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Abstract 

Ontological Semantics is an approach to automatically extracting the meaning of natural language 
texts. The OntoSem text analysis system, developed according to this approach, generates 
ontologically grounded, disambiguated text meaning representations that can serve as input to 
intelligent agent reasoning. This article focuses on two core subtasks of overall semantic analysis: 
lexical disambiguation and the establishment of the semantic dependency structure. In addition to 
describing the knowledge bases and processors used to carry out these tasks, we introduce a novel 
evaluation suite suited specifically to knowledge-based systems. To situate this contribution in the 
field, we critically compare the goals, methods and tasks of Ontological Semantics with those of 
the currently dominant paradigm of natural language processing, which relies on machine 
learning. 

1. Introduction   

Human-level, automatic semantic analysis of language has been a core goal of the field of 
artificial intelligence since its inception. However, work in this paradigm – referred to as AI-NLP 
– has been largely supplanted over the past 20 years by a knowledge-lean paradigm that  
concentrates on distributional, statistical, machine learning-oriented methods applied to big data; 
this paradigm facilitates the configuration of applications that do not address the role that 
knowledge and reasoning capabilities play in language understanding by people. Indeed, 
contributions that can be viewed as descendants of AI-NLP count for just a small minority of 
recent work on automatic language processing, even though both the theoretical and practical 
prospects of AI-NLP are as tantalizingly promising as ever, albeit in the medium or long term.   

In this paper, we describe a system, OntoSem, which is the most recent implementation of the 
AI-NLP theory called Ontological Semantics (Nirenburg & Raskin, 2004). Although Ontological 
Semantics has been under development for over 25 years, and although various application 
systems have implemented the evolving theory over that time, as in Beale et al.’s (1995) 
Mikrokosmos machine translation system, this is the first in-depth description of the current-
generation system. Like any theory-driven implementation, OntoSem reflects a large inventory of 
methodological decisions and design choices – the devil in the details of translating theory into 
practice. Among the most important recent design choices was incorporating a statistically-
trained syntactic parser into this primarily knowledge-based, psychologically-inspired 
environment. The practical consequences of this choice, as well as the tacit theoretical 
assumptions it brought to light, will be a recurring thread in the narrative.  
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Figure 1. The architecture of the OntoSem text analysis system. The numbered engines to the left represent 
the three conceptual stages of text analysis. The processors shown by octagons provide support services. 
The modules with a thick black border are the focus of this paper. Dotted arrows show data flow and solid 
arrows show control flow. 

The three main stages of language processing in OntoSem are syntactic analysis, basic 
semantic analysis, and extended semantic/pragmatic analysis, as shown in Figure 1. In this paper 
we concentrate on basic semantic analysis, defined as lexical disambiguation and the 
establishment of the semantic dependency structure. 

In the figure, basic semantic analysis, along with the closely associated processors and 
knowledge structures we will discuss, are indicated using thick black borders. The result of basic 
semantic analysis is an ontologically-grounded basic text meaning representation (TMR). The 
basic TMR serves as input to agent reasoning about discourse-level aspects of text meaning, such 
as reference resolution, the interpretation of indirect speech acts, and other subtasks we have 
discussed elsewhere.1 The results of discourse-oriented analysis are recorded in the extended 
TMR, which is used to populate agent memory. Agent memory, in turn, serves as input to an 
agent’s decision making and action.  

In applications, OntoSem text analysis is used as the language perception module of the 
perception-reasoning-action pipeline of artificial intelligent agents, as illustrated by its role in the 
functioning of the intelligent agents playing the role of virtual patients in the Maryland Virtual 
Patient clinician training prototype system (Nirenburg et al., 2008; McShane et al., 2013). 

 

                                                 
1
  These include our work on reference resolution (McShane, 2009; McShane & Nirenburg, 2013), verbal ellipsis 

resolution (McShane & Babkin, 2015), paraphrase interpretation (McShane et al., 2008), and nominal compounding 
(McShane et al., 2015). 
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1.1  Theoretical Claims and Methodological Choices 

We identify five theoretical claims that are central to Ontological Semantics:  
 
1.  Natural language understanding involves translating input strings into ontologically-

grounded text meaning representations and then storing these knowledge structures in agent 
memory.  

2.  Translation into the ontologically-grounded metalanguage (a) focuses on the content of the 
message rather than its lexico-syntactic form, (b) resolves analysis problems such as lexical 
and referential ambiguity, underspecification, ellipsis, and paraphrase, and (c) permits the 
same knowledge bases and reasoning engines to be used for different natural languages 
(McShane & Nirenburg, 2012; McShane et al., 2005).  

3.  Language understanding relies on three static knowledge bases – the ontology (for 
knowledge about concept types), the fact repository (for knowledge about concept instances), 
and an ontological semantic lexicon. It employs a battery of algorithms that manipulate both 
linguistic and extra-linguistic knowledge.  

4.  The global interpretation of text meaning is built up compositionally from the interpretations 
of progressively larger groups of words and phrases (Beale, 1996).  

5.  Each meaning interpretation is assigned a confidence level, which reflects the degree to 
which the global interpretation deviates from the expectations of the supporting knowledge 
bases and algorithms. In collaborative human-agent applications, confidence levels will help 
agents to decide whether to act upon their understanding of a language input or, by contrast, 
to seek clarification from a human collaborator.  

 
In addition to the theoretical claims of Ontological Semantics, the current OntoSem implem-
entation reflects many methodological choices. Some high-level choices include: 

1.  Sentences are treated as a whole: meaning representations are not built up from left to right.  
2.  Syntactic and semantic analysis are carried out in a pipeline. This is a consequence of the 

decision to import a parser that works at the sentence level. We are motivated both 
theoretically and practically to move to a processing architecture that would both permit 
incremental, left-to-right processing and let more heuristic evidence be leveraged across 
analysis modules. For our preliminary work on integrating syntactic, semantic and discourse 
analysis, see McShane et al. (2010) and McShane and Nirenburg (2013).  

3.  Syntactic analysis is provided by the statistically trained Stanford CoreNLP toolset (version 
3.4.1; Manning et al., 2014), and we make no cognitive modeling-related claims about how it 
is carried out.  

4.  We model the selection of a single analysis from multiple candidate analyses using a function 
that incorporates bonuses for precisely aligning with knowledge-based expectations and 
penalties for violating them. This function combines constraints deriving from different 
aspects of the language system, such as syntax and semantics.    

