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Abstract 
One challenge faced by cognitive systems is how to organize information that is learned by 
reading.  Analogical reasoning provides a method for immediately using learned knowledge, and 
analogical generalization potentially provides a means to integrate knowledge across multiple 
sources.  To use analogy on learned material requires organizing information, represented in 
predicate calculus, into effective cases. This paper argues that using connectivity in semantic 
interpretations to organize knowledge learned by reading into overlapping cases can support 
analogical reasoning with these structures.  We describe two connectivity-based methods and 
compare their performance with two baselines for the task of comparing and contrasting topics 
included in material the system has read. 

1. Introduction and Motivation 

Cognitive systems need to learn by reading in order to acquire knowledge in a scalable way.  In 
natural language understanding and knowledge representation, solid progress has been made on 
extracting complex structured information from text (e.g., Barker et al., 2007; Fan et al., 2012).  
A new challenge is how such extracted knowledge can be organized for reasoning and for 
integration into what a cognitive system already knows.  Analogical reasoning has been shown to 
be useful for robust learning by reading, for decoding instructional analogies (Barbella & Forbus, 
2011), and for allowing a system to ask itself questions based on prior knowledge (Forbus et al., 
2007). In this paper, we focus on organizing knowledge in ways that supports analogical 
reasoning. 

Case comparison has been used or proposed for use in a variety of reasoning applications 
(Brüninghaus & Ashley, 2001; Peterson, Mahesh, & Goel, 1994; Chaudhri et al., 2014).  This 
suggests that one way of organizing newly-read knowledge is to group it into cases – sets of facts, 
treated as units – so they can be used in analogical reasoning and learning. Analogy works best 
with interconnected relational structures, where relevant information is in the same case.  This 
suggests going beyond the natural boundaries provided by language – paragraphs and sentences – 
and focusing instead on interconnected facts within the conceptual representations produced by 
semantic interpretation.   

This paper describes two connectivity-based case construction mechanisms and evaluates 
them by comparing them to sentence-level and paragraph-level algorithms.  We begin by 
summarizing the components and representations that the system uses. We then introduce four 
methods for organizing facts into cases. We follow with a description of an experiment and its 
results, and then close with related and future work. 
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2. Background 

This section summarizes our learning by reading system, including its representations and its 
mechanisms for analogical matching and case construction.  We discuss each in turn.   

 The system is based on the Companion cognitive architecture (Forbus, Klenk, & Hinrichs, 
2009), which provides reasoning facilities (including analogy) that are used during language 
processing.  It uses the Cyc representation language, ontology, and knowledge base contents,1 
which provide a large vocabulary of concepts (called collections), predicates, and several million 
facts constraining them.  Here we use fixed-width font to denote symbols and expressions from 
the system. For example, (isa solar-panel02 SolarCollector) says that the entity 
solar-panel02 is an instance of the collection  SolarCollector.  Cyc’s language also 
provides a notion of logical environment via microtheories, local contexts linked via inheritance 
relationships.  Its use of rich type-level representations, as well as microtheories for representing 
contexts, makes it a natural choice for expressing the kinds of complex information often 
communicated via language.  Most of the lexical representations for verbs in Cyc are 
Davidsonian. They reify the event and use role relation predicates to connect the event to the 
actors that participate in it. For example, the full representation of “eats” in “A dolphin eats a 
fish” is: 

(and  
   (isa eat5642 EatingEvent)  
   (performedBy eat5642 dolphin5637) 
   (consumedObject eat5642 fish5672)) 

In this notation, eat5642 is the eating event. The participants are dolphin5637 and 
fish5672.  The roles they play in the event are described by their relations: performedBy 
indicates that the actor intentionally performed the action, and consumedObject indicates that 
the object was affected and destroyed as part of the event. Cyc has an extensive hierarchy of role 
relations, but about ten such relations account for a majority of those used by the language 
system. 

 Our natural language system uses Allen’s (1994) parser for syntactic analysis. Our semantic 
interpretation process is based on Discourse Representation Theory (DRT; Kamp & Reyle, 1993), 
which provides an account of scoping, including conditions and counterfactuals.  Semantic 
interpretation builds up discourse representation structures (DRSs), each of which is a case 
containing one or more facts.  These facts describe relationships among entities, collections to 
which those entities belong (i.e., category information), and other DRSs.  Each sentence has an 
associated sentence DRS that contains the facts that represent the semantics of that sentence.  For 
example, the sentence “The solar panel cools” has a sentence DRS that contains three facts: 

(isa solar-panel02 SolarCollector) 
(isa cool05 CoolingEvent) 
(objectOfStateChange cool05 solar-panel02)  

Sentence DRSs can also have constituent DRSs. For example, the sentence “If the valve closes, 
the flow of water stops” mentions a closing event and a stopping event, but does not say that 
either actually happened. If the system produced facts that said that a stopping event occurred and 
that the flow of water was what stopped, it might reach incorrect conclusions. For that reason, 

                                                 
1 The URL http://www.cyc.com provides details about ResearchCyc. 
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rather than placing that information directly in the sentence DRS, the system creates two new 
constituent DRSs, one for the antecedent of the statement and one for the consequent. The 
sentence DRS then introduces a fact of the form (implies DRS-01 DRS-02).  Constituent 
DRSs are also used to handle negation and hypotheticals, as well as other higher-order 
relationships between sets of facts.  

