Advances in Cognitive Systems 4 (2016) 187-206 Submitted 8/2015; published 6/2016

Lexicalized Reasoning about Actions

Christopher Geib CGEIB @DREXEL.EDU

College of Computing and Informatics, Department of Computer Science, Drexel University, 3141
Chestnut Street Philadelphia, PA 19104 USA

Abstract

The paper argues for the use of lexicalized grammars, specifically Combinatory Categorial Gram-
mars (CCGs), to direct both recognition and generation problems in planning domains. It reviews
previous work on using CCGs for plan recognition and then outlines how the same grammars can
be used to direct planning. It does this as part of a larger program to establish and leverage linkages
between reasoning about action and language understanding.

1. Introduction

Research in artificial intelligence in the last fifty years has made significant strides by examining
subproblems rather than attempting to build integrated systems. However, it has often been noted
that there are close relationships between the identified subproblems. For example, the relationship
between natural language parsing and plan recognition (recognizing the plans of others based on
observations of their actions) has been mentioned (Pynadath & Wellman, 2000; Vilain, 1990). A
relationship between natural language sentence generation and planning has also been discussed
(Carberry, 1990; Petrick & Foster, 2013). However, while researchers often pay lip service to
these relationships, their research programs are rarely informed by the results and methods of other
programs. This paper presents some initial results from a research effort that attempts to take these
interrelations more seriously.

Many “Al Hard” problem areas seem to naturally contain a recognition problem and a gen-
eration problem. For example, parsing natural language sentences and generating novel natural
language sentences are clearly related. Likewise the problem of plan recognition and building our
own plans seem intimately intertwined. While the same grammars have been used for parsing and
generating sentences of natural language, we know of no work that has used the same knowledge
structures to both build plans and recognize the plans of others. This is not to suggest that the same
approaches have not been used in past work. Multiple representations, including hidden markov
models (HMM) (Baum, Petrie, Soules, & Weiss, 1970) and hierarchical task networks (HTN) (Tate,
1977; Erol, Hendler, & Nau, 1994), have been proposed as representations for both planning and
plan recognition. However, we are not aware of any work that has made the stronger commitment
to use the same HMM or HTN for both tasks. If our eventual objective is to build systems that
integrate multiple subsystems, there is much to be learned by requiring the sharing of structures
between the tasks.

(© 2016 Cognitive Systems Foundation. All rights reserved.

C. GEIB

This paper presents such a pair of systems. Further, in an effort to bridge the gap between the
domains of reasoning about language and reasoning about action, the planning and plan recognition
systems shown here are based on a formal grammar model taken from current research on natural
language processing (NLP). Specifically, this work will build on prior work (Geib & Goldman,
2011) using Steedman’s Combinatory Categorial Grammars (CCG) (2000) for plan recognition,
which has shown success producing state of the art run times while addressing a number of open
issues from earlier work.

2. Motivation for using Grammars to Represent Plans

Past work has made arguments about the expressiveness of planning formalisms based on their
relation to regular and context-free grammars (Erol et al., 1994). This paper goes further and argues
for the explicit use of a grammar to capture knowledge of the ordering of actions that is needed for
planning and plan recognition. This may be intuitively plausible for some, but an argument for this
move is required. While the use of formal grammars has been very productive in natural language
research, some might argue that it is not clear that action domains have the same kinds of structure
that is captured in formal grammars. For example, in language, number and tense agreement are
easily solved as syntactic phenomena (Pereira & Shieber, 1987) as part of the grammar, but these
do not have obvious correlates in the action domain, and the linguistic separation between syntax
and semantics is not as obvious in action settings.

We would argue that addressing issues of number and tense in language are not the primary use
for grammar. First and foremost, such grammars are used to define the acceptable orderings for the
words in a sentence. That is, they specify the set of well-formed sentences within the language.
Defining the acceptable sequences of actions that might form a plan is an important part of plan
recognition and planning knowledge, and it is very similar to the problem of defining the set of
syntactically well-formed sentences in human language. Thus, while some details of the tasks
being performed differ between action domains and language, the need in both for the underlying
functionality is clear. We argue that leverage may be found by viewing them through a common
lens. If we are interested in finding unifying frameworks for multiple cognitive tasks, then we must
first make sure that the major features of the two problems can be brought into correspondance and
then look for lessons to be learned from the possibility of more fine-grained alignment.

2.1 Why Not Multiple Grammars?

Even accepting the premise that a plan grammar might be useful for these tasks, some might argue
that we should construct different grammars for the two tasks. For recognition, the grammer is
designed to address ambiguity, that is determining the roles of tokens in a sequence when each can
have multiple roles. In the case of generation, the grammar addresses synonymy, that is, choosing
between different realizations of a goal. Thus, one might argue, each problem requires a different
grammar.

However, this argument is really only about efficiency, as it already concedes that at least one
grammar is needed. There are strong reasons to suppose that the yield of both grammars must be the

188

LEXICALIZED REASONING

same in a given domain. If this is not true, an agent might be found in the odd position of being able
to build and execute a plan while being unable to recognize the same plan when executed by others.
Given this, and that the only role of the grammar is to define the sequences of well-formed tokens,
then any meaningful differences between grammars for recognition and generation can only concern
their efficiency at directing plan recognition or planning, not in the sets of acceptable sequences.
However, we have already stated that the objective is to show that it is possible to use the same
grammar for both planning and plan recognition. Arguments about efficiency of the grammar are
interesting, but only once we have shown that the same grammar can be used for both tasks.

2.2 Contribution and Paper Organization

Thus, while the major contribution of this paper will be the presentation of a new planning algo-
rithm, the central contribution for cognitive systems should be seen in the much larger canvas of
lexicalized reasoning research. This research program’s central objective is to produce methods
for generation and recognition that operate on a common grammar framework, such that varying
only the input grammar will solve of four different “Al hard” problems, namely language parsing,
language generation, plan recognition, and plan generation. We believe that lexicalized reasoning
can successfully address these four problems with a common representational framework. Note that
such a relationship is exactly what we would imagine if language use and reasoning about physical
action leverage the same cognitive infrastructure, as has long been suggested (Lashley, 1951; Miller,
Galanter, & Pribram, 1960).

