectual activities that separate humans from
other mammals – often arises in complex task settings. Indeed, formal analyses in the subfield of
complexity theory have shown that some problems cannot, in the worst case, be solved in reason-
able times. However, in many situations, humans find these same problems quite manageable (e.g.,
Kirsch, 2011, 2017), despite having very limited information-processing resources.

This observation leads directly to our first claim, which attempts to explain people’s ability to
solve apparently difficult tasks and which many readers will find familiar:

• Heuristic methods often make tractable the solution of apparently complex tasks.

This postulate was a key motivation for heuristics’ early association with the AI revolution, which
dared to study problems that contemporary fields, such as computer science and operations research,
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assumed were too difficult for automation. All three disciplines now acknowledge the power of
heuristic approaches, although we will see that they often adopt a narrower sense than intended by
the founders of artificial intelligence.

Some readers may think the above claim is a tautology, as its phrasing is similar to one of the
definitions given earlier. Certainly a common reason for invoking heuristic methods is to let one
handle a complex problem with manageable effort, but they may not achieve this aim. Some strate-
gies may be more effective than others, and some may work well only on certain classes of prob-
lems. Moreover, one can always take a useful strategy and ‘invert’ its choices to produce a highly
ineffective one, meaning that ‘bad’ techniques are also possible. The implication is that whether a
given heuristic method works in practice is an empirical question rather than a mathematical one,
but many studies have produced results that support the conjecture.

Despite this evidence, the AI community has exhibited a growing bias toward formal results
that has led many researchers to denigrate heuristic approaches. One result has been a shift toward
restricted representations, such as description logics, that come with assurances of efficient compu-
tation (e.g., Levesque & Brachmann, 1987). Another has been an increased emphasis on classes of
problems that one can solve with methods like dynamic programming (e.g., Kaelbling, Littman, &
Cassandra, 1998) and even exhaustive search, which offer guarantees of optimal solutions. Publi-
cations in these paradigms often dismiss heuristics as ‘ad hoc’ and undesirable, revealing that they
have abandoned one of the original tenets of artificial intelligence.

Similar attitudes have led to a subtler change in some subfields’ notions of heuristics that, in
certain ways, is still more disturbing. This view had its origins in Hart, Nilsson, and Raphael’s
(1968) invention of A*, one of the first nonexhaustive search methods guaranteed to find solutions
that were optimal in the sense of having the fewest steps or lowest cost. However, this alluring
result holds only when the technique uses admissable heuristics, a form of evaluation function that
underestimates the distance or cost to the goal or target state. Note that this name, in itself, suggests
that all other heuristics are somehow inadequate and irrelevant. This seems strange given that A*
provides no guarantees about reduction in search, which was AI’s original reason for championing
heuristics, and in some cases it can take longer than breadth-first methods.

Nevertheless, the A* algorithm is often presented in courses as the only reasonable approach to
heuristic search, and it has come to dominate research in the AI planning and search communities.
Some authors now treat the term heuristic as synonymous with admissable heuristic, suggesting
that any other types are not worth mentioning. This usage is a true perversion of the word’s original
sense, which referred to methods that offered no guarantees but typically worked better in practice
than ones which provided them. Thus, the introduction of A* was the beginning of the end for
classical AI, and its widespread, uncritical adoption is a sign of how far the field has fallen from its
early vision and tenets. This unfortunate change is one of the primary reasons why the cognitive
systems paradigm now requires distinct publication venues from its ancestral field.

4. Heuristics and Satisficing
I have argued that heuristic methods can offer substantial advantages over ‘algorithmic’ ones, letting
an AI system that draws on them solve quite complex problems with reasonably little effort. There
is also overwhelming evidence that humans employ such methods when confronted with problem-
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solving tasks, such as playing chess (de Groot, 1978) and solving puzzles (Newell & Simon, 1972),
and even on simple choice tasks, such as deciding which products to buy in a grocery store (Weber
& Johnson, 2009). This offers another reason for studying heuristic approaches to complex mental
behaviors and suggests a second claim:

• Heuristic methods produce human-like cognition, especially satisficing behavior.

This latter concept is worth elaborating, as many AI researchers have either abandoned it uncon-
sciously or rejected it explicitly. Simon (1956) introduced the idea of satisficing in response to
economists’ widespread assumption that people make optimal choices. His studies revealed that, in
all but the most trivial cases, they instead settle on finding an alternative that is good enough. For
example, when buying a house or finding a job, we do not consider all options in detail, but rather
examine a manageable subset, and we halt when we find one that is satisfactory. Simon linked this
satisficing behavior to the notion of aspiration level, which informs a decision maker when a can-
didate is sufficiently high quality to halt processing. Again, many empirical studies of humans have
revealed this behavior in a wide range of settings.