Syntactic and lexical ambiguities are explicitly encoded as choice sets. The process of 
semantic interpretation involves constructing DRSs by selecting among choices from these 
alternatives.  To factor out any domain or task specific influences, ambiguities were resolved 
automatically using a small set of general-purpose heuristics. For example, the reading system 
prefers interpretations that treat compound noun phrases like “solar panel” as atomic referents 
when they are available, such as SolarPanel. An interpretation that treated “solar panel” as a 
generic panel that is in some way related to the sun would be less preferred. Another heuristic 
prefers interpretations that include more facts. If the heuristics do not favor any of the choices in a 
set, the system chooses randomly. A truth maintenance system ensures that the system does not 
select incompatible choices.   

Given that these heuristics do not involve any learned statistics, they perform quite well. 
Overall, they selected a correct answer for 86.6 percent of the 886 lexical choice sets generated 
by the source texts used in this paper.  Errors generated by the heuristics tend to be systematic, 
which helps reduce analogical processing mismatches.  For example, the system consistently 
selected Pipe-SmokingDevice over Pipe-GenericConduit as the interpretation of the 
word “pipe.” This was incorrect; the corpus discusses rainwater collection systems and solar 
heating, and it does not discuss smoking.  In the first occurrence of “pipe,” the only applicable 
heuristic was random choice, and smoking device was selected.  Subsequent choices were 
influenced by a heuristic that prefers concepts already used in the interpretation.  Hence very 
similar, albeit partially incorrect, structures were created, facilitating analogical comparison. 

 A discourse is a multi-sentence section of a source text considered together. After parsing a 
source text, the system runs a discourse-level interpretation process that handles coreference 
resolution. The basic coreference strategy is to resolve pronouns, definite references (“the 
dolphin”), and verbs to the most recent valid referent, as determined by common collection 
membership and a few other factors (such as shared arguments, in the case of verbs). After 
coreference resolution, the system places the contents of the sentence DRSs from the text into a 
discourse interpretation DRS, with coreferent items resolved to the same symbol. This DRS 
frequently has many constituent DRSs, as every constituent DRS from one of the component 
sentences becomes a constituent DRS in the discourse interpretation. 

 For our experiments, the source text was simplified syntactically (Kuehne & Forbus, 2004). 
This process converts unsupported grammatical structures into supported ones. It does not 
completely eliminate syntactic ambiguity. For example, the source sentence “As for the solar 
heater, the sun has not yet risen” was simplified to “The sun has not yet risen on the solar heating 
system.” Table 1 contains a paragraph from the simplified corpus. The simplification process 
places no broad-ranging restrictions on the lexicon, although there are occasional coverage gaps, 
particularly where compound nouns are concerned. For example, the unsupported “solar heater” 
became “solar heating system” in the sentence above.  

 Our evaluation involves comparing and contrasting generated cases using analogy. This uses 
the Structure Mapping Engine (SME; Falkenhainer, Forbus, & Gentner, 1989), a computational 
implementation of Gentner’s (1983) structure mapping theory. SME takes two structured 
representations, the base of the analogy and the target, as input.  These are the two cases that will 
be aligned with each other. It produces one or more mappings, which consist of three parts.  First, 
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mappings include a set of correspondences between elements of the base and elements of the 
target.  Second, they include a score, an estimate of match quality.  SME attempts to produce the 
largest mappings it can that satisfy the constraints of structure-mapping theory.  Each mapping 
also includes candidate inferences, hypotheses formed by filling out the target with parts of the 
base not represented in the target and vice versa. For our evaluation, the score is used to 
determine which mapping is the best, and only that mapping is used. The correspondences of that 
mapping can be thought of as things that the cases have in common, and the candidate inferences 
can be thought of as salient differences between the two cases. Because SME can project 
inferences in both directions, which case is the base and which is the target is immaterial here.  

 Dynamic case construction (Mostek, Forbus, & Meverden, 2000) is the process of building 
cases automatically from a body of knowledge. Almost all case-based reasoning systems require 
cases to be constructed by some external process. These are sometimes hand-curated, but that 
approach does not scale well.  The ability to build focused cases from larger knowledge sources 
avoids manual curation, especially when combined with natural language understanding. The 
methods we describe in this paper can be thought of as extensions of dynamic case construction 
for learning by reading.  

3. Case Construction Methods 

The process of case construction in the context of learning by reading can be viewed as a problem 
of segmentation: how to divide the facts generated by the natural language system into useful 
cases.  We have developed two connection-based methods that make use of properties of the 
knowledge in the interpretation, and two simpler techniques that use only naturally-occurring 
boundaries in text to serve as baselines. All four methods take the same inputs. The system reads 
a chapter from a source text and produces the discourse interpretation. Each case is built around a 
seed, which is a single mention of a single entity in the source text. For example, the term “solar 
heating system” in the sentence “At the start of each day, the solar heating system is semifull” 
was one such seed.  We use this seed as an example throughout this section. The system can 
generate cases for each possible seed in the source text, or it can postpone generating cases until 
prompted to do so externally, such as when it is posed a question about a particular entity. 

We start with the baseline methods, as they are simpler.  The first algorithm is local sentence 
interpretation (LSI). This method takes the sentence where the seed occurs and uses its sentence 
interpretation – including its constituent DRSs – as the case. This makes intuitive sense as a 
baseline; most English-language sentences are about a single thing, so it is generally likely that a 

 
Table 1. The simplified version of one paragraph from the corpus. 