The rest of this paper explores this idea. First, it provides formal definitions for CCGs, shows
how they can represent plans, and briefly sketches of how previous work has used them to perform
plan recognition. Next it discusses new work that details how CCGs can be used to direct plan
generation. After this, it contrasts this new approach with existing HTN planning methods. The
paper closes by discussing implications of the approach and outlining directions for future work.

3. Using CCGs to Represent Plans

This section lays out formal definitions for all of the notations and terms required for the rest of this
paper. These definitions are illustrated with a running example from a simplified robotic domain
based on the EU FP7 Xperience project. As such, it is focuses on “pick and place” operations to
move objects from one location to another. In an effort to bridge terminological differences between
the research areas of NLP and reasoning about actions, these definitions differ slightly from those
presented in CCG work on NLP and even those used in our previous work (Geib, 2009) .

3.1 Category Definitions

CCGs define acceptable orderings of tokens using functional categories. They use two binary opera-
tors, forward slash (/) and backward slash (\), to define functions from a set of argument categories
to a result category. For both operators, the category on the left of the slash is the result and the set
of categories on the right are the arguments. More formally, we have

189

C. GEIB

Definition 3.1. A ser of categories C is defined recursively:
Atomic categories: A finite set of base categories denoted { A, B,C, ...} € C.

Complex categories: Given a set of categories C, where Z € C and {W,X,Y,...} # 0 and
{W,X,Y,..} €C, then Z/{W, X,Y,...} eCand Z\{W, X,Y,...} € C.

The slash indicates where the function looks for its arguments, which must occur affer the cate-
gory for forward slash and before it for backslash. In addition, each atomic category has a single
satisfaction condition.

Definition 3.2. An atomic category’s satisfaction condition is a (possibly empty) first order logical
formula using only conjunction and negation of predicates.

Intuitively, a satisfaction condition (SC) defines a set of states in the action domain. For example,
consider a SC for the category H-FULL:

H-FULL(x) := [in-hand(xz1) A lon-table(x1)].

Note that, in order to move beyond a strictly propositional representation, atomic categories may
have variables (x in this case) that range over objects in the domain. Bindings of such variables will
also have scope over the SC assigned to the category. Unbound variables in the SC are assumed to
be existentially quantified. Thus, given the assignment above, the ground atomic category instance
H-FULL(cup23) would denote the set of all states of the world in which both in-hand(cup23) is true
and on-table(cup23) is not.

For clarity, the rest of this paper adheres to the typographical conventions established here.
Atomic categories are in capitals and logical domain predicates in italic lower case, possibly hy-
phenated. Single, lower-case, italic letters with subscripts represent domain object variables, and
domain object identifiers are identified by a lower-case object name followed by a number. Action
identifiers are in bold lower case.

Assigning SCs to atomic categories lets us view a category as a function from states to states.
To see this, consider atomic categories. With the assignment of SCs, each atomic category can be
seen as a zero arity function that maps from any possible state of the domain to one of the states
defined by the category’s SC. For example, assume we assign the action grasp the atomic category
H-FULL:

grasp(z;) := [H-FULL(zy)].

This tells us that the ground action instance grasp(cup23) is a function such that executing it in any
state results in being in a state where in-hand(cup23) is true and on-table(cup23) is not. Complex
categories define more restricted functions and introduce notions of abstraction and seriation.

3.2 Complex Categories Using Backward Slash

Remember that the backslash operator (\) defines a function whose argument categories must occur
before it in order to achieve the states defined by the satisfaction condition of the resulting category.

190

LEXICALIZED REASONING

Consider adding another atomic category (H-AROUND) to our domain and changing the definition
of grasp to

H-AROUND(x1) := [hand-around(x1)]
grasp(x1) := [H-FULL(z;) \ { H-AROUND(x1) }]

so that grasp is a function that results in the SC of H-FULL being true, but only if, immediately
before its execution, another function is executed whose result category is H-AROUND. Alterna-
tively, grasp is a function that achieves the SCs of H-FULL, but only if it is executed in states where
the SCs of H-AROUND have already been satisfied.

It is worth noting that limiting categories to a single leftward slash lets CCGs represent STRIPS-
style actions (Fikes & Nilsson, 1971) with the form

EFFECTS \ { PRECONDITION }

where the SC of EFFECTS encodes the effects of the action and the SC of PRECONDITION spec-
ifies the preconditions of the action. However, given the functional nature of the representation, if
another argument is added to the category, this parallel no longer holds. Consider these definitions

H-FULL(z1) := [in-hand(z1) N lon-table(x1)]

H-AROUND(x1) := [hand-around(x,)]

H-EMPTY := [lin-hand(x1)]

grasp(z1) := [(H-FULL(z;) \ { HHEMPTY}) \ { HHAROUND(z;) }]

Here grasp is a function that achieves H-FULL, but only if a function is executed before it that
results in H-AROUND and only if a still earlier function is executed that achieves H-EMPTY.
While this is a natural extension of the CCG formalization, such information cannot be explicitly
expressed in STRIPS-style action representations. Such ordering information is much closer in style
to an HTN representation. Section 5 will say more about the relation of CCGs to HTNs.

3.3 Complex Categories Using Forward Slash

The forward slash operator works in the same way as the backslash but expects its arguments to
occur later. Consider a set of definitions for putting an object on the table:

H-FULL(xy) := [in-hand(x1) N on-table(x1) |

H-EMPTY := [lin-hand(x1) |

ON-TABLE(z1) : [on-table(x1)]

reachdpl(z;) := [(ON-TABLE(z;)/ { H-HEMPTY}) \ { H-FULL(z) }]
release := [H-HEMPTY]

In this case, we could undestand the ground action instance reach4pl(cup23) as a function that
results in on-table(cup23) being true if, prior to its execution, the SCs of H-FULL(cup23) are true
and after its execution an action that has H-EMPTY as its atomic result is executed. Expressing
such forward relationships is impossible in STRIPS-style action representations.