5.  Like all such models (Bailer-Jones, 2009), the current OntoSem account is incomplete, not 
covering every element of knowledge about language and the world. However, it is sufficient 
to demonstrate the potential of the approach for use in agent systems in the near-term, mid-
term, and long-term. 
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As the above theoretical and methodological statements should make clear, the OntoSem 
approach to extracting meaning from natural language text is as human-inspired as possible but as 
methodologically inclusive as necessary. OntoSem is regularly tasked with arriving at a single 
interpretation of sentences that might contain 20 to 30 words that have an average of five senses 
each. This is a vast decision space that is best managed by well-known algorithmic techniques, 
which we incorporate to support human-inspired cognitive modeling.  

1.2 Comparisons with Related Work 

Before proceeding to the system description, let us briefly mention a few programs of research 
that most closely resonate with Ontological Semantics.2 Both Schank’s (1972) Conceptual 
Dependency Theory and Wilks’ Preference Semantics (Wilks, 1985; Wilks & Fass, 1992) also 
pursue expectation-oriented language analysis using semantic lexicons, and generate meaning 
representations using a form of interlingua. Moreover, we share many of Schank’s and Wilks’ 
theoretical views. Unlike Ontological Semantics, however, these theories were not applied to 
broad-scale text analysis, though they did inspire approaches that were. Schank-like script-based 
reasoning inspired the Knowledge Machine project (Clark & Porter, 2004), and Preference 
Semantics was used by Fass (1997) in his treatment of metaphor and metonymy.  

A rather different affinity exists between Ontological Semantics and Hobbs’ (1989) Axiomatic 
Semantics, which shares our goals of encoding and leveraging world knowledge in support of 
language-oriented reasoning, as well as tackling a broad spectrum of difficult semantic analysis 
problems. However, the focus of Hobbs’ development effort is quite different: rather than 
building broad-coverage lexicons or language processors, he builds axiomatic knowledge bases to 
support reasoning about linguistic input. His approach might be seen as dovetailing with that of 
Ontological Semantics by contributing to overall text understanding once certain core semantic 
analysis processes have been carried out. The treatment of these core semantic analysis processes, 
realized through the OntoSem text analysis system, is the focus of the present article.  

1.3 Content and Organization of the Paper 

The remainder of the paper is organized as follows. First we describe the knowledge bases of 
OntoSem (Section 2) and the target output knowledge structures of OntoSem processing (Section 
3). Then we describe how the two core facets of basic semantic analysis – lexical disambiguation 
and the establishment of the semantic dependency structure – are naturally integrated under our 
theory (Section 4).  Next we describe, in turn, the four processors from Figure 1 that contribute to 
basic semantic analysis: the syntactic parser (Section 5), the engine that synchronizes the 
syntactic parse with the OntoSem lexicon (Section 6), the basic semantic analyzer (Section 7), 
and Hunter-Gatherer (Section 8), a program that combines heuristic evidence to facilitate the 
construction of a text meaning representation. Section 9 presents a system evaluation and Section 
10 offers thoughts about the contributions of this work to intelligent agent development.  

 

                                                 
2  For a more extensive review, see Nirenburg and Raskin (2004, Chapters 3 and 4). The generational attribution of 

these programs of research should come as no surprise: AI-NLP has been largely sidestepped by the mainstream NLP 
for the past 20 years, a trend that may be changing due to evidence that knowledge-lean methods will not solve the 
fundamental problems of language understanding.  
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2. The Core Knowledge Bases 

OntoSem language analysis relies on two core static knowledge bases: the ontology and the 
lexicon. The ontology is a formal model of the world that is encoded in a metalanguage for 
describing meaning derived from any source, be it language, agent perception, agent reasoning, or 
simulation (McShane & Nirenburg, 2012). The metalanguage of description is unambiguous, 
permitting automatic reasoning about language and the world to be carried out without the 
interference of lexical and morphosyntactic ambiguities.3 The ontology is organized as a multiple-
inheritance hierarchical collection of frames headed by concepts that are named using language-
independent labels.4 We describe salient properties of the ontology using an excerpt from the 
ontological frame for DRUG-DEALING: 

DRUG-DEALING 
  IS-A        value    CRIMINAL-ACTIVITY 

AGENT       default    CRIMINAL, DRUG-CARTEL 
           sem     HUMAN 
           relaxable-to  SOCIAL-OBJECT 
  THEME       default    ILLEGAL-DRUG 
  INSTRUMENT    default    MONEY 
  HAS-EVENT-AS-PART sem      BUY, SELL 

Concepts divide up into EVENTs, OBJECTs, and PROPERTYs. PROPERTYs are primitives, which 
means that their meaning is understood to be grounded in the real world without the need for 
further ontological decomposition. The facets value, default, sem, and relaxable-to allow for 
recording progressively less typical fillers for properties. The OntoSem ontology currently 
contains 9,075 concepts which are described by an average of 15 properties each. Property values 
can be locally defined or inherited from parent concepts.  
 Since the OntoSem ontology is language independent, its link to any natural language must be 
mediated by a lexicon. Consider, for example, the first two verbal senses for address, shown in 
Table 1. Syntactically, both expect a subject and a direct object in the active diathesis, filled by 
$var1 and $var2, respectively.5 However, in address-v1, the meaning of the direct object (^$var2) 
is constrained to a HUMAN (or, less commonly, ANIMAL), whereas in address-v2 the meaning of 
the direct object is constrained to an ABSTRACT-OBJECT. (The constraints appear in italics because 
they are virtually available, being accessed from the ontology by the analyzer at runtime.) This 
difference in constraint values permits the analyzer to disambiguate: if the direct object is 
abstract, as in He addressed the problem, then address will be analyzed as CONSIDER; by contrast, 
if the direct object is human, as in He addressed the audience, then address will be analyzed as 
SPEECH-ACT.  
 

                                                 
3  A description of, and rationale for the form and content of, the ontology is available in Nirenburg and Raskin (2004, 

Section 7.1). An axiomatic definition, originally due to Kavi Mahesh, is presented in Section 7.1.6 of that work. 
4  As described in Nirenburg and Raskin (2004), these labels are similar to English words only for the benefit of 

knowledge engineers. For purposes of machine processing, they could as easily be random sequences of characters, 
since a concept is defined by its inventory of property values. This ontology is equally useful for languages other than 
English because word senses in those languages will map to universal ontological concepts.  