 
 

At the start of each day, the solar heating system is semifull. At the start of each day, the 
rainwater collection system is semifull. The rainwater collection system could have some 
rainwater in it. The solar heating system's heat storage is warm because the solar heating 
system collected heat during the previous day. In the rainwater collection system, the valve 
closes. This prevents the flow of the stored water. The rain is not falling. The water in the pipe 
has leaked out. The sun has not yet risen on the solar heating system. The solar collector was 
exposed to the cold air in the night. The heat storage contains heat. Because of this, the heat 
storage's temperature is greater than the air's temperature. The control device sensed that the 
heat storage's temperature was greater than the solar collector's temperature. Because of this, 
the control device shut off the pump. This prevented the cooling process of the heat storage. 
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sentence case contains mostly things that are directly relevant to reasoning about the things it 
mentions. For our example sentence, the information learned from the sentence interpretation is 
that there is a solar heating system, and at the start of a day it is partially full. The method is 
inexpensive, as no additional computation is required beyond what goes into understanding the 
sentence in the first place. A limitation of this method is that important information about an 
entity is often spread over multiple sentences.  For our example seed, all of the facts derived from 
the sentence “At the start of each day, the solar heating system is semifull” are added to the case, 
and only those facts are adde.  This is six facts in total.  

The second baseline algorithm, local paragraph interpretation (LPI), is similar, but it uses all 
of the facts derived from all of the sentences in the paragraph of the source text in which the seed 
appears. It uses facts from the discourse interpretation case, rather than the individual sentence 
cases, so that coreferent symbols are resolved to each other, but otherwise operates like local 
sentence interpretation. Local paragraph interpretation is much less likely to miss important 
information about the seed, but it has two potential disadvantages. First, a paragraph can cover 
multiple topics, which increases the amount of noise in the case. Second, it is may be less useful 
for comparing or contrasting two seeds that are in the same paragraph, because the cases will be 
identical. We investigate this potential drawback in Section 4. Because the system enforces 
alignment between the seeds, there can still be some candidate inferences drawn, but structural 
alignment will result in many statements matching with themselves. For our example seed, the 
case created by this algorithm is very large, 178 facts, and covers a broad range of topics, as it 
contains the facts built from all 15 sentences in the paragraph.  

The last two methods we propose exploit connectivity properties of the conceptual 
representation for the semantics of the sentence. Table 2 describes sentence-based segmentation 
(SBS), which creates a case by adding all of the facts derived from sentences where the seed is 
mentioned.  This makes intuitive sense, as these facts are likely to be related to the topic in 
question, since they come from the same sentences. One major advantage of this strategy is that it 
includes facts from the discourse interpretation that are otherwise disconnected from the rest of 
the graph, but does not simply include everything. Facts that are in the same sentence as relevant 
ones are likely to be relevant themselves. Table 3 contains the case produced by sentence-based 
segmentation for our example seed.  Note that these facts were drawn from four sentences, as 
there are four references to the seed in the source text, which coreference identifies.  

Table 2. The sentence-based segmentation (SBS) method. 

 

      Procedure SBS. 
      Inputs: s, a seed entity.  
      Outputs: c, a set of facts for a case 
        Let c = {} 
        Let s.coref = {entities coreferent with s}⋃{s} 
           For each entity e in s.coref: 
             Let t be the sentence that e appears in. 
             For each fact f that was derived from t: 
               Let c = adjoin(c, f)  
             For each constituent DRS k derived from t: 
               For each fact f in k: 
                 Let c = adjoin (c, f)  
      Return c. 
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The second connection-based case construction method that we developed, fact-based seg-
mentation (FBS; see Table 4), is inspired by the method described in Mostek et al. (2000), but is 
adapted to use the interpretations produced by the language system. Fact-based segmentation 

Table 3. Example of facts in a case built using sentence-based segmentation.  The case consists of 28 
facts across four DRSs. Representations are simplified for space and readability. Note that some facts 
are incorrect, due to errors in automatic word sense disambiguation. Four sentences contained or 
referred to the seed: “At the start of each day, the solar heating system is semifull,” “We examined the 
elements of a solar heating system,” “We also compare the rainwater collection system and the solar 
heating system,” and “We will examine the solar heating system operating during a typical day.” 
 

 

Holds in Discourse-DRS-01: 
(evaluee-Direct compare02 rainwater-collection-system03)  
(evaluee-Direct compare02 solar-heating-system01)  
(evaluee-Direct examine04 element05) 
(fullnessOfContainer solar-heating-system01 PartiallyFull) 
(implies-DrsDrs DRS-02 DRS-03)  
(isa compare02 Comparing) 
(isa day06 ObservanceDay) ;; WSD error – “day” 
(isa examine04 Inspecting)  
(isa group-of-element05 Set-Mathematical)  
(isa solar-heating-system01 SolarHeatingSystem)  
(performedBy compare02 we07)  
(performedBy examine04 we08  
(possessiveRelation day06 start09)  
(startingPoint day06 start09)  
(temporallyIntersects start09 (StartFn be10))  
(willBe DRS-04) 
 

Holds in DRS-02: 
(member element05 group-of-element05) 
 

Holds in DRS-03: 
(isa element05 ElementStuffTypeByNumberOfProtons) ;; WSD error – “element” 
(isa solar-heating-system01 SolarHeatingSystem) 
(possessiveRelation solar-heating-system01 element05) 
 

Holds in DRS-04: 
(conceptuallyRelated day11 Normal-Usual)  
(evaluee-Direct examine04 solar-heating-system01)  
(isa solar-heating-system01 SolarHeatingSystem)  
(performedBy examine04 we08)  
(temporallySubsumes day11 operate12)  
(isa day11 ObservanceDay) ;; Word sense disambiguation error 
(isa examine04 Inspecting)  
(isa operate12 Surgery) ;; Word sense disambiguation error 
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Table 4: The fact-based segmentation (FBS) method. 
 