191

C. GEIB

Thus, CCG categories define functions from states to states, with atomic categories defining
functions that map from any state to a specific state, and with complex categories being more re-
strictive. In the end, the two slash operators let us build up curried functions (Curry, 1977) from
states to states. We allow multiple categories to be assigned to an action to define alternative possible
functional mappings for a single action.

3.4 Projection Rules

Section 4 discusses how such categories can be used to direct planning. To do this it is important
to have detailed projection rules that predict the effects of executing an individual action within
a given state. As mentioned, such knowledge could be represented using CCG categories, but, to
simplify our exposition, we use better known precondition and postcondition notation. For example,
a partial set of rules that could be associated with the actions release, reachdgr, reachdpl, grasp,
and unreach is

release :: [in-hand(x1)] — [lin-hand(xz1) N\ hand-empty]
reachdgr(xq) :: [hand-empty N\ hand-at-side] — [hand-around(x,) N 'hand-at-side]
reachdpl(x,) :: [lhand-empty] — [\hand-at-side |
grasp(zi)

[hand-around(x1) N hand-empty] — [in-hand(x1) N 'hand-empty\ 'hand-around(x1) |
unreach :: [lhand-at-side in-hand(x1) N\ on-table(x1) | — [hand-at-side/\ 'on-table(x+)]

where each rule has the form action :: precondition — postcondition. Such projection rules do
not contain what have been called applicability conditions (Ghallab, Nau, & Traverso, 2004) that
specify when the action should be executed or other conditions that control the search for a plan.
They only simulate the results of performing the action. For example, such a rule lets one infer
that, if release is executed in a state where in-hand(cup23) is true, it results in a state where in-
hand(cup23) is not true and hand-empty is true. To simulate the execution of an action in a state,
only a single rule is applied. The precondition of the rule is matched using negation by failure. If
no rule has a condition that matches, then there is no knowledge about the action’s effects and it is
assumed to have no effect. Thus, if grasp(cup23) is executed in a state where hand-around(cup23)
is NOT true, then (assuming the set of rules above is complete) one should conclude that the action
has no effect on the domain. Section 4 discusses the use of such rules.

3.5 Plan Lexicons

Having placed information about how to build a plan into the grammar’s categories and information
about action execution into projection rules, we are now in a position to define a CCG plan lexicon.

Definition 3.3. A plan lexicon is a tuple PL = (3,C, f), where ¥ is a finite set of action types, C
is a set of possible CCG categories, and f is a function such that Vo € %, f(o0) — C, C C.

C, is the set of categories to which an observed action type ¢ can be assigned. For brevity, one often
just provides the function that maps observable action types to categories to define a plan lexicon.
For example, CCG:1 provides a partial lexicon for the reaching domain:

192

LEXICALIZED REASONING

release reachdgr(cup23) grasp(cup23)

H-EMPTY H-AROUND(cup23) ((PICK(cup23)/{AT-REST})\{H-EMPTY})\{H-AROUND(cup23)}

(PICK (cup23)/{ AT-REST})\ {H-EMPTY}

PICK (cup23)/{AT-REST}

Figure 1. Parsing observations with combinatory categorial grammars.

release := [H-HEMPTY |,

CCG: 1. reachdgr(xz,) := [H-AROUND(z1)],
grasp(zy1) := [(PICK(z1)/ {AT-REST}) \ {H-EMPTY}) \ {H-AROUND(z1)}],
unreach := [AT-REST |.

Although only a single category is associated with each action in this example, this is atypical and
a result of the brevity of the example.
Two other terms will also be helpful in the remainder of the paper.

Definition 3.4. A category R is the root or root result of a category G if it is the leftmost atomic
result category in G. For a category C we denote this root(C).

For example, PICK is the root result of the category

((PICK(z1) / {AT-REST}) \ { H-HEMPTY}) \ { H-AROUND(z) }.

Definition 3.5. An action type a is a possible anchor of a plan for category C if the lexicon assigns
to a at least one category whose root result is C.

For instance, in CCG:1, grasp is the anchor for PICK. This formulation of CCGs is closely related
that of Baldridge (2002) in allowing sets of arguments for categories. Sets of arguments are critical
for the treatment of partial ordering in plans. The interested reader can find details of this idea in
Geib (2009) and in Geib and Goldman (2011).

3.6 CCG Combinators

Next, we must show how CCG categories are combined into higher-level plan structures. We use,
three binary combinators (Curry, 1977) to combine the categories of individual observations:

rightward application: X/aU{Y}, Y = X/a
leftward application: Y, X\aU{Y} = X\«
rightward composition: X/aU{Y}, Y/8 = X/aUp

Here X and Y are categories, while e and 3 are possibly empty sets of categories. To see how a
lexicon and combinators parse observations into high-level plans, consider the derivation in Figure 1

193

C. GEIB

for the sequence of observed actions release, reachdgr(cup23), grasp(cup23). As each observation
is encountered, it is assigned a category on the basis of CCG:1 and then combinators combine the
categories. For example, first release is observed and assigned to H-EMPTY but no combinators
can be applied. Next reachdgr is assigned to H-AROUND; again, no combinators are applicable.
Once grasp is observed and assigned its category, leftward application is used twice to combine both
the H-AROUND and H-EMPTY categories with grasp’s initial category, resulting in PICK(cup23)
/{AT-REST}. The use of the combinators requires the unification of variables in the actions or
categories. In this case, if the observed action had been reachd4gr(cup46), the leftward application
combinator would not have applied, because cup46 and cup23 do not unify.