Naturally, this does not mean that heuristic methods can never find the most desirable solutions.
Gigerenzer and Goldstein (1996) have demonstrated that simple strategies like take the best often
make the same choices as decision-theoretic techniques that consider every alternative, calculate
numeric values for them, and select the one with the highest score. What heuristics do not offer are
guarantees that they will make the optimal choice. This causes great concern for AI researchers
who have ‘theorem envy’ of mathematicians and complexity analysts, but it should not be an issue
for the cognitive systems community, which focuses on human-like behavior and on mechanisms
that work well empirically. In rare cases, heuristic methods may not find any solution, much less
the best one, but this also holds for human problem solvers, who manage to muddle along anyway.
Anyone who insists that an AI system is not rational unless it makes optimal choices is taking a
dubious position, as this implies that people – our only proof that intelligence is possible – are not
themselves rational.2 Newell’s (1982) definition – that an agent is rational if it selects actions that
it believes will lead to one of its goals – seems a far more appropriate stance.

Ironically, heuristic methods and satisficing have even been undermined by cognitive psycholo-
gists. For instance, influential work by Tversky and Kahneman (1974) acknowledges the important
role of heuristics in human decision making, including the influence of a choice’s availability, repre-
sentativeness, and other features on whether a person selects it. However, as Gigerenzer (1996) has
noted, they view such heuristics as biases that cause divergence from the ‘correct’ choice, which
reveals a bias toward decision-theoretic frameworks. Another example is Kahneman and Tversky’s
(1979) prospect theory, which differs from normative approaches like expected utility theory by
introducing an aversion to loss. Yet their account still assumes that decision makers inspect all at-
tributes and calculate weighted sums when making choices, contrary to strong evidence that people
use simpler strategies which require less mental effort (Simon, 1956; Gigerenzer & Goldstein, 1996;
Weber & Johnson, 2009). In contrast, the cognitive systems community offers a venue for research
that treats humans, our one example of general intelligence, as a worthy target.

2. A common response is that one can extend the definition of optimality to incorporate the computational costs needed
to make a decision, but this argument do not hold water. Humans certainly can take computational factors into
account, but they use heuristic estimates in this meta-level context as well.
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5. Heuristics and Knowledge

I have explained that one sense of heuristic is an adjective which describes methods or mechanisms
that make it possible to solve complex tasks with limited resources. Another meaning of the term
refers to cognitive structures that underlie such methods. Over the past 20 years, this has become
the most common usage within the AI community, and it deserves closer inspection, for even this
narrow connotation has accumulated misconceptions. I should start by stating a third claim about
heuristics, in this sense of the word, that few readers will find controversial:

• Heuristics are a type of knowledge that aids decision making and problem solving.

As noted earlier, such knowledge can take different forms. For instance, a variety of problem-
solving systems, including SAGE (Langley, 1985), Soar (Laird et al., 1987), and PRODIGY (Car-
bonell et al., 1990), have used rules to encode heuristics for guiding search. Larger-scale knowl-
edge structures, such as macro-operators (e.g., Iba, 1989) and hierarchical task networks (Nau et al.,
2001), can also encode heuristic content. Like search-control rules, these can make plan generation
much more efficient than working with only primitive operators. However, it is important to distin-
guish between content that is definitional and knowledge that guides behavior. One example comes
from ICARUS’ (Choi & Langley, in press) distinction between concepts, which describe classes of
situations, and skills, which refer to conceptual predicates but specify how to achieve goals. The
former serve as definitional knowledge, whereas the latter act as heuristics to guide agent activity.

A common misconception is that heuristic knowledge must be domain specific. This holds for
most examples that have appeared in the AI literature, but it is not required, and some of the most
interesting cases are quite general. As Gabaldon, Langley, and Meadows (2014) have noted, the
cognitive structures that guide dialogue are domain independent in the sense that they do not refer
to domain predicates or the content being communicated. For instance, when we ask someone a
question, we expect them to answer it or to state they do not know, independent of the details.
Some evaluation functions used in planning and problem solving, such as the number of goals
an operator would achieve, are equally generic. Marsella and Gratch (2009) have postulated that
emotions modulate more basic cognitive processes for decision making and planning, with Langley
(2017) arguing that the structures which underlie emotions specify abstract relations among goals,
beliefs, and expectations without referring to domain-level content. These observations suggest that
heuristic knowledge is still more central to intelligent behavior than originally assumed.