5  Variables are written, by convention, as $var followed by a distinguishing number. Variables permit us to map 
textual content from the input to elements of the syn-struc, then link each syn-struc element with its semantic 
realization in the sem-struc. 
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Table 1. Two verbal senses for the word address. The symbol ^ indicates “the meaning of”. 

address-v1 
  anno 
         definition  “to talk to” 
         example    “He addressed the crowd.” 
  syn-struc 
       subject            $var1 
       v                     $var0 
       directobject       $var2 
  sem-struc 
        SPEECH-ACT 
            AGENT   ^$var1 (sem HUMAN) 
            BENEFICIARY ^$var2 (sem HUMAN) (relax.-to  ANIMAL) 

address-v2
  anno 
         definition  “to consider, think about” 
         example    “He addressed the problem.” 
  syn-struc 
       subject          $var1 
       v                   $var0 
       directobject     $var2     
   sem-struc 
       CONSIDER 
           AGENT     ^$var1 (sem HUMAN) 
           THEME    ^$var2 (sem ABSTRACT-OBJECT) 

 
These examples highlight several aspects of the OntoSem lexicon. First, it supports the 

combined syntactic and semantic analysis of texts. Second, the metalanguage for describing its 
sem-strucs is the same one used in the ontology. And third, the sem-strucs—and, often, the 
associated syn-strucs—from the lexicon for one language can be ported into the lexicon of 
another language with minimal modification (McShane et al., 2005), which greatly enhances the 
multilingual applicability of the OntoSem suite of resources. The English lexicon currently 
contains 21,041 superentries covering 28,925 word (and phrase) senses, of which 4,991 are 
verbal, 18,365 are nominal, and 5,569 represent other parts of speech. 

3. The Output of Semantic Analysis: Text Meaning Representations  

Text meaning representations (TMRs) are ontologically-grounded, disambiguated, semantic 
interpretations of language input (Nirenburg & Raskin, 2004, Chapter 6) that are generated by the 
OntoSem analyzer. Each TMR frame is headed by a numbered instance of an ontological concept 
and is related to other frames (i.e., other instantiated concepts) using ontologically defined 
relations. Consider an example sentence and the associated TMR in Table 2, which contains four 
frames. This TMR reflects the processing of this sentence in isolation, making the instance 
number for all concepts “1”. 
 

(1)  Manometry can be used to confirm the diagnosis.   
 
The core proposition in this sentence is “manometry (is) used to confirm the diagnosis”. The 
semantic head is an instance of the concept CONFIRM (CONFIRM-1), whose THEME is an instance 
of the concept DIAGNOSIS and whose INSTRUMENT is an instance of the concept MANOMETRY. 
This proposition is scoped over by an instance of the concept MODALITY, whose type is 
“potential” and whose value is “1” – the highest value on the abstract{0,1} scale. Italics indicate 
metadata, which is used by developers for evaluation and debugging. 

This text meaning representation is a basic TMR because it reflects only the results of basic 
semantic analysis, consisting of lexical disambiguation and semantic dependency determination. 
At this stage, the system has not yet attempted to resolve the coreference of the diagnosis or 
determine if this is an indirect speech act (it is not). In this paper, we concentrate on the automatic 
generation of such basic TMRs. 
 The main benefit of grounding the representation of text meaning in an ontology is that the 
system can use  all ontologically-recorded information about the  component concepts  in its reas- 
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Table 2. The text meaning representation for example sentence (1). 

CONFIRM-1 
      THEME                 DIAGNOSIS-1  
      INSTRUMENT      MANOMETRY-1  
      SCOPE-OF             MODALITY-1 
      MODIFIER-FROM-SENSE (INSTRUMENT USE-V4) 
     word-num         5  
     textpointer        confirm  
     from-sense        confirm-v1 

 MODALITY-1  
     TYPE                POTENTIAL  
     VALUE             1  
     SCOPE              CONFIRM-1  
     word-num      1  
     textpointer     can  
     from-sense     can-aux1 

MANOMETRY-1  
     INSTRUMENT-OF   CONFIRM-1  
    word-num            0  
    textpointer           manometry  
    from-sense           manometry-n1 

 DIAGNOSIS-1  
    THEME-OF        CONFIRM-1  
    word-num       7  
    textpointer      diagnosis  
    from-sense      diagnosis-n1  

 
 
oning. For example, since the ontology asserts that MANOMETRY is a descendant of MEDICAL-
PROCEDURE, and that MANOMETRY is used to test for a particular inventory of ANIMAL-DISEASEs, 
the system knows – as would a well-informed human – that this text is most likely talking about 
the event of DIAGNOSE whose THEME is one of those ANIMAL-DISEASEs. Now that the goal of, and 
rationale for, deep-semantic analysis should be clear, let us move on to the stages of processing 
required to automatically generate basic TMRs. 

4. Word Sense Disambiguation and Semantic Dependency Determination   

As just mentioned, this paper focuses on the automatic generation and evaluation of what we call 
basic text meaning representations (TMRs), which contain two types of semantic information: 
disambiguated word senses and the semantic dependencies among them.  
 Word sense disambiguation must be considered a core task in natural language understanding if 
one believes, as we do, that intelligent agents must ultimately be able to understand and reason 
about meaning to a degree that approximates the competence of people. In the best case, 
OntoSem processing yields a single, confident sense selection for each word. However, there can 
also be residual ambiguity, in which the analyzer cannot select definitively among multiple 
candidates, or the zero-candidate outcome.  

Residual ambiguity typically derives from one of two sources. On the one hand, the relevant 
constraints in the lexicon or ontology might be insufficiently narrow. Consider, for example, the 
word operation, which has, among others, a military sense, MILITARY-OPERATION, and a medical 
sense, SURGERY. Let us assume that, by some oversight of the person acquiring the ontology, the 
default AGENT for both of these senses was listed as HUMAN, which implies that all humans are 
equally appropriate fillers for that case-role. Given an input like  

(2) The surgeon started the operation at 10:00. 

the system would have no reason to prefer one meaning of operation over the other. However, if 
the ontological constraints were tighter, as, indeed, they are in the current version of the ontology 
(shown in Table 3), then the system would readily select the SURGERY meaning because a central 
tenet in disambiguation is to prefer slot fillers that correspond to tighter semantic constraints.  
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Table 3. Constraints on two senses of the word operation in the ontology. 

SURGERY 
    AGENT   default      SURGEON 
       sem           PHYSICIAN  
       relaxable-to HUMAN 

MILITARY-OPERATION 
    AGENT   default        MILITARY-ROLE 
                     sem             HUMAN 
            relaxable-to   GEOPOLITICAL-ENTITY 

 
 
The second source of residual ambiguity is significantly more challenging: ambiguity in which 

the local context of the word, as defined by syntactic dependencies, does not provide sufficient 
disambiguating evidence. Consider two examples from a project in which we processed a corpus 
of sentences about piracy.  

(3) The French navy handed over nine suspected pirates to the authorities in Puntland.   

(4) After a four-month saga, $3.2 million in cash was dropped by parachute – and the pirates 
left the ship in February 2009.   