3.7 Plan Recognition Using CCGs

Given a set of observations and a CCG lexicon defining a set of possible plans, we can view plan
recognition as a kind of parsing. Geib (2009) and Geib and Goldman (2011) have shown that, at a
high level, this involves three steps:

1. Build the complete and covering set of parses (or explanations) that organize the observations
into one or more plan structures that meet the requirements defined in the plan lexicon, as seen
in Figure 1.

2. Establish a probability distribution over the explanations.

3. Since there can be a large number of explanations and each can contain multiple hypothesized
plans, compute the conditional likelihood of each root-result from the distribution over the
explanations.

The ELEXIR plan recognition system implements this approach, and we have shown that it ad-
dresses a number of outstanding problems in plan recognition, including multiple interleaved plans,
plans with loops, and partially ordered plans, all with efficient run times. However, the central con-
tribution of this paper is using the same representations for generation. Thus, a complete discussion
of plan recognition is outside its scope. We refer the interested reader to Geib (2009) and to Geib
and Goldman (2011) for a fuller discussion of ELEXIR.

4. Using CCGs for Planning

Having presented an overview of CCGs and their use in plan recognition, we can now look at
using these same grammars to direct plan construction. Intuitively, the same knowledge of action
orderings used in plan recognition can direct the building of a plan.

A cognitive system can use the directionality and order of the arguments in a CCG category not
only to capture ordering relations among argument categories, but also to control the construction
of a plan to achieve the categories’ root result. That is, the structure of a category directly reflects
both the ordering constraints on the plan’s substeps, as well as the order of the search for a plan to
achieve the root result. Thus, sub-plans to achieve each argument of the category are built in the
order they occur within the category.

194

LEXICALIZED REASONING

Table 1. High-level recursive psudeocode for plan generation. Backtracking in this search both over category
choices and category variable bindings has been omitted for simplicity of exposition.

Procedure BuildPlan(G) {
LET C¢ = the set of all ¢; € C such that G = root(c;);
FOR ¢; € Cq
LET ac, be the action the lexicon assigns c; to;
P = [aci};
WHILE ¢; # G
IFc; = v_>x\cx
P = APPEND (BuildPlan(c,), P);
END-if
IF ¢; = vy, /¢y
P = APPEND(P, BuildPlan(c;));
END-if
ci = Vx;
END-while
END-for
RETURN P; }

Taking this view, using CCGs to plan requires two operations. First, to build a plan for a
category, the system must choose an action that is one of its anchors. This is the inverse of assigning
a category to an observed action during plan recognition. This step binds any variables associated
with the category. Second, if the chosen action’s category is complex, the system recursively builds
plans for each of the category’s arguments. The system appends the resulting sub-plans either to
the left or right as determined by the category’s slashes. This corresponds to the application of the
CCG combinators in parsing. Table 1 gives pseudocode for this procedure. To make the logic of
the category directed search as clear as possible, it does not include code for binding and searching
over individual category variables. In Table 1, C denotes the set of all categories and v, is a variable
over category structures.

Keep in mind that the order of a complex category’s arguments determines the order in which the
planning process occurs, and the direction of the slash determines where the subplan is added to the
plan. Although the resulting plan is totally ordered, actions can be added both to the left and right
of the first action placed in the plan. In this, it is similar to causal-order planing (Penberthy & Weld,
1992). It is also worth noting that, the definition of complex categories does not restrict which
categories can be arguments. This means that complex categories can be recursive and therefore
can define plans of arbitrary depth. CCGs of the type we used here are known to have the same
expressiveness as context-free grammars (Joshi, Shanker, & Weir, 1990) and are thus in the same
expressiveness class as Hierarchical Task Network (HTN) planners.

195

C. GEIB

MOVE-OBJ

release reachdgr grasp unreach orient move orient reachdpl release unreach

Figure 2. A hierarchical partially ordered plan to relocate an object.

4.1 An Example

An example will aid in understanding how such plans are built. Consider a simple plan lexicon
fragment:

PICK(x1) := [in-hand(x1)],
H-FULL(z1) := [in-hand(xz1) N lon-table(x1) |,
H-EMPTY := [lin-hand(zq) |,

release := [H-EMPTY, (PLACE(z;)/{AT-REST})\{H-ABOVE(z1)}],
CCG: 2. reachdgr(z,) := [H-AROUND(z1)],
reachdpl(z,) := [H-ABOVE(zy)],
unreach := [AT-REST],
grasp(z1) := [(PICK(z1)/{AT-REST}H\ {H-EMPTY })\ {H-AROUND(z1)}],
orient(x1) := [FACE(z1)],
move(zy) =
[((MOVE-OBIJ(x1, 72)/{PLACE(z2) })/{FACE(z1)})\ {PICK(z2) })\ {FACE(x1)}].

This is part of a lexicon used in the hierarchical plan structure in Figure 2. It extends CCG:1 to build
plans for moving objects from one location to another. While all of the actions for the domain are
shown, we have omitted some satisfaction conditions and projection rules. It is also worth noting
that action release has two categories, one that only empties the hand and another that places an
object successfully on a surface.

Suppose our goal is to build a plan to achieve the state in-hand(cup23). To start the system finds
satisfaction conditions for the atomic categories that cover the desired state. If this process identifies
PICK as having an appropriate satisfaction condition, then it unifies the SC and goal state to produce
bindings for the category’s variables. In this case, this results in PICK(cup23). Using typography

196

LEXICALIZED REASONING

1 PICK(cup23)

2 ((PICK(cup23)/{AT-REST})\{H-EMPTY})\ {H-AROUND(cup23)} : grasp(cup23)

3 H-AROUND(cup23) (PICK(cup23)/{AT-REST})\{H-EMPTY} : grasp(cup2§)1<

4 reachdgr(cup23)

5 (PICK(cup23)/ {AT-REST})\ {H-EMPTY} - reachdgr(cup3), grasp(cup?d)

6 H-EMPTY PICK(cup23)/{AT-REST} : reachdgr(cup23), grasp(cup2_31)<

.o s

8 PICK (cup23)/ { AT-REST) - release, reachdgr(cup23), grasp(cup23)

9 PICK(cup23) : release, reach4gr(cup23), grasp(cup23) AT-REST

10 " unreach
... append-R

11 PICK(cup23) : release, reach4gr(cup23), grasp(cup23), unreach

Figure 3. Building a plan to achieve the goal category PICK(cup23). Solid lines denote the action of decon-
structing a complex category (-1 and a direction indicator). Dotted lines separate two subtasks of the planning
process: choosing an action to achieve a particular category (no annotation) and adding the chosen action to
the plan (“append-L” or “append-R”) .

similar to that in the earlier parsing diagrams, Figure 3 shows how this instantiated category directs
the search for a plan.