Procedure FBS. 
Inputs: s, a seed entity; dMax, a maximum depth. 
Outputs: c, a set of facts for a case 
 Let eExtended = {s} ;; The entities that have already been used. 
 Let c = gatherFactsForEntity(s, 0, dMax)  
 Return c. 
 
Procedure gatherFactsForEntity. 
Inputs: eCur, the current extension entity; depthCur, the current depth;      
        dMax, a maximum depth.  
Outputs: cExtend, a set of facts. 
 Let cExtSameDepth = {} ;; The facts added at the same depth 
 Let cExtNextDepth = {} ;; The facts added at the next depth 
 Let cExtend = {} 
 For each fi in {isa facts that mention eCur}: 
  Let cExtSameDepth = adjoin(cExtSameDepth, fi) 
  For each ji in {isa facts in fi’s paragraph that use fi’s collection}: 
   Let cExtNextDepth = adjoin(cExtNextDepth, ji) ;; Add at the next depth. 
 For each fn in {non-isa facts that mention eCur}: 
  Let cExtNextDepth = adjoin(cExtNextDepth, fn) ;; Add at the next depth. 
 Let cExtSameDepth = cExtSameDepth⋃getDRSFacts(cExtSameDepth) 
 Let cExtNextDepth = cExtNextDepth⋃getDRSFacts(cExtNextDepth) 
 Let cExtend = cExtNextDepth⋃cExtSameDepth 
 For each fc in cExtSameDepth: 
  For each eNext in {entities mentioned in fc}: 
   Unless member(eNext, eExtended): 
    Let eExtended = adjoin(eExtended, eNext)  
    Let cExtend = cExtend⋃gatherFactsForEntity(eNext, depthCur, dMax) 
 Unless depthCur = dMax: 
  For each fc in cExtNextDepth: 
   For each eNext in {entities mentioned in fc}: 
    Unless member(eNext, eExtended):  
     Let eExtended = adjoin(eExtended, eNext) 
     Let cExtend = cExtend⋃gatherFactsForEntity(eNext, depthCur + 1, dMax) 
 Return cExtend. 
  
Procedure getDRSFacts.  
Inputs: extendCase, a set of facts. 
Outputs: DRSFacts, a set of facts. 
 Let DRSFacts = {} 
  For each fc in extendCase: 
   If fc is contained within a constituent DRS cDrs: 
    For each fccDrs in {facts in cDrs}: 
     Let DRSFacts = adjoin(DRSFacts, fccDrs) 
    For each fmcDrs in {facts that mention cDrs}: 
     Let DRSFacts = adjoin(DRSFacts, fmcDrs) 
 Return DRSFacts. 
 

 

starts with a seed entity that is passed to the gatherFactsForEntity procedure. Facts are 
added to the case at the same level if they are isa facts that mention that entity. They are added 
to the case at the next level down either if they are isa facts that do not mention the entity but 
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use the same collection as one of the entity’s isa facts, or if they are non-isa facts that mention 
that entity. If any of these facts mention a constituent DRS, the facts in that DRS are added at the 
same level. If any facts are contained in a constituent DRS, the facts in that DRS are added at the 
same level. This is done by the procedure getDRSFacts. From there, the system goes through 
each entity mentioned in a fact that it added to the case on that round. Each of these is extended, 
using gatherFactsFromEntity, just as the seed was extended. Entities at the maximum 
depth are not extended, and nor are ones that have already been extended, which prevents loops. 

Working through an example of the fact-based segmentation method in action can be useful.  
Recall our example seed, the term “solar heating system” in the sentence “At the start of each 
day, the solar heating system is semifull.” The method begins by selecting the discourse variable 
derived from that seed, solar-heating-system01. When the case mentions an entity, FBS 
adds facts that mention the entity to the case. This means that the facts (fullnessOf-
Container solar-heating-system01 PartiallyFull) and (isa solar-
heating-system01 SolarHeatingSystem) are added, in the contexts in which they 
appear. The first appears in the top-level DRS, Discourse-DRS-01, whereas the second 
appears in several constituent DRSs, including DRS-08. When FBS adds an isa fact to the case, 
other isa facts in the paragraph that use the same collection are also added. For example, if there 
were other instances of SolarHeatingSystem in the paragraph, such as (isa solar-
heating-system35 SolarHeatingSystem), the facts indicating this would be added. 
This lets the system include multiple instances of the same type of thing and produce better cases 
by providing a mechanism for quickly reaching related facts. When a constituent DRS is 
mentioned in a fact in the case or a fact contained in a constituent DRS is added, facts that 
mention that constituent DRS and facts inside that constituent DRS are added to the case. Here, 
when FBS adds a fact that is contained in DRS-08 to the case, it adds (not DRS-08) to the 
case. When a fact contained in or mentioning a constituent DRS is in the case, the rest of the facts 
in that constituent DRS are added. Because the case contains a fact in DRS-08, this rule adds the 
other facts in DRS-08. A fact present in multiple DRSs may appear in the final case more than 
once, contextualized in different DRSs. 

All facts in a given DRS (except for the top-level sentence) are added to the case at the same 
depth. Adding a complete constituent DRS is crucial for accuracy.  For example, consider the 
sentence “When the temperature of the heat storage equals the temperature of the solar panel, the 

Table 5. A subset of the facts found using the FBS algorithm, which added 63 facts in total across six 
DRSs. Representations are simplified for space and readability. 
 