To a human – a powerful reasoning machine – these examples are clearly about pirates at sea, not 
infringers of copyright; but the knowledge required to reach this conclusion is not ontologically 
recorded as constraints on the case roles of the given events: TRANSFER-POSSESSION (instantiated 
by handed over) can have any PHYSICAL-OBJECT as its THEME, and MOTION-EVENT (instantiated 
by left) can have any ANIMAL as its AGENT. In both cases, the semantic clues supporting 
disambiguation come from outside of the local semantic dependency structure. This paper does 
not address extra-clausal reasoning of this type; we mention this source of residual ambiguity 
simply to emphasize that clause-level processing described below must be viewed within the 
larger context of text-level semantic and pragmatic analysis.  
 Apart from word sense disambiguation, the second requirement for generating a basic TMR is 
semantic dependency determination, which is supported by the linking information in the 
OntoSem lexicon. In contrast to the widely pursued NLP task known as “shallow parsing” or 
“case role analysis” – which labels dependencies between uninterpreted text strings (Gildea & 
Jurafsky, 2002) – semantic dependency determination in OntoSem involves determining the 
semantic dependencies among semantically analyzed entities (ontological concepts). As such, 
word sense disambiguation and semantic dependency determination in OntoSem are tightly 
integrated processes. The main challenges of semantic dependency determination involve 
interpreting the semantic dependencies in: a) input that contains less common, non-basic syntactic 
diatheses (e.g., Comedy I like!); b) input that is unexpected with regard to the current state of the 
lexicon (i.e., a legal syntactic configuration might not have been recorded); and c) freely 
occurring but polysemous adjuncts, whose lexical disambiguation and semantic dependency 
structure must be simultaneously computed (e.g., with nuts is a THEME in I ate ice cream with 
nuts, but an INSTRUMENT in I fed the squirrel with nuts).    
 In procedural terms, word sense disambiguation and semantic dependency determination are 
interdependent because they rely on the same knowledge. Consider the first verbal sense of read 
(read-v1), shown in Table 4. If this sense is selected as the right answer when analyzing a clause 
headed by read (e.g., John read the book), this has several consequences: an instance of the 
concept  READ  will be instantiated  to  reflect  the meaning of read  (a word sense disambiguation  
 



LANGUAGE UNDERSTANDING WITH ONTOLOGICAL SEMANTICS 

43 

Table 4. The first sense of the word read in the ontology. 

read-v1  
syn-struc 
      subject    $var1 
   v      $var0  
         directobject   $var2  
     sem-struc  
        READ  
           AGENT        ^$var1     (sem HUMAN)  
           THEME       ^$var2     (sem BOOK-DOCUMENT)  

 
 
decision); the meaning of the subject will fill the AGENT case-role (a semantic dependency 
determination decision); and the meaning of the direct object will fill the THEME case-role 
(another semantic dependency determination decision). 

The remainder of the article describes the engines that contribute to word sense disambig-
uation and semantic dependency determination in OntoSem. Since the description of basic an-
alyzer operation is, in and of itself, rather complex, we exclude from this exposition special cases 
– such as the treatment of unexpected input – that would considerably lengthen the narrative. 

5. Syntactic Analysis   

One of the principles of Ontological Semantics is that syntactic analysis, while not an end in 
itself, can contribute to semantic analysis – an approach operationalized by the linked syn-strucs 
and sem-strucs of the lexicon.  

As mentioned earlier, we make no theoretical claims about human syntactic processing and, 
for practical reasons, use the Stanford CoreNLP toolkit (Manning et al., 2014) to provide heuristic 
evidence from the realm of syntax. This parser carries out phrase structure analysis as well as 
syntactic dependency analysis. Syntactic dependency analysis returns a set of syntactic 
dependency labels along with the text elements, numbered by sentence position, that serve as 
their arguments. For example, the parser returns 14 dependencies for the sentence  

(5)  Studies have shown that repeated concussions can result in permanent injury to the brains 
of football players.   

For illustration, consider the three dependencies that involve the word shown:   

 nsubj(shown-3, Studies-1) indicates that Studies-1 is the nominal subject of shown-3 

 aux(shown-3, have-2) indicates that have-2 is an auxiliary whose main verb is shown-3 

 ccomp(shown-3, result-8) indicates that the clause headed by result-8 is the clausal 
complement of shown-3.  

Integrating an external parser as a replacement for the homegrown parsers we used for many 
years has yielded better coverage of syntactic phenomena, but it has required certain additional 
development efforts. For example, we had to record knowledge about how to align parser output 
with the syntactic expectations of argument-taking words recorded in OntoSem lexicon entries, a 
process described in McShane et al. (2015). Runtime computation of such alignments is 
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particularly difficult when sentences include multiple non-basic syntactic structures, such as the 
passive voice and reduced relative clauses, as illustrated in  

(6) [[[The article [written by the president of the student body]REDUCED-RELATIVE-CLAUSE ]NP was 
criticized by the administration.]PASSIVE-VOICE-CLAUSE   

Another necessary enhancement was preparing the system to reambiguate parsing decisions that 
cannot, in principle, be made confidently without the contribution of semantics. For example, in 
Sue stroked the dog with the plush toy, either the dog can be in possession of the toy, or Sue can 
be using the toy as an instrument of stroking – an example of ambiguous prepositional phrase 
attachment. Similarly, in the nominal compound living room window safety lock the pairwise 
internal structure of the nominal compound requires semantic analysis: [[[living room] window]] 
[safety lock]]. So, although all aspects of the syntactic parse are considered defeasible evidence 
by the semantic analyzer, these frequent, expected phenomena deserved explicit treatment.  

6. Synchronizing the Parse with the OntoSem Lexicon   

The Stanford CoreNLP parser outputs an inventory of syntactic dependencies among the words in 
the input sentence. The task now is to align the syntactic dependencies returned in the parse with 
the syntactic expectations for each candidate sense of each word, as recorded in the OntoSem 
lexicon. This alignment yields a syntactically-motivated preference for particular lexical senses. 
Since a lexical sense in the OntoSem environment contains both syntactic and semantic zones 
linked by variables, the syntactically motivated preference for a lexical sense directly translates 
into a preference for a particular semantic analysis of that word and particular semantic 
dependencies in which it participates. Returning to our example of read-v1, if syntactic analysis 
prefers the read-v1 lexical sense as the solution for the verb read in John read the book, this 
syntactically motivated preference is simultaneously weighing in on semantics, since read-v1 
includes a sem-struc that interprets read as READ and expects its AGENT and, optionally, THEME 
slots to be filled.  