First, given a category, the system selects an anchor action that has the category as its root result
and binds the action’s variables on the basis of the category’s bound variables. For example, on
the second line of Figure 3, it has chosen the action grasp as the anchor for PICK, built a bound
instance of the action, grasp(cup23), and created a grounded instance of the category to direct the
rest of the search for a plan:

((PICK(cup23)/{ AT-REST})\ {H-EMPTY })\ { H-AROUND(cup23)}

Next the system adds the chosen action to the plan. Since this is the first action to be added,
no interesting reasoning is required. The system then looks at the next argument of the current
category, in this case H-AROUND(cup23) (see line three of Figure 3) and repeats the process. In
line 4, the system has selected an action that is an anchor for H-AROUNDand bound it, resulting in

reachdgr(cup23)

Since H-AROUND:It only requires a single action, planning for this subcategory is now complete.
In line 5, because H-AROUND was a leftward argument of the category directing the plan search,
the system adds the action to the front of the current plan, resulting in the plan fragment:

P = [reachdgr(cup23), grasp(cup23) |

197

C. GEIB

In lines 6 to 8, the same process is repeated on the H-EMPTY category, giving the plan fragment:
P =[release, reach4gr(cup23), grasp(cup23) |

Lines 9 to 11 in the figure see the same process repeated on the AT-REST category, with the signifi-
cant difference that in this case a rightward-looking argument to the category directs the search. As
aresult, line 11 adds the unreach action to the end of the current plan:

P = [release, reachdgr(cup23), grasp(cup23), unreach]

Because the category directing search has no more argument categories, the plan is complete. Again,
the actions were not added strictly from left to right. Instead, as each argument’s subplan was
completed, it was added either to the beginning or end as dictated by the category. Thus, the plans
is built from the middle outward.

4.2 Verifying the Plan

The plan lexicon encodes methods for building plans that are likely to succeed. They need not
possess the downward refinement property (Bacchus & Yang, 1991) and, as such, are not guaranteed
to work. Rather, each CCG category represents a suggestion about how to go about building a plan
that might achieve the desired goal. This contrasts with most HTN planners, which assume the
specified set of plans is complete. In this style of planning, the search for a plan to achieve a
particular goal category is informed by the categories of the CCG lexicon, but the lexicon is not
guaranteed to contain a successful plan from every state.

Thus, after construction, the system simulates the plan to verify that it achieves the goal. To
do this, it employs the projection rules defined for each action in the lexicon that we described in
Section 3.4. In our example, if one knows that the initial state of the world for the plan is

[hand-empty\ hand-at-side/\ on-table(cup23) |

then, by following the plan and using the projection rules from Section 3.4, the system can infer that
the generated plan will produce the state

[in-hand(cup23) A hand-at-side]

If a plan’s simulation results in a desired goal, the system returns it to the user. If the simulation
does not achieve the goal, then search backtracks and looks for another plan. Thus, like FastForward
(Hoffmann & Nebel, 2001) and other modern planners, this method is incomplete. The lexicon
encodes heuristic knowledge about likely ways to achieve goals. Therefore, if completeness is
required and if the lexicon does not support a plan, one must fall back on search through the space
of all basic action sequences using the projection rules.

We have built a full, first-order logical planner in C++ that implements these ideas using the
same core data structures and representations as the ELEXIR recognizer. We believe that the use of
common underlying data structure and grammar formalism for both planning and plan recognition

198

LEXICALIZED REASONING

is an intellectual contribution that outweighs even moderate decreases in performance relative to
other systems.

5. Relation to Hierarchical Task Networks

The action representation most closely related to combinatorial categorial grammars (CCGs) is
clearly hierarchical task networks (HTNs) (Tate, 1977; Ghallab et al., 2004). Both support hierarchi-
cal structure, ordering constraints, and capture domain knowledge about how to build or recognize
plans that goes beyond non-hierarchical approaches. Thus, it is worth spending some time to under-
stand their differences. There are multiple formulations of HTNs that differ in details. Georgievski
and Aiello (2014) offer a relatively complete discussion of these alternative formulations. Here we
compare CCGs to the major features that are shared by most HTN formalisms.

5.1 Background

Consider the hierarchical plan structure for transferring a single object from a sideboard to a table
shown in Figure 2. HTNs have a set of basic actions of the kind found in non-hierarchical plan-
ners. Following our previous typography, we denote these actions with lowercase bold identifiers.
This representation of these is very similar to that found in STRIPS (Fikes & Nilsson, 1971) and
other non-hierarchical planing systems. As such, they have preconditions and effects that capture
the logic necessary to project state changes caused by the action’s execution. In addition, HTNs
have tasks that are defined by methods, which specify the results of decomposing high-level tasks
into component subtasks. To simplify our discussion, like CCG category identifiers, we will use
capitalized identifiers for tasks (e.g., MOVE-OBJ) but we will shortly discuss their differences.