In Discourse-DRS-01: 
(isa solar-heating-system01 SolarHeatingSystem) 
(fullnessOfContainer solar-heating-system01 PartiallyFull)  
(isa flow16 FluidFlow-Translation) 
(isa prevent15 (PreventingFn flow16)) 
(primaryObjectMoving flow16 water17) 
(not DRS-08)  
 
In DRS-08: 
(isa rise13 AscendingEvent)  
(isa solar-heating-system01 SolarHeatingSystem)  
(objectMoving rise13 sun14)  
(on-UnderspecifiedSurface sun14 solar-heating-system01) 
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heat does not flow.” Leaving out any part of the DRS constituent structure, such as the antecedent 
information or the negation, would change the meaning of the sentence. We chose a maximum 
depth of three, based on examination of pilot data. For our example seed, the resulting case had 
63 facts.  With a depth of two, the case produced had only 60 facts, and for a depth of four, the 
case produced had 115 facts.  Table 5 shows some of the facts that were added to the case for our 
example seed. 

 One apparent advantage of this method is that it incorporates connections across multiple 
sentences. This should be useful in cases where a topic is only mentioned once but is elaborated 
upon across several sentences. While some sentences that elaborate on a topic may continue to 
refer to it directly, there may be relevant information in sentences that do not. For example, in 
“The dolphin often has one calf. The calf is weaned after one year,” if the seed being used is the 
instance of “dolphin” in the first sentence, sentence-based segmentation will not include any 
information from the second sentence, as it does not explicitly mention the dolphin. Fact-based 
segmentation will include information from the second sentence, as it chains through facts that 
share entities.  

 This section introduced four methods for building cases from a discourse interpretation. Two 
of these, local sentence interpretation and local paragraph interpretation, use only natural 
boundaries in the text. Sentence-based segmentation and fact-based segmentation take advantage 
of other connections between things in the interpretation. The methods have different strengths 
and weaknesses, as summarized in Table 6. One of the greatest differences is size of the cases 
they produce. Table 7 shows the number of facts that are added to a case created by each of the 
methods when used on the example seed. 

4. Experimental Design and Evaluation 

Given the different potential strengths and weaknesses of the four methods, we designed an 
experiment to evaluate them. The hypothesis tested was that the connection-based construction 
methods, fact-based segmentation and sentence-based segmentation, will produce more effective 

Table 7. The number of facts in a case constructed around the example seed for each of the four case 
construction methods. 

  Method  No. of Facts 
  Local Sentence Interpretation      6        .   
  Local Paragraph Interpretation      178        . 
  Sentence-based Segmentation      28        . 
  Fact-based Segmentation      63        . 

Table 6. Potential strengths and weaknesses of each of the four case construction methods. 

Method Avoids 
Noise 

Captures 
Relevant 
Statements 

Other 

LSI Excellent Poor Misses any information not in the single sentence 
LPI Poor Excellent Produces identical cases for seeds in the same paragraph 

Produces very large cases 
SBS Excellent Average Can miss relevant information even from nearby 

sentences 
FBS Average Excellent Most CPU time-intensive to produce 
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cases, as measured by their performance on a compare and contrast task, and produce more 
compact cases as well. Local sentence interpretation and local paragraph interpretation are the 
baseline methods. We use a compare and contrast task for evaluation because it is one of the most 
straightforward kinds of analogical reasoning, and it has interesting potential applications 
(Brüninghaus & Ashley, 2001; Peterson et al., 1994; Chaudhri et al., 2014). Given two entities in 
the text, the system compares and contrasts cases generated using those entities as seeds.  For the 
study, we created two corpora from preexisting source texts, described next. 

 The first source text was chapter 16 of Sun Up to Sun Down (SUSD; Buckley, 1979), a book 
about solar energy and solar heating that makes extensive use of analogies.  We selected chapter 
16 because it uses an extended analogy to explain a solar heating system in terms of rainwater 
collection.  The simplified version of the chapter consists of 80 sentences in 11 paragraphs; Table 
1 shows a sample.  The interpretation process produced 733 facts across 54 DRSs. The second 
source text was a Diffen article that discusses dolphins and porpoises (Dolphin vs. Porpoise).  
Diffen is an online, user-editable encyclopedia. Its articles compare and contrast similar topics. 
We chose this article because it differed in both style and subject matter from the other source 
text.  After simplification, the article was eight paragraphs and 88 sentences long. The interpret-
ation process produced 751 facts across 150 DRSs.  

We selected pairs of seeds for which the similarities and differences would be illuminating, 
based on the information available in the texts. For example, after reading the SUSD text, we 
tasked the system with contrasting the state of a solar heating system at different points during the 
day and comparing it to an analogous rainwater collection system. All of the tasks related to the 
Dolphin/Porpoise text involved comparing different aspects of the two creatures, such as their 
physical anatomy or mating habits. Although the system is capable of comparing any pair of 
objects or events, in most cases arbitrary comparisons are not very interesting. In total, we asked 
the system for 24 comparisons, 11 from the SUSD text and 13 from the Dolphin/Porpoise text. In 
every comparison, the seeds in the topic pair placed an additional constraint on the analogy 
mapping: SME was only allowed to produce mappings where the seeds correspond to each other.   