The process just described encapsulates OntoSem’s use of syntactic analysis to support 
semantic analysis. Operationalizing this process has required extensive effort, the details and 
scope of which deserve some comment, since they reveal what is involved in leveraging a 
syntactic parse in service of semantic analysis.  We describe the component steps of the process 
in turn, albeit very briefly.   
 Optional. Reambiguate the parse, if applicable. Several aspects of syntactic structure, 
including prepositional phrase attachments and nominal compound bracketing, cannot be 
determined without invoking semantics. Since the parser returns just one solution for such cases, 
OntoSem detects and reambiguates them, offering all available analyses for consideration by the 
semantic analyzer.  
 Step 1: Retrieve all syntactic dependencies involving the word. Syntactic dependencies 
involving each word are output by the parser. As mentioned earlier, for the word shown from (5) 
above, three dependencies are retrieved: nsubj(shown-3, Studies-1), aux(shown-3, have-2), 
ccomp(shown-3, result-8). We refer to these as the actual syntactic dependencies since they are 
what actually occurs in the parse of the input sentence.   
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Table 5. Lexical senses for two verbal senses of show. 

show-v1 
 definition  “to display physically” 
    example    “He showed me his new car.” 
 syn-struc 
  subject        $var1 
  v             $var0 
  directobject  $var2 
  indirectobject      $var3 (opt+) 
 sem-struc 
  DISPLAY 
   AGENT   ^$var1 
   THEME   ^$var2 
   BENEFICIARY ^$var3 

show-v4 
 definition “to demonstrate, with a non-agentive subj.” 
    example   “Experience shows (us) this won’t work.” 
 syn-struc 
  subject        $var1 
  v          $var0 
  comp         $var2 
  indirectobject   $var3 (opt+) 
 sem-struc 
  PROVE 
   INSTRUMENT ^$var1 
   THEME   ^$var2 
   BENEFICIARY ^$var3 

  
 
 Step 2: Retrieve all lexical senses for the root word. For the word show, the system retrieves 
ten senses from the OntoSem lexicon6 but, for purposes of illustration, we will describe only the 
first and the fourth verbal senses. Syntactically, both expect a subject and an optional indirect 
object, but whereas show-v1 expects a direct object, show-v4 expects a comp (i.e., a verbal 
complement clause). We present the sem-strucs of these senses in Table 5 only for the sake of 
completeness. Remember that, at this point of the process, the analyzer is not yet considering 
semantics at all – it is seeking syntactically-based votes for lexical senses when analyzing the 
sentence Studies have shown that repeated concussions can result in permanent injury to the 
brains of football players. 

Step 3. Determine the candidate linking sets for each lexical sense. We define a candidate 
linking set as a particular lexical sense for a word along with a particular assignment (linking) of 
its variables to words in the input text. A linking set basically says, “Let us assume that a given 
lexical sense is the correct one for a given argument-taking word, and let us link its variables to 
words in the text in one particular way”; that will then act as a candidate solution for analyzing 
the word, which will then be evaluated as part of the overall problem of analyzing the sentence. 
For our Studies have shown example, whose relevant syntactic dependencies were presented 
earlier, the system generates the candidate linking sets in Table 6. 

Step 4: Score each candidate linking set using heuristics. A linking set receives a high 
score if the expected OntoSem and parser dependencies are close according to a distance metric 
(OntoSem’s “subject” and the parser’s “nsubj” are very close), all required syn-struc variables are 
bound, optional syn-struc variables are bound (this receives only a slight scoring bonus, since it is 
not always the best choice), bindings involve an appropriate part of speech, any words specified 
in the syn-struc (like the direct object bucket in the idiom kick the bucket) have the appropriate 
head and features, and, if the word in question is a verb, the candidate set includes a subject 
linking. Scoring penalties should be adjusted according to text genre: e.g., elided subjects are to 
be expected in informal writing styles like text messaging. 

 
 
 

                                                 
6  Most of these reflect different syntactic uses of the verb. Some are phrasals like show up, whereas some are nominal 

senses. Many more phrasals would need to be included to offer full coverage of uses of this word. 
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Table 6. Candidate linking sets. Each column represents a different candidate linking set. S(tudies) and 
R(esult) can be bound to any variable or can be left unbound.7  

$var1 S S R R   S   R    
$var2 R  S  S R  S   R   
$var3  R  S R S   S   R  

 

 
 Step 5. Prune the candidate set. Optionally, candidate linking sets whose scores are below a 
threshold (calculated as a percentage of the score of the highest-scored set) are pruned. Pruning at 
this stage implies that we have high confidence in the outcome of syntactic analysis and its ability 
to inform semantic decisions. When pruning is disabled – as would be appropriate for non-
normative text genres like text messaging – all candidate sets are available to be evaluated 
semantically.    
 This concludes the description of how the results of syntactic analysis are used to create and 
score candidate linking sets that are then passed on for semantic analysis. In some cases, the 
candidate sets for different words will be incompatible. At the next stage of analysis, the 
algorithm will ensure that only compatible sets are combined in the final solution.   

7. Basic Semantic Analysis   

At this point, the analyzer has a list of linking sets for each word sense in the sentence. Each one 
is a candidate partial solution to overall sentence analysis. The analyzer also has a purely syntax-
based score for each linking set, derived by comparing the parser’s analysis of the actual use of 
each word in the context with the syntactic expectations for its use recorded in the syn-struc of 
each lexical sense of the word.  
 Now the analyzer undertakes to calculate a semantic score for each candidate variable binding 
in each lexical sense. It is important to note that syntactic scores and semantic scores are 
independent. In this step we are saying, If we were to select a given lexical sense with a given 
variable binding – no matter how likely or unlikely that binding was judged to be on syntactic 
grounds – how good would it be semantically? This semantic evaluation actually involves two 
processes. If the filler matches the expectations of one of the ontological facets (default, sem, or 
relaxable-to), then it is scored according to the tightest constraint it matches (e.g., SURGEON is 
scored very highly as the AGENT of SURGERY since it fills the default facet). If the filler does not 
match the expectations of any of the facets, then a special function (Onyshkevych, 1997) 
calculates the ontological distance between the actual filler and what is expected to be the filler. 
For example, the input The red tie performed the surgery violates the ontologically recorded 
expectation that the AGENT of SURGERY will at least be HUMAN (which fills the relaxable-to facet 
of the AGENT of SURGERY); however, the violation is explained by a chain of properties that 
metonymically links a person to the clothes he is wearing.   