If we use HTNs to represent the plan structure shown in Figure 2, each of the non-basic actions
requires a decomposition encoded by a method. A method captures the fact that, to achieve the high
level task MOVE-OBJ, the subtasks PICK, RELOCATE, and PLACE must be executed in order.
This would look something like

Methodl: MOVE-OBJ— PICK, RELOCATE, PLACE

and would only convey information about the top four tasks in Figure 2. For the purposes of dis-
cussion, we will use a propositional rather than first order representation, but nothing we will say
hinges on this assumption. There might also be methods for decomposing PICK, PLACE, and
RELOCATE:

Method2: PICK— H-EMPTY, H-AROUND, H-FULL, AT-REST
Method3: RELOCATE— FACE, LOCOMOTE, FACE
Method4: PLACE— H-ABOVE, H-EMPTY, AT-REST

HTN’s methods make no commitments about how the subtasks should be decomposed or the order
of their decomposition. Each method only captures a single level of decomposition from high-level
task to an ordered sequence of subtasks. In some implementations, a method must only provide
a partial ordering over the subtasks in its definition. Furthermore, each method may have a set

199

C. GEIB

of preconditions that specify when it can be used, and some variants let methods specify effects
(Georgievski & Aiello, 2014).

Finally, HTNs have a set of methods that map tasks to basic actions which can be executed to
achieve the task.

Method5: H-ABOVE— reachdpl Method6: H-AROUND— reachdgr
Method7: H-FULL— grasp Method8: H-EMPTY — release
Method9: AT-REST— unreach Method10: LOCOMOTE— move
Method11: FACE— orient

In this example, each action maps to a single task, but this is not required. A task might map to a set
of basic actions that achieve it or, depending on the treatment of HTNs, basic actions could occur
as siblings of tasks in any other method definition.

There are a number of techniques for building plans using HTNs. The most common is relatively
simple. An external mechanism (typically the user) chooses a highest level task, then recursive
search expands and orders the task’s subtasks to produce a sequence of basic actions. This search
takes place over multiple decision points:

1. choosing a method chosen to expand a task;
2. choosing an ordering over partially ordered subtasks; and

3. choosing an order for the expansion of any subtasks.

Organizing this required search for HTNs is at the core of the first difference from CCGs we will
highlight.

5.2 Lexicalization

Any lexicalized grammar has the benefit of isolating domain-dependent information in the lexicon
and precompiling search. Consider again the HTNs that encode the plans in Figure 2. Method1
expands MOVE-OBJ, to a set of lower level tasks, but it does not add any basic actions to the
plan. In general, substantial search and structure building may be required before adding any basic
actions. In contrast, consider building the same plan based on CCG:2. The first step is to add the
action grasp to the plan and, with this, the entire high-level structure of the plan. This results from
the plan structure being encoded in the CCG lexicon.

Such precompilation of grammars is well known. Context free grammars for specifying pro-
gramming languages are frequently rewritten into Greibach Normal Form (Greibach, 1965) pre-
cisely to force each production rule to have at least one non-terminal and thereby reduce search.
The search that CCGs remove can also be removed from an HTN by lexicalizing the CFGs that
implicitly define it. Requiring each HTN method to contain at least one basic action in the task
expansion can effectively lexicalize HTN methods. For example, we can imagine a process very
similar to that used to rewrite grammars to Greibach Normal Form that rewrites Method4 to contain
a basic action with the form

Method4: PLACE— H-ABOVE, release, AT-REST.

200

LEXICALIZED REASONING

We could then rewrite this method as the CCG lexicon entry
release := (PLACE/{AT-REST})\{H-ABOVE}

This would transform the HTN into something that looks like a CCG, but that retains causal ordering
information. IN this way, one can remove at least some of the search for a plan in the same way
as CCGs. However, it requires assumptions about the ordering in which subplans are built and
equating HTN tasks with CCG categories, which, as we will see next, are very different.

5.3 Foundations and Grounding HTNs

Much of the prior work on HTN planning has provided only procedural definitions for some of the
core concepts, leaving open fundamental questions:

1. What is the formal nature of a task?
2. What is the relationship of the method’s preconditions and effects to its task?

3. What is the relationship of the method’s preconditions and effects to the basic actions that
expand it?

We address these questions here. First, as we have already noted, categories are unlike tasks in
that they are approximate functions from states to states. Thus, categories require no additional
ontological machinery to specify complex categories. The representation of basic actions used
by both CCGs and HTNs are approximate functions between states and categories capture this
relationship.

Second, HTNs offer only a procedural understanding of a task’s preconditions. Modern plan-
ning research distinguishes among applicability preconditions’, enablement preconditions’, and sec-
ondary preconditions’. In general, preconditions in HTNs describe applicability, in that they must
be true in the current world state for the method to expand the task. As such, preconditions encode
another way to control search beyond the method definition. Our definition of categories eliminates
preconditions and thereby unifies search control knowledge into category structures. Thus, there
are no conditions that must hold before one executes an action. In unusual contexts, an action’s
projection rules may be unable to predict the effects of an action, but CCG lexicons do not limit
the states in which a plan can be recognized or an action executed. Instead, the categories alone
constrain search for a plan.

Third, as Bacchus and Yang (1994) have discussed, without additional constraints in the form of
the downward refinement property and assumptions about the relationship between abstraction lay-
ers of a hierarchical plan, there is no necessary relation between a task, a method, and the existence
of a sequence of actions that achieve it. However, as we have presented them, each CCG category
is anchored by a basic action and makes a commitment not present in HTNs. Each category defini-
tion requires that, if following the category results in a sequence of actions that achieve the success
conditions of the root result, this sequence must include the anchor action. That is, choosing the
complex category commits to the presence of at least one basic action within the plan.

Further, CCGs as defined here do not guarantee that every sequence of actions derivable from
them will be an acceptable plan for the satisfaction conditions of the category’s root result. They

201

C. GEIB

MOVE-OBJ

release reachdgr grasp unreach orient move orient reach4pl release unreach

Figure 4. The hierarchical plan structure from Figure 2 indicating the coverage of a single CCG category
from CCG:2. All shaded nodes are encoded in the complex category for the move action.

support a much weaker claim: categories provide heuristic guidance for the recognition or building
of plans. Their relationship to achieving satisfaction conditions of the categories root result is not
causal or definitional. Instead categories capture the beliefs of the agent about likely correct methods
for building plans.