 We used two primary evaluation metrics. The first is recall on identifying similarities and 
differences between the things being compared. For each comparison, we wrote two to 15 goal 
facts, prior to running any of the methods over them. Across the 24 comparisons, 118 goal facts 
were used in total, with 64 of these coming from the SUSD text and 54 from the 
Dolphin/Porpoise text. We discarded seven additional goal facts because they relied on context 
not given directly in the text, meaning that no case construction method could generate them. 
Each goal fact represented one similarity or difference in the text. The score for a method, given a 
pair of cases, was equal to the number of goal facts that it found. Similarities were scored if the 
similarity was among the correspondences produced by SME. Differences were scored if the 
difference was among the candidate inferences produced by SME. For example, when cases 
produced from our example seed were compared to a rainwater collector system seed, all of the 
methods produced a correspondence between 

 (fullnessOfContainer solar-heating-system01 PartiallyFull) 
and 

 (fullnessOfContainer rainwater-collection-system01 PartiallyFull). 

The system derived these facts from “At the start of the day, the solar heating system is semifull” 
and “At the start of the day, the rainwater collection system is semifull,” respectively. This 
indicates that the system could tell that one commonality between the rainwater collection system 
and the solar heating system, in the scenario being described, is that they are both partially full. 
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Goal facts are compositional. This rewards more complete answers while still providing some 
credit for partial answers. For example, rather than using “In the second case, heat flows from the 
solar collector to the storage tank” as a single example of a difference between two cases, we 
break it into three statements: One saying that a flow of heat exists, which appears as 
(objectMoving flow01 heat15), one saying that that flow leaves from the solar 
collector, which appears as (fromLocation flow01 solar-collector24), and one 
saying that flow goes to the storage tank, which appears as (toLocation flow01 
storage-tank35). We did not include simple features as separate goal facts to be found. For 
example, when comparing a solar heating system’s operation at different times of the day, the fact 
that it is a solar heating system in both cases was not among the goal facts, all of which were 
relationships between two entities.  

The second evaluation metric is generation efficiency. This is the percentage of fact-level 
correspondences and candidate inferences that were used to produce goal facts. It penalizes the 
inclusion of facts that were not useful for this compare and contrast task, although such facts 
might be useful for other tasks. This is important because larger cases are more computationally 
expensive to reason over. A secondary benefit of smaller cases is that they are easier for humans 
to read. 

 We did consider alternate evaluation metrics.  Simply looking for the presence of important 
facts in cases would not be effective, because facts must show up in both cases in a comparison 
and must be alignable to be useful.  Identifying goal facts involving similarities and differences is 
more objective, providing a gold standard for the task of comparing learned knowledge. 

 We ran each of the four methods on both of the texts, measuring the number of goal facts 
each found and the generation efficiency. The results appear in Table 8. The results from the two 
source texts are combined, as they are generally comparable across the board. Each column 
presents results for one of the methods described earlier – local sentence interpretation (LSI), 
local paragraph interpretation (LPI), sentence-based segmentation (SBS), and fact-based 
segmentation (FBS). Goal Facts Found is the number of the goal facts the method produced, 
whereas Goal Facts Found (%) is the percentage of the goal facts. 

Unique Correct is the number of goal facts for which the method was the only one that 
correctly produced it, making it a measure of each method’s ability to produce interesting 
conclusions that the others did not. In some instances, including most in which LPI was the only 
method to produce a goal fact, it is because the others did not include the relevant facts. In other 
instances, such as when SBS was the only method to produce the goal fact, one or more of the 

 
Table 8. Experimental results for four methods: local sentence interpretation (LSI), local paragraph 
interpretation (LPI), sentence-based segmentation (SBS), and fact-based segmentation (FBS). 
 

Method LSI LPI SBS FBS 

Goal Facts Found 27   . 81   . 59   . 88    . 

Goal Facts Found (%) 22.9   . 68.6   . 50   . 74.5   . 

Generation Efficiency (%) 8.4   . 2.5   . 8.3   . 3.7   . 

Unique Correct 0   . 8   . 3   . 8   . 

Average Case Size 8.9   . 107.2   . 16.1   . 66.8   . 

Average CIs 8.4   . 49.9   . 19.5   . 52.0   . 

Average Correspondences 3.4   . 69.7   . 7   . 35.3   . 
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other methods did include the relevant facts, but failed to produce the proper correspondence or 
candidate inference. 

 Average Case Size is the average size of the bases and targets produced by the system when 
constructing cases based on the seeds. As there is no functional difference between bases and 
targets for this task (candidate inferences are produced in both directions), their sizes are simply 
averaged in the table.  Average CIs is the number of candidate inferences produced by the system 
when comparing cases generated using the method. Average Corrs is the average number of fact-
level correspondences.  

 The accuracies of FBS and of LPI are very similar. While the two methods found different 
sets of goal facts, the difference in their overall performance was not statistically significant. The 
difference between the performance of LSI and the other three methods was statistically 
significant (p < 0.005), as was the difference between SBS and the other three.  In total, 100 of the 
118 goal facts (84.7%) were produced by at least one of the methods. 

One of the theoretical weaknesses of LPI is that it might suffer in instances where both of the 
seeds appear in the same paragraph. This is because it produces pairs of cases that contain all of 
the same facts in those instances. Because the seeds (which are different) are automatically 
mapped to each other, it still produces some useful correspondences and candidate inferences. 
However, we might suspect that it may still be disadvantaged, as the system is likely to map many 
entities to themselves. To test this, we looked at the results on only the comparisons made 
between entities in the same paragraph. In total, 62 goal facts came from comparisons of this 
type. Table 9 shows the accuracy on just those goal facts. LPI’s performance is worse than on the 
full set, but the difference is not statistically significant, and the difference between LPI and FBS 
on this limited set remains insignificant. 

