
Advances in Cognitive Systems 4 (2016) 151–168 Submitted 8/2015; published 6/2016

© 2016 Cognitive Systems Foundation. All rights reserved.

Functional Model Simulation for Evaluating Design Concepts

Bryan Wiltgen BRYAN.WILTGEN@GATECH.EDU

Ashok K. Goel GOEL@GATECH.EDU

Design & Intelligence Laboratory, School of Interactive Computing, Georgia Institute of Technology,
Atlanta, Georgia 30332 USA

Abstract
Evaluation is a key task in design, and a major goal in research on computational design is to
develop techniques for evaluating design concepts throughout the design process, starting as early
as possible. Conceptual design in engineering is abstracted as a function-to-structure mapping and
engages the use of functional models of design candidates. This suggests functional model
simulation as a method for early evaluation of these alternatives. We describe a computational
technique that evaluates such candidates in the conceptual phase through simulation of
hierarchically organized Structure-Behavior-Function models. We demonstrate the capabilities of
our technique for evaluation in biologically inspired system design that uses biological analogues
to address design problems.

1. Introduction

Design is a fundamentally iterative process of generation, evaluation and redesign
(Chandrasekaran, 1990; Dym & Brown, 2012; French, 1985). This is because design problems
often address large and complex systems, designers are sometimes encouraged to be creative,
initial design concepts often fail, and the cost of failure for actual designs can be huge. Indeed,
evaluation, failure, and iteration are so prevalent in practice that “fail early, fail often” has
emerged as a mantra in many a design community. Early and frequent evaluation of ideas can
help expose the structure and the constraints of the design problem space, focus the designer’s
attention to more productive lines of search and exploration, and help reframe and reformulate the
problem.

Computational design thus aims to develop techniques for evaluating designs throughout the
design process as one of its major goals, and it seeks to do so as early in the process as possible.
Indeed, computational design research has built many methods for evaluating design concepts,
ranging from design critiquing to geometric modeling to numerical simulation to virtual and
physical prototyping. However, most of these evaluation methods are useful only relatively late in
the process, after conceptual design has been completed. The issue thus becomes how to evaluate
system designs in the conceptual phase itself.
 Conceptual design is typically abstracted as a function-to-structure mapping and therefore
engages the use of functional models of design concepts (Hubka & Eder, 1988; Pahl et al., 2007).
Thus, simulation of functional models offers one strategy for evaluating design concepts but has
not yet received much attention in the literature. From a cognitive systems perspective, the

B. WILTGEN AND A. K. GOEL

152

question now becomes what kinds of knowledge, and what forms of knowledge representation
and organization, may support functional model simulation of design concepts? We posit that
functional model simulation requires knowledge of several kinds, including the functions of the
design, the structure of the design, and the causal behaviors that compose the functions of the
design’s components into the function of the design as a whole. In particular, we hypothesize that
Structure-Behavior-Function models (SBF for short; Goel, 2013; Goel, Rubager, & Vattam,
2009) capture these kinds of knowledge, thus enabling functional model simulation to evaluate
design concepts. In this paper, we present a computational technique (called SBFCalc) that
evaluates such concepts through simulation of hierarchically-organized SBF models. We
demonstrate the capabilities of our technique in the context of using biological analogues to
address system design problems.

2. Biologically Inspired Design

To contextualize our research problem, let us consider the redesign of the Japanese Shinkansen
trains in the 1990s described by McKeag (2012) and analyzed by Hoeller (2013). The problem
entailed redesign of high-speed Shinkansen trains, which succeeded in part through analogy to
biological systems. The goal was to alter the Shinkansen 300 train to achieve faster speeds. The
Japanese railway engineers’ initial redesign achieved this goal, but the new version produced too
much noise at the higher speeds because of ground vibrations, aerodynamic noise, and sonic
booms when it entered tunnels. The designers then used biological analogies to further redesign
the train. To reduce sonic booms, they took inspiration from the beak of the kingfisher bird,
which helped them design a new nose for the train; Figure 1 illustrates this biological analogy. To
reduce noise from turbulence, designers took inspiration from the fimbriae on owl wings and
added a small vortex generator to each pantograph on the train; Figure 2 depicts this biological
analogy. Suppose that the Japanese railway engineers had created functional models of these
design concepts (as, say, in Hubka & Eder, 1988; Pahl et al., 2007) to check if the new design
would achieve the functions desired, if it would result in undesired behaviors, or if it had other
errors. How might designers verify their proposed conceptual solutions? This example illustrates
our research problem.

Figure 