To summarize these differences, we have provided a formal definition of CCG categories that
goes beyond the procedural foundations of many HTNs planners. Further, CCG categories unify
and generalize the search-control knowledge that is captured by multiple structures in HTNs, thus
providing a simplified understanding of such knowledge. Finally, viewing CCG categories in terms
of heuristic search control, rather than as abstract causal knowledge, separates knowledge about
how to build plans from knowledge of physics of the world.

5.4 Structural Differences from HTNs

A single CCG category captures the spine of a tree from the root of the tree (or a subtree) to a
basic action at a leaf. For example, in CCG:2 the action move is the anchor for a plan to achieve
MOVE-OBIJ. This requires the lexicon include a category of the form repeated here from CCG:2:

move(z,) =
[(MOVE-OBIJ(z1, 72)/{PLACE(z2) })/{FACE(x1) })\ {PICK(22) })\{FACE(z1)}]

Figure 4 shows a graphical representation of the plan defined by CCG:2 with the portions of the
plan tree are covered by move’s category in grey. This single category combines the information in
the HTN Methodl and Method3. Thus, the combined use of these two methods is captured in the
category for the action that is its anchor. Lexicalization of the plan grammar places the knowledge
about the use of basic actions in the categories for the actions themselves. This is why the category
for move defines a substantially larger portion of the plan’s causal structure than a traditional HTN
method. Knowledge about the plan is associated with the basic actions that serve as anchors to

202

LEXICALIZED REASONING

achieve high-level plans. This contrasts strongly with HTN planning systems, which must account
for the status and organization of methods that are not immediately grounded in individual actions.

This category indicates that move is one of the actions in the middle of a plan to achieve
MOVE-OBJ. Furthermore, it identifies the subcategories that must be achieved before and after
it. However, some of the subcategories occur at different levels of abstraction in the plan space. For
example, in most HTNs, PLACE and FACE would appear at different stages of the decomposition
process. A CCG category for this plan contains more information about how to achieve MOVE-OBJ
than the analogous HTN method and cuts through traditional HTN decompositional layers to an an-
choring action. In this way, they are like lexicalized tree grammars (Joshi et al., 1990) and, as such,
are generative and can produce plans of arbitrary depth. For example, any category with PLACE as
its root result can guide both recognition and building of plans to achieve the categories’ satisfaction
conditions in any context. We are not constrained to only use the method shown in Figure 4. We
could use any category that had PLACE as its root result.

The way in which CCGs are used also qualitatively changes the way in which one looks at the
information in the lexicon. CCGs not only define the subtasks necessary to accomplish a task, but
also the order in which they should be built. This is an important distinction. HTNs say nothing
about the order in which the subtasks should be further decomposed. This additional domain knowl-
edge is usually encoded in the HTN search engine itself. In contrast, in a lexicalized grammar, each
category can encode the domain-specific knowledge of the expansion order for its arguments. Thus,
a single lexicon can encode different domain-specific search choices for different categories and
retain all of this knowledge in the lexicon.

To summarize this subsection, CCGs provide a single framework to understand preconditions,
effects, causally prior tasks and causally subsequent tasks, all of which have all been treated sep-
arately in the HTN literature. As a result, CCGs, unlike HTNs, can define actions at any level of
abstraction as a function from states to states. Further, much of the search for a plan is compiled
into the CCG categories, capturing plan tree spines rather than an HTN method’s single step of
decomposition. Finally, domain-specific control knowledge about how to recognize or build a plan,
which must be encoded separately in HTNs, is naturally part of the CCG categories.

6. Directions for Future Research

There are multiple directions for future work in the lexicalized reasoning research program. First,
the argument for reasoning about actions using lexicalized representations would be strengthened
if the same parsing and generation methods described here are shown to work for natural language
grammars. Our parser for plan recognition, covered in previous work, is not taken from natural
language research. The parser extends work in natural language process to address multiple, con-
current, interleaved plans, which do not occur in natural language, but the plan recognizer does work
in the single plan case. This gives us good reason to believe that it will work for natural languages,
but we must still demonstrate this ability.

Demonstrating the planner’s capacity for generating sentences would also strengthen our argu-
ment for lexicalized reasoning. Prior work has shown that conventional planners can be used for this
task (Koller & Petrick, 2011). There is no reason to suppose our planner would be ineffective for

203

C. GEIB

this purpose, but demonstrating it would lend further support to the lexicalized reasoning research
program.

Our argument for lexicalized reasoning about actions would also be strengthened by an account
of learning plan grammars. Encouragingly, there is a considerable body of work on learning CCG
language grammars that may be effective for learning the plan lexicons described here (Clark &
Curran, 2004; Thomforde & Steedman, 2011; Kwiatkowski, Goldwater, Zettlemoyer, & Steedman,
2012). Using the same grammars to recognize and generate sequences of actions provides a particu-
lar advantage for learning by demonstration (Nejati, Langley, & Konik, 2006). Consider learning by
observing another agent. Assuming that the correct plan can be recognized from a demonstration,
then if different representations are used for recognition and generation, the identified plan must
still be converted or translated to use it for generation. Still more learning may be required for this
conversion. If the same grammar is used for both tasks, this eliminates the problem. The fragment
of the grammar used to recognized plan can directly generate a new instance of the plan. No map-
ping between the representations is required and no additional learning needed. Thus, learning by
demonstration may be particularly productive for such systems.

7. Conclusions

As we have argued, the link between planning and language has a long tradition. Moreover, the
use of formal grammars to drive both recognition and generation has a long tradition in natural
language processing, but a much shorter history for reasoning about actions. We argued that using
lexicalized plan grammars to drive both plan recognition and generation could provide leverage on
both problems and offer a unified view of language and planning.