In summary, the experiment compared four methods for generating cases from a discourse 
interpretation produced by a natural language understanding system, evaluating them on a 
realistic task. We found that fact-based segmentation and local paragraph interpretation are the 

Table 9. Experimental results on cases in which the base and target seeds appear in the same paragraph. 
 

Method LSI LPI SBS FBS 

Total Correct 20   . 35   . 33   . 41   . 

Correct (%) 32.3   . 56.5   . 53.2   . 66.1   . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Percent of goal facts found and the average case size of each method. 
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best of the four methods on the primary measure. This partially falsified the hypothesis that fact-
based segmentation and sentence-based segmentation would produce superior performance. Fact-
based segmentation had the advantage that it produced the best accuracy results while achieving 
significantly higher generation efficiency than local paragraph interpretation. This is valuable, as 
smaller cases are more efficient for analogical comparison and other reasoning processes. This 
comes at the cost of a small amount of additional overhead during the case construction step, as 
producing cases with fact-based segmentation requires extra computation. Figure 1 presents the 
percent of goal facts found and the average case size for each method. 

That local sentence interpretation fared the worst is not surprising. It produced relatively little 
noise, as indicated by its high generation efficiency, but information is spread across multiple 
sentences too frequently for it to get the information required to make broader comparisons 
between two entities. Even in situations where smaller cases are desirable, sentence-based 
segmentation produced much better results with only moderately larger cases. 

There appears to be a tradeoff between accuracy and generation efficiency. This result is 
reasonable; methods that produce more facts are less likely to produce the Facts Not In Case 
error, provided that the additional facts being added are at least potentially useful. In some 
instances, including additional facts in the case produced SME Alignment Mismatch errors, but at 
the case sizes produced by the four methods described here, those are rare. 

There are several advantages to producing smaller cases, as fact-based segmentation does. 
First, they are easier for a human to read and understand. Even with the aid of visualization tools 
or natural language generalization, large cases can be difficult for a human reader to interpret, 
especially if they contain a great deal of superfluous information. Second, smaller cases can be 
processed more quickly in many case-based reasoning tasks. SME is efficient, operating in     
O(n2 log(n)) time, but it still operates faster over smaller cases.   

5. Error Analysis 

One challenge in evaluating the system’s overall performance is that assigning blame for failures 
is not easy. We conducted an error analysis to explore this issue. This provides additional insight 
into the strengths and weaknesses of each method. Each time a method missed a goal fact, we 
classified the source of the error. For example, LSI can miss a similarity goal fact by failing to 
include the facts in the cases to begin with, while FBS can miss the same goal fact if it includes 
the corresponding facts but they do not align when the cases are compared using SME. Some 
types of errors can occlude others. For instance, if a case construction method fails to include the 
relevant facts when building the case, it is impossible for those facts to end up being mismatched 
in the SME mapping. Table 10 summarizes the sources of error for each method.  

Facts Not In Case refers to errors in which key facts were in the global interpretation, but not 
included by the case construction method. Unsurprisingly, the methods that, on average, build 
larger cases were much less likely to produce such errors. This type of error accounts for the vast 
majority of the instances where local sentence interpretation failed to produce a result, as any goal 
fact that needed information from another sentence would fail. For example, in the Dolphin/ 
Porpoise corpus, one of the goal facts when comparing the anatomy of the two creatures is that 
dolphins have conical teeth, while porpoises have flat teeth. Because these facts are in different 
sentences from the one that introduces the comparison between the two anatomies, the cases 
produced by local sentence interpretation lack them.  
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SME Representation Mismatch refers to errors in which facts representing a similarity were 
present in the base and the target, but were sufficiently different representationally that SME did 
not match them. Although local paragraph interpretation and fact-based segmentation missed 
more goal facts as a result of this error, they are not more likely to produce representation 
mismatches. All four case construction methods start with the same global interpretation, and all 
use the same representations as a result. The reason that LPI and FBS missed more goal facts as a 
result of this error is that, in some instances, LSI and SBS did not include any relevant facts at all. 
An example of where this error occurred is when the system compared the rainwater collection 
system to the solar heating system while both are operating. The rainwater collection system is 
collecting rainwater, and the solar heating system is collecting heat. One of the similarity goal 
facts was that both the rainwater and the heat are being collected. However, the way the source 
text phrases the sentences that provide this information resulted in different representations. The 
text says that the solar collector “absorbs the sunlight” (“solar radiation is absorbed,” in the 
presimplified version.) Because the statements the system produces for absorption events are not 
similar to the statements for falling events, the falling of rainwater onto the system’s collection 
tray does not align with the absorption of heat by the solar panel.  Repairing such issues would 
require rerepresentation (Yan, Forbus, & Gentner, 2003).  

Wrong Interpretation Choice is very similar to SME Representation Mismatch, but refers to 
errors in which the mismatch can be traced to the disambiguation heuristics making an incorrect 
choice. As noted above, the heuristics used were not perfect; some 13.4 percent of the semantic 
ambiguities were resolved incorrectly. However, such disambiguation errors often do not affect 
the SME matches.  Only disambiguation errors that led to mismatches were coded as this type of 
error. 