Table 7 summarizes two candidate solutions for the problem of selecting a word sense and 
argument bindings for the word show in our sample sentence. First consider the show-v1 column. 
If show-v1 is selected, then the meaning of show will be understood as DISPLAY; its AGENT slot 
will be filled by some meaning of ‘study’ and its THEME slot will be filled by some meaning of 
‘result’. The sem-struc, in combination with information about DISPLAY recorded in the ontology,  

                                                 
7  In the sentences He eats all day and She hit the ball with enthusiasm, the adverbials all day and with enthusiasm 

should not be bound. Leaving all variables unbound is among the available options, as shown in the last column. 
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Table 7. Two candidate solutions for word sense disambiguation and semantic dependency determination 
for the word show in our sample sentence. 

 show-v1  show-v4 
Binding combination being 
evaluated 

$var1 = studies  
$var2 = result  

$var1 = studies  
$var2 = result 

Syn-struc of verb sense being 
evaluated  

$var0  
- subject $var1  
- directobject $var2  
- pp $var3  

$var0  
- subject $var1  
- comp $var2  

Sem-struc of verb sense being 
evaluated  

DISPLAY 
- AGENT ^$var1  
- THEME ^$var2  
- BENEF. ^$var3  

PROVE 
- INSTR. ^$var1  
- THEME ^$var2  
- BENEF. ^$var3 

Ontologically recorded 
constraints on head concept  

DISPLAY  
- AGENT (HUMAN) 
- THEME (PHYSICAL-OBJECT) 
- BENEFICIARY (ANIMATE)   

PROVE 
 - INSTRUMENT (EVENT, OBJECT) 
- THEME (EVENT, THEORY, INFO., …)  
- BENEFICIARY (HUMAN) 

Do any senses of the 
candidate binding fit the 
semantic constraints?  

1. Is any meaning of “studies” HUMAN? (no) 
2. Is any meaning of “result” a PHYSICAL- 
     OBJECT (yes)  

1. Is any meaning of “studies” an EVENT 

    or OBJECT? (yes) 
2. Is any meaning of “result” an EVENT,  
     THEORY, INFO….? (yes)  

 
tells us that the AGENT of DISPLAY should be HUMAN, and the THEME of DISPLAY should be 
PHYSICAL-OBJECT. So the question is, do any of the lexically recorded meanings of ‘study’ fulfill 
the HUMAN constraint, and do any of the lexically recorded meanings of ‘result’ fulfill the 
PHYSICAL-OBJECT constraint? 

The analysis process described in the next section will conclude that the answer is that none of 
the available meanings of ‘study’ is HUMAN, which makes this sense unlikely to be correct. Now 
consider show-v4. If it is selected, then the meaning of ‘show’ will be understood as PROVE; its 
INSTRUMENT slot will be filled by a sense of ‘study’ and its THEME slot will be filled by some 
meaning of ‘result’. The ontology tells us that the INSTRUMENT of PROVE can be an OBJECT or 
EVENT, and that the THEME of PROVE can be an EVENT, THEORY, INFORMATION, or any of a 
number of other semantic types. How well do the lexically recorded meanings of ‘study’ fulfill 
this EVENT/OBJECT constraint, and how well do the lexically recorded meanings of ‘result’ fulfill 
the EVENT/THEORY/INFORMATION constraint? The answer to both is ‘perfectly’, making show-v4 
much more semantically suitable for this input than show-v1. Semantic analysis of this kind 
provides the semantic score which is then combined with the syntactic score computed previously 
to select the best overall analysis of an input sentence.    

8. Combining the Syntactic and Semantic Scores  

The previous two sections have shown that a considerable amount of syntactic and semantic 
processing is required to make just one lexical disambiguation decision. Considering that 
sentences in news articles can be 20 to 30 words long, the number of possible analyses of an 
average-sized newspaper sentence can be prohibitively large (each word can have multiple word 
senses and each word sense can have multiple linkings). Clearly, techniques must be developed to 
avoid this complexity. The key insight of our work is that natural language problems can almost 
always be viewed as bundles of tightly constrained subproblems that combine at higher levels to 
produce a complete solution. Beale (1996) shows that syntactic and semantic constraints 
effectively  partition discourse  into  clusters of locally interacting networks.  Here, we summarize  
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that discussion, describing how solution synthesis and branch-and-bound techniques can be 
applied to the problem of natural language analysis.  
 The OntoSem module devoted to this problem is called Hunter-Gatherer, referring to two tools 
for finding solutions and achieving higher efficiency in problem solving – hunting and gathering. 
Hunting refers to reducing the search space by looking for suboptimal or impossible solutions and 
removing/killing them. Gathering suggests efficiently extracting answers to subproblems; 
collecting and combining satisfactory answers. Our approach involves: (1) using  semantic 
dependency information to partition problems into manageable subproblems; (2) combining 
(gathering) results from these subproblems using a solution synthesis technique; and (3) pruning 
(hunting) these results using branch-and-bound techniques, which rejects alternatives that are 
known to be worse than the current best answer (Winston, 1984).   
 Let us reiterate the task set for the analysis engine: It must select one of the candidate lexical 
senses for each word of input. Since lexical senses for all words except simple nouns include a 
head-and-argument structure, selecting a lexical sense involves both word sense disambiguation 
and semantic dependency determination. A naïve approach to selecting lexical senses would be to 
try all combinations of candidates, but this would be impractical for any normal-length sentence 
since an n-word sentence with an average of m linking candidates per word has mn possible 
combinations. Hunter-Gatherer achieves the same result as the naïve approach, but in an efficient 
manner that still promises to find the best solution as defined by the input parameters, including 
the weights of different features.  
 Hunter-Gatherer uses dynamic programming (e.g., Cormen 2001, pp. 327–8), a well-known 
method of solving a larger problem by breaking it down into simpler subproblems, then 
combining the solutions to the simplest subproblems to efficiently solve the entire problem. 
Consider, again, the excerpt from example (5), Studies have shown that repeated concussions can 
result..., which Figure 2 shows as a constraint diagram. The diagram should be understood as the 
merged superset of all candidate semantic constraints posited during earlier stages of processing. 
As such, each line represents some semantic constraint (we do not know which one yet), and each  

Figure 2. A constraint diagram for the beginning of the sentence Studies have shown that repeated concus-
sions can result in permanent injury to the brains of football players. The cloud represents the rest of the 
sentence, which has its own constraints. 
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word represents a text-level element (not yet its semantic interpretation). Hunter-Gatherer 
determines the best combination of word senses and semantic constraints that hold between those 
word senses. After it evaluates all candidate solutions for a subproblem, it labels the nodes of the 
graph with concepts and the lines with semantic dependency types.   

Once Hunter-Gatherer has created a superset semantic constraint graph (which encodes the 
knowledge that some constraint might hold between the linked text elements, whatever their 
lexical senses), it identifies subproblems that are relatively isolated, as Beale (1996) describes in 
detail. Figure 3 shows a portion of the example sentence’s constraint diagram divided into 
subproblems, numbered 1 to 6, roughly in the order of smallest to largest. This is also the order in 
which Hunter-Gatherer will process the subproblems, starting with smaller ones and using their 
results to process larger ones. Subproblem 4 represents the rest of the sentence, which will have 
its own subproblems that are not shown.    