Unfortunately, the use of explicit knowledge structures has fallen into disfavor among many
AI researchers. Game-playing systems typically use a numeric evaluation function to rank states
and select among candidate moves, with structural information hidden in opaque features of states.
Recent applications of neural networks in game playing (e.g., Clark & Storkey, 2015) have taken
this idea still further, introducing features that are even less subject to interpretation by humans.
Psychologists have long held that some forms of human expertise are ‘implicit’ and thus not easily
communicated, but this often starts as transparent strategies which become automatized. However,
few advocates of evaluation functions see benefits to associating them with explicit elements like
rules or goals, making cognitive systems one of the few communities where research on heuristic
knowledge structures remains a respectable topic.
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6. Heuristics and Learning

The characterization of heuristics as knowledge raises natural concerns about their origin. Classical
AI work on decision making, problem solving, and natural language processing assumed that hu-
mans entered these elements manually. This approach was often associated with the expert systems
movement (e.g., Hayes-Roth, Waterman, & Lenat, 1983), but in fact it was far more widespread.
Models of human expertise in cognitive psychology (e.g., Chi, Glaser, & Farr, 1988) adopted simi-
lar assumptions, as they focused on the representation and use of heuristic structures rather than on
their acquisition from experience.

However, the increased excitement in recent years about machine learning suggests a final pos-
tulate that complements the ones presented earlier:

• Heuristic knowledge structures can be acquired from experience at rapid, human-like rates.

This statement has two components. The first is now widely accepted, at least for implicit content,
but the second part of the claim differs from the mainstream view. Many researchers seem not only
satisfied with, but even proud of, learning methods that require millions of training problems and
thus exhibit much slower acquisition of expertise than observed in humans. In some cases, this has
been motivated by (often false) rhetoric about the availability of large data sets; in others, it has been
linked to guaranteed acquisition of optimal strategies, which typically holds only in the limit. Both
views have drawn attention away from the key challenges.

As I have argued elsewhere (Langley, 2016), the reason for this discrepancy lies in modern
machine learning’s emphasis on statistical analysis. This approach can estimate the parameters of
numeric evaluation functions and extract rules from observations, but it does not resemble the man-
ner in which people acquire heuristic knowledge. Human learning is concerned primarily with the
creation of new cognitive structures, such as control rules or HTN methods, from individual train-
ing cases, which in turn supports the rapid, incremental, and cumulative acquisition of knowledge.
Statistical techniques are useful, yet they serve best not to generate alternative hypotheses, as often
assumed, but rather to evaluate them (e.g., Carbonell et al., 1990). Fortunately, most cognitive sys-
tems researchers follow this approach to acquisition, which has close relatives in the literature on
computational models of human learning (e.g., Anderson & Lebiere, 1998).

Also note that learning has long been viewed in terms of search through a space of structures,
parameters, or their combination (Simon & Lea, 1974; Langley, Gennari, & Iba, 1987). Naturally,
many researchers have drawn on heuristic methods to guide or constrain this search, some focused
on generation of candidate structures and others on their evaluation. PRODIGY (Carbonell et al.,
1990) adopted a hybrid approach that used explanations of problem-solving results to construct rules
for search control and collected statistics on their benefits to determine which ones to retain. Langley
(1995) has discussed a variety of schemes that aid incremental learning, including incorporation of
background knowledge and helpful training regimes. Unfortunately, modern work on statistical
induction has abandoned the most powerful idea from this older tradition – that interleaving the
processes of performance and learning leads any heuristics that influence the former to constrain the
latter in turn. In contrast, the cognitive systems community both respects and encourages research
on this integrated approach and other ways to support rapid acquisition.
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7. Conclusions and Recommendations

In the previous pages, I reviewed three different senses of the term heuristic, one related to methods
for solving complex cognitive tasks and the others linked to structures used by such techniques.
These distinctions let me state, and elaborate on, four hypotheses – about tractability, satisficing,
knowledge, and learning – that clarifed the role such methods and structures play in both humans
and AI systems. They also let me review the history of heuristics in artificial intelligence, which
started as one of the field’s most powerful, nearly defining, concepts but which has, in recent years,
become maligned and misused by the AI mainstream, even though its original senses remain valid
and central to the cognitive systems movement.

For this reason, it is important that members of our community take steps to counter the warped
but widespread views on this important topic. This can be done most effectively in the context
of their own research. To this end, I encourage authors who are reporting results to the cognitive
systems community to include in their publications:

• Statements about the role of heuristic methods and structures in their approach to producing
high-level cognition;

• Descriptions of the manner in which they represent heuristic knowledge, how this content is
used, and how it is acquired;

• Examples of these cognitive structures and the ways in which they reduce cognitive load, guide
problem-space search, or otherwise aid processing;

• Explicit hypotheses about the benefits of using these methods or structures in making complex
tasks tractable even when computational resources are limited; and

• Evidence in the form of empirical tests, formal analyses, careful arguments, or compelling
anecdotes that supports these claims about intelligent behavior.

Papers that incorporate such material will further clarify the value of heuristic approaches for the
study and development of cognitive systems, as well as the conditions under which they offer ben-
efits. In the process, they will help counter critiques that such methods are ad hoc or unfounded,
which in turn will foster wider adoption of the original notion of heuristics championed by AI’s
founders, who I believe would support the vision of the cognitive systems movement.
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