In this paper, we outlined how CCGs, a lexicalized grammar formalism taken from natural
language processing, can be used in this way. We specified CCG grammars for plans and showed
how a planner can use the same lexicon as previously developed for a plan recognizer. We also
outlined areas for future work and suggested why this line of research is promising. In summary,
the paper presents an important step toward a shared understanding of recognition and generation
for planning and language.

Acknowledgements

The research leading to these results was partially funded by the European Commission’s Seventh
Framework Programme under Grant No. 270273 (Xperience). The author would like to acknowl-
edge Ron Petrick and Mark Steedman for helpful discussions and critical questions in the devel-
opment of these ideas and Pat Langley and the anonymous reviewers from the 2015 Advances in
Cognitive Systems Conference for insightful questions on the relation between this formalism and
prior work and comments on earlier versions of this paper.

204

LEXICALIZED REASONING

References

Bacchus, F., & Yang, Q. (1991). The downward refinement property. Proceedings of the Twelfth In-
ternational Joint Conference on Artificial Intelligence (pp. 286-292). San Francisco, CA: Morgan
Kaufmann.

Bacchus, F., & Yang, Q. (1994). Downward refinement and the efficiency of hierarchical problem
solving. Artificial Intelligence, 71, 43—100.

Baldridge, J. (2002). Lexically specified derivational control in Combinatory Categorial Grammar.
Doctoral dissertation, University of Edinburgh, School of Informatics, Edinburgh, Scotland.

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the
statistical analysis of probabilistic functions of markov chains. Annals of Mathematical Statistics,
41, 164-171.

Carberry, S. (1990). Plan recognition in natural language dialogue. Cambridge, MA: MIT Press.

Clark, S., & Curran, J. (2004). Parsing the WSJ using CCG and log-linear models. Proceedings
of the Forty-Second Annual Meeting of the Association for Computational Linguistics (pp. 104—
111). Barcelona, Spain: Association for Computational Linguistics.

Curry, H. (1977). Foundations of mathematical logic. Mineola, NY: Dover Publications.

Erol, K., Hendler, J. A., & Nau, D. S. (1994). HTN planning: Complexity and expressivity. Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence (pp. 1123-1128). Menlo
Park, CA: AAAI Press.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 3, 189-208.

Geib, C., & Goldman, R. (2011). Recognizing plans with loops represented in a lexicalized gram-
mar. Proceedings of the Twenty-Fifth Conference on Artificial Intelligence (pp. 958-963). San
Francisco, CA: AAAI Press.

Geib, C. W. (2009). Delaying commitment in probabilistic plan recognition using combinatory
categorial grammars. Proceedings of the Twenty-First International Joint Conference on Artificial
Intelligence (pp. 1702—1707). Pasadena, CA: AAAI Press.

Georgievski, 1., & Aiello, M. (2014). An overview of hierarchical task network planning. ArXiv
e-prints. http://adsabs.harvard.edu/abs/2014arXiv1403.7426G.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated planning: Theory and practice. San
Francisco, CA: Morgan Kaufmann.

Greibach, S. A. (1965). A new normal-form theorem for context-free phrase structure grammars.
Journal of the ACM, 12, 42-52.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14, 253-302.

Joshi, A. K., Shanker, K. V., & Weir, D. (1990). The convergence of mildly context-sensitive gram-
mar formalisms. Technical Report MS-CIS-90-01, Department of Computer and Information
Science, University of Pennsylvania, Philadelphia, PA.

205

C. GEIB

Koller, A., & Petrick, R. P. A. (2011). Experiences with planning for natural language generation.
Computational Intelligence, 27, 23-40.

Kwiatkowski, T., Goldwater, S., Zettlemoyer, L. S., & Steedman, M. (2012). A probabilistic model
of syntactic and semantic acquisition from child-directed utterances and their meanings. Proceed-
ings of the Thirteenth Conference of the European Chapter of the Association for Computational
Linguistics (pp. 234-244). Avignon, France: Association for Computational Linguistics.

Lashley, K. S. (1951). The problem of serial order in behavior. Indianapolis, IN: Bobbs-Merrill.

Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New
York, NY: Henry Holt and Company.

Nejati, N., Langley, P., & Konik, T. (2006). Learning hierarchical task networks by observation.
Proceedings of the Twenty-Third International Conference on Machine Learning (pp. 665-672).
New York, NY: ACM. From http://doi.acm.org/10.1145/1143844.1143928.

Penberthy, S. J., & Weld, D. S. (1992). UCPOP: A sound, complete, partial order planner for ADL.
Proceedings of the Third International Conference on Principles of Knowledge Representation
and Reasoning (pp. 103—114). Cambridge, MA: Morgan Kaufmann.

Pereira, F. C. N., & Shieber, S. M. (1987). Prolog and natural-language analysis. Stanford, CA:
Center for the Study of Language and Information.

Petrick, R. P. A., & Foster, M. E. (2013). Planning for social interaction in a robot bartender
domain. Proceedings of the Twenty-Third International Conference on Automated Planning and
Scheduling (pp. 389-397). Rome, Italy: AAAI Press.

Pynadath, D., & Wellman, M. (2000). Probabilistic state-dependent grammars for plan recognition.
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (pp. 507-514).
Stanford, CA: Morgan Kaufmann.

Steedman, M. (2000). The syntactic process. Cambridge, MA: MIT Press.

Tate, A. (1977). Generating project networks. Proceedings of the Fifth International Joint Confer-
ence on Artificial Intelligence (pp. 888—-893). Cambridge, MA: Morgan Kaufmann.

Thomforde, E., & Steedman, M. (2011). Semi-supervised CCG lexicon extension. Proceedings of
the Conference on Empirical Methods in Natural Language Processing (pp. 1246-1256). Edin-
burgh, UK: Association for Computational Linguistics.

Vilain, M. (1990). Getting serious about parsing plans. Proceedings of the Eighth National Confer-
ence on Artificial Intelligence (pp. 190-197). Boston, MA: AAAI Press.

206