The key heuristic for creating the subproblems (the circles in Fig. 3) is to minimize the number 
of words that have one or more constraint lines leading outside of the subproblem. Such lines 
indicate that resolution of the given element relies on outside input; the more numerous the 
pending constraints, the less progress can be made on the solving the given subproblem in 
isolation. For example, for Subproblem 1, which contains the words studies, have, and shown, 
only the word shown has constraint lines that leave the circle, which is a good state of affairs for 
the Hunter-Gatherer approach. 

The main principle behind Hunter-Gatherer can be illustrated by applying it to Subproblem 1, 
which includes three words. Let us make three simplifying assumptions for the sake of 
exposition: (1) each word has three senses, yielding 27 combinations of word senses; (2) there is 
no ambiguity of semantic dependencies (e.g., case-role-A always holds between shown and 
 

Figure 3. A constraint diagram for the beginning of the sentence Studies have shown that repeated
concussions can result in permanent injury to the brains of football players, divided into subproblems. 
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studies, and case-role-B holds between shown and have), such that our total for word sense and 
linking combinations remains 27; (3) each combination can be scored based on available 
heuristics.  

For each interpretation of shown (Shown:1, Shown:2, Shown:3, which illustrate three candidate 
sets for shown), there is a combination of interpretations of studies and have that maximizes the 
overall score, indicated in boldface: [Shown:1 Studies:1 Have:2  0.9] [Shown:2 Studies:1 Have:3  
0.6] [Shown:3 Studies:1 Have:1  1.0]. The result of Hunter-Gatherer’s evaluation of Subproblem 
1 is that, of the original 27 candidate solutions, it retains only these three. Although the last 
combination has a higher score than the other two, the system cannot, at this stage, eliminate the 
latter because there are constraints outside this subproblem that have not yet been taken into 
account. For example, the third candidate of shown might have low semantic constraint scores 
when combined, in Subproblem 6, with any candidate of result. And in general, further global 
constraints might overwhelm any local preference. Also note that ties in scoring (e.g., if there was 
another combination that used Cand3 of shown with a score of 1.0) are recorded so that the final, 
single global answer can be expanded if necessary. Thus, although the input complexity of this 
sub-problem is 27, corresponding to the 27 exhaustive combinations, the output complexity is 
only 3. When smaller subproblems are used as input to a larger one, it is only the output 
complexity that matters; the original input complexity is effectively obliterated.    
 To conclude, the core analysis engine of OntoSem – Hunter-Gatherer – carries out the process 
described above to find what it considers to be the best global semantic interpretation of an input, 
which it outputs in the form of a text meaning representation. The objective accuracy of this result 
depends upon many things: the quality of evidence provided by the parser; the accuracy and 
coverage of OntoSem lexicon and ontology; the effectiveness of various scoring mechanisms, 
which were configured by a mixed process of knowledge-based development and evidence-based 
training; and the extent to which the input is linguistically regular – i.e., correlates with the 
expectations of component analysis engines.  

9. Evaluation of OntoSem 

There are no established evaluation protocols for systems that attempt deep semantic analysis of 
text. We attempted to configure an evaluation procedure that would give the analyzer a fair 
opportunity to demonstrate its capabilities while neither overwhelming it with complexity (e.g., 
requiring it to fully interpret 40-word sentences) nor reducing the endeavor to a toy exercise. In 
what follows we describe a realistic framework for demonstrating the potential of our approach to 
offer near-term, mid-term, and long-term solutions for the problem of natural language 
understanding by intelligent agents.  
 The hypothesis we test here is that OntoSem can (a) disambiguate head verbs and (b) establish 
the correct dependency structure for its main arguments in the same way as a human would, given 
that both the system and the human represent meaning using the same lexical and ontological 
knowledge bases. We tested the hypothesis by having the system generate text meaning 
representations, then having a person check their accuracy – which was much faster than, and 
served the same purpose as, having the person create TMRs from scratch using the same 
knowledge bases. Our evaluation confirmed the hypothesis but underscored the need to continue 
to increase the size and coverage of OntoSem’s static knowledge sources. We present, in order, 
the experimental setup, its results – including error classification – and conclusions. 
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9.1  Experimental Design  

We characterize our experimental design in terms of eight decisions, along with their rationales: 

1.  We focused on verbal disambiguation and the establishment of the correct semantic 
dependency structure, as in CONCEPT (AGENT ___ ) (BENEFICIARY___ ). We did not evaluate 
disambiguation of the arguments because this often requires reference resolution and/or 
larger analysis of the discourse context, which was not our focus here (cf. the earlier 
discussion of the pirate examples).  

2.  We included in our test set an automatically selected subset of verbs from the OntoSem 
lexicon that met two criteria: they had more than one sense, and their syntactic and/or 
semantic descriptions made it possible to disambiguate them at the clause level. An example 
of verbs that do not meet the latter criterion are those that have both a physical and a 
metaphorical sense with identical arguments. For example, if person A attacks person B, he 
might be physically assaulting him or criticizing him, something that can only be determined 
using additional knowledge about the context.    

3.  Our evaluation corpus included four Sherlock Holmes stories: “A Scandal in Bohemia”, “The 
Red-Headed League”, “A Case of Identity”, and “The Boscombe Valley Mystery”. We 
selected these because they are freely available as part of Project Gutenberg [EBook #1661] 
and, to our knowledge, nobody has recorded linguistic annotations of these works, so there 
can be no question that our system operates on raw, unrestricted language input.  

4.  We automatically selected 200 sentences containing verbs from the selected set, processed 
them fully automatically, then manually evaluated the resulting TMRs.  

5.  One developer carried out the evaluation, with selective collaboration by another.  
6.  The evaluation involved not only detecting errors, but attempting to trace them back to a 

source that could be fixed to improve system functioning in the future.  
7.  We did not amend the lexicon or ontology – which had been acquired during work on various 

projects over many years – in any way to prepare for this evaluation.  
8.  The experimental setup included challenges of a type that are often filtered out of evaluation 

suites. For instance, some examples did not contain sufficient information to be properly 
disambiguated (e.g., semantically underspecified pronouns filled case roles) and  other 
examples  reflected what might be considered currently non-normative grammar. However, 
considering the importance of automatically processing non-standard language genres 
(texting, email, blogs), we felt it appropriate to make the system responsible for all 
encountered phenomena.  

Together, these decisions produced a design that differs substantially from those commonly used 
in studies of natural language processing. 