SME Alignment Mismatch refers to errors in which the base and the target both contain the 
necessary fact or facts to identify a similarity or difference, but SME did not produce an 
appropriate correspondence or candidate inference because the match did not align appropriately. 
An example of this error is when the system was asked to compare the anatomy of the dolphin 
and the porpoise. One of the goal facts is that dolphins have long noses, while porpoises have flat 
noses. Because these facts appeared in the same paragraph, local paragraph interpretation 
produced a base and a target that each included both cases. Although it aligned dolphin with 
porpoise, as constrained by the question asked, it did not align the dolphin’s nose in the base with 
the porpoise’s nose in the target. Rather, it aligned the dolphin’s nose in the base with the 
dolphin’s nose in the target, and it did the same with the porpoise’s nose. As a result, the system 
drew no candidate inferences about the creatures’ noses. 

 

 
Table 10. Sources of error for each of the four methods. 

 

 Method LSI LPI SBS FBS 

 Facts Not In Case 85    . 1    . 49    . 11    . 

 SME Representation Mismatch 2    . 4    . 2    . 4    . 

 Wrong Interpretation Choice 2    . 2    . 4    . 3    . 

 SME Alignment Mismatch 2    . 27    . 6    . 12    . 
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6. Related Work 

Several lines of research address similar issues. Case-based reasoning (Schank & Cleary, 1994) 
uses existing cases to solve problems and answer questions. Such systems sometimes use domain-
specific retrieval and matching systems, unlike our use of a general-purpose analogical matcher, 
SME. Textual CBR systems have generally focused on building cases from text resources with 
the goal of retrieving relevant source texts, rather than building formally represented cases that 
can be used for reasoning, as we do. Generally this has involved minimal natural language 
processing. Brüninghaus and Ashley (2001) describe SMILE, which uses natural language 
processing in the legal domain to build more sophisticated cases that can be more accurately 
compared to each other, in contrast to methods that use bag-of-words techniques, but it relies on 
manual identification of important features. Gupta and Aha (2004) describe FACIT, a textual 
case-based reasoning system that uses logical forms as its representations. Like most such 
systems, it operates by using the generated cases to index texts, rather than reasoning directly 
over the cases produced.  Compare&Contrast (Liu, Wagner, & Birnbaum, 2007) uses the Web 
as a source to find cases similar to a seed case. Rather than parsing the entire source, it builds 
vectors of named and non-named entities to represent the contents.  Such feature-based 
representations cannot support the kinds of explanation generation that we can, given our use of 
relational representations. 

 One way in which our approach to learning by reading differs is in its representations. Our 
approach produces more comprehensive, structured representations than some other systems, at 
the cost of additional computational overhead. DART (Clark & Harrison, 2009), NELL (Carlson 
et al., 2010), and KNEXT (Van Durme & Schubert, 2009) are other efforts in knowledge 
extraction that produce logical forms. These systems handle a broader range of syntax than ours, 
but the representations they produce are simpler. The PRISMATIC knowledge base, used in IBM’s 
Watson project (Fan et al., 2012), uses even simpler encodings, treating words themselves as 
predicates. This is good for factoid question answering, but less so for reasoning tasks. West et al. 
(2014) describe a system for targeting the Web with specific queries in order to extend Freebase 
(Bollacker et al., 2008), filling in certain types of missing knowledge. These systems uses less 
expressive representational vocabularies than our combination of DRT and Cyc provide. 

KA (Peterson, Mahesh, & Goel., 1994) is a proposed system that resembles ours in that it 
would construct cases from text and compare them to other cases. This would let it diagnose 
errors in the design of physical systems. The system described here extends this idea, and is fully 
implemented and more general, as it is not tied to any particular domain. 

 Previous work in constructing cases from discourse interpretations includes analogical 
classification of dialogue acts (Barbella & Forbus, 2011). This approach creates cases from 
textual analogies by classifying sentences based on their role in establishing or extending an 
analogy. It then uses those classifications to determine which statements are part of the base and 
the target of the analogy. Like the methods described in this paper, it makes use of connectivity 
properties of semantic interpretations. 

7. Conclusions and Future Work 

In summary, we compared four methods for producing cases from a discourse interpretation 
produced by a natural language understanding system. We evaluated them by comparing their 
ability to produce cases amenable to comparison and contrast tasks. The efficiency of the cases 
served as a secondary evaluation metric. We also examined the types of error that the different 
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methods incur. We found that fact-based segmentation and local paragraph interpretation produce 
cases that best support comparison and contrast, with the former producing more compact cases. 

Looking to the future, there are several areas where additional improvements and testing are 
possible. One property of the fact-based segmentation method is that it depends on coreference 
resolution, an area where our language system could be better.  Currently, fact-based segmen-
tation uses common collection membership to determine that topics are related even where 
entities are not coreferent. Incorporating additional means of discovering topic similarity could be 
a useful refinement. We also plan to explore whether combining our two connection-based 
methods would produce further improvements. Another extension is to exploit cases for 
analogical retrieval (Forbus et al., 1997; Forbus, Gentner, & Law, 1995) to answer other types of 
questions using analogy (e.g., Klenk & Forbus, 2009).  The system might be able to learn models 
of concepts via analogical generalization (McLure & Forbus, 2012) using cases constructed via 
these methods.  

 Currently, the system either produces cases for every possible seed after reading or waits to 
produce cases until prompted to do so by a relevant question. It can also produce cases for a 
particular seed that is targeted. Another extension would automatically identify which entity is 
likely to be the most useful seed for a case. For example, the entity that names the topic of a 
paragraph may be a better seed than an arbitrary entity from later in that paragraph. Taken 
together, these extensions would allow the system to operate more fully autonomously and be 
used on a wider range of reasoning tasks. 
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