9.2   Experimental Results 

Of the 200 examples, 92 verbal disambiguation decisions were correct (46%) and 120 of 151 
dependency decisions were correct (79%). The vast majority of disambiguation errors (71.3%) 
resulted from the absence of the needed lexical sense in the OntoSem lexicon.8 Often, the missing 

                                                 
8  The rate of recording of lexical senses in OntoSem depends on whether or not the ontology already contains the 

concepts needed to describe the sense. If so, recording a sense can take as little as a minute. If not, or if a sense is 
particularly difficult to describe (such as privacy, loneliness, and alien), then acquisition can take far longer. In 
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sense was part of an idiomatic construction that had not yet been acquired, such as draw (close) 
the blinds in  

(7) “The drawn blinds and the smokeless chimneys, however, gave it a stricken look, ...”  
 
In other cases, the needed semantic representation (sem-struc) was available but the needed 
syntactic realization (syn-struc) was not. For example, to process  

 (8) “She became restive, insisted upon her rights, and finally announced her positive 
intention of going to a certain ball.”  

the lexicon must permit announce to take a direct object, whereas the current lexicon entry 
expected a clausal complement. Another noteworthy type of error involved the use of 
underspecified referring expressions as arguments of the verb. A verbal argument like it in 

(9) “I walked round it and examined it closely from every point of view, but without noting 
anything else of interest.”  

gives the analyzer no evidence for disambiguation, prior to reference resolution, if more than one 
lexical sense permits the given argument to refer to a non-human object or an event. Here, the 
analyzer selected the abstract event ANALYZE, which expects an ABSTRACT-OBJECT as the THEME, 
rather than the physical event VOLUNTARY-VISUAL-EVENT, which expects a PHYSICAL-OBJECT as 
the THEME. 
 In four cases, the disambiguation error was due to a missing syntactic transformation. 
Transformations are used to turn nonbasic syntactic structures, such as the passive voice, into the 
basic structures that are recorded in the OntoSem lexicon, such as the active voice. Among the 
transformations not yet covered by OntoSem is Noun+VerbPROGRESSIVE  EVENT (THEME 

OBJECT), an omission that led to the misanalysis of hang in   

(10) “When, in addition, I see a Chinese coin hanging from your watch-chain, the matter 
becomes even more simple.” 

The final type of error that deserves comment is unexpected input in the form of grammatical 
constructions that are not sufficiently canonical (at least in modern-day English) to be recorded in 
the lexicon. For example, the verb pronounce in 

(11) “I found the ash of a cigar, which my special knowledge of tobacco ashes enables me to 
pronounce as an Indian cigar.” 

is used in the non-standard construction X pronounces Y as Z. The remainder of fine-grained error 
classification is primarily of interest to developers, with issues ranging from parsing errors to 
what might be called genuinely very difficult input, as in the elliptical sentence  

(12) “We both thought the best resource was flight, when pursued by so formidable an 
antagonist; so you will find the nest empty when you call tomorrow.” 

in which the THEME of PURSUE is not within pursue’s minimal clause and, therefore, cannot, 
under the current system configuration, inform disambiguation. 

                                                                                                                                                  
additional, tactical decisions regarding the prioritization of lexical acquisition must be made. If one missing sense of a 
lexeme is identified, should all other senses – including all phrasal senses – be acquired at once? Needs of specific 
projects typically dictate this type of decision making. 
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Table 8. Error classification for verbal sense selection on an evaluation suite of 200 examples. 

Error Type Errors Percentage 
of Errors

The error can be fixed by adding or adjusting a lexical sense.       77         71.3% 
Disambiguation is impeded by an underspecified argument (e.g., ‘it’).      3         2.7% 
A needed syntactic transformation was missing.      4         3.7% 
Unexpected input (non-canonical English)     6         5.6% 
Miscellaneous     18         16.7% 
TOTAL     108         100% 

 
 

Table 8 summarizes the results of this evaluation exercise. The evaluation served its goal of 
validating that OntoSem works as designed: it generates the same disambiguation and 
dependency decisions for inputs as a person would when the lexical and ontological resources 
are sufficient to cover the given inputs. As expected, most errors are attributable to lexical 
insufficiencies – something that could, under a different experimental setup, be readily resolved. 

That is, prior to the evaluation we could have optimized the inventory of lexical senses for 
each selected verb, particularly by boosting the inventory of recorded idioms and phrasals 
(McShane et al., 2015). This would have substantially decreased the error rate and possibly better 
highlighted the analyzer's ability to manipulate competing constraints, but at the cost of less 
realistically conveying the current state of our knowledge resources. Another option would have 
been to leave the lexicon as is, task the analyzer with analyzing all sentences featuring the 
selected verbs, but have it return disambiguation results only if it was confident in its decision (if 
exactly one disambiguation decision received a high score). These choices are among many that 
should be considered in a community-wide discussion of what counts as useful evaluation for 
knowledge-based natural-language systems, not to mention cognitive systems overall. 

10.  Final Thoughts 

The main theoretical claim of Ontological Semantics is that the process of language 
understanding can be modeled using a combination of static knowledge resources and processors 
that implement psychologically-inspired analysis methods. This process yields automatically 
generated, ontologically-grounded text meaning representations that align with the meaning 
representations that humans would create using the same ontological metalanguage and the same 
state of the lexical and ontological knowledge bases. Since the semantic analysis engines rely on 
inspectable mechanisms, overtly specified knowledge, and an explanatory theoretical approach, 
we do not expect our results to be limited by any theoretical or practical ceiling; in fact, we have 
yet to find issues that we believe are intractable given appropriate knowledge modeling.  
 Zooming out to the overall field of natural language processing, a common motivation for the 
recent preference for knowledge-lean system building over knowledge-rich approaches has been 
the desire to bypass the so-called knowledge acquisition bottleneck – i.e., the expense of manually 
acquiring high-quality, machine-tractable knowledge. In our view, the manual acquisition of 
knowledge is an excellent and necessary investment, particularly when the same knowledge is 
used to support a broad variety of functionalities in agent systems. We obtained strong supporting 
evidence for the reusability of acquired knowledge in our work on the Maryland Virtual Patient 
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clinician training system (McShane et al., 2013), in which the same knowledge that permits 
agents to understand the utterances of human interlocutors also lets them model the plans and 
goals of those interlocutors, make decisions, and carry out simulated action based on those 
decisions. Spending time and effort on acquiring such knowledge is, in our opinion, a more 
prudent use of human resources than annotating texts for subsequent use by machine learning 
algorithms. In short, developing agent-oriented language processing capabilities involves a very 
different cost-benefit analysis than treating natural language in isolation. As shown by our system 
evaluation, manually acquired knowledge can be successfully brought to bear in service of 
endowing agents with the capability of deep semantic language analysis.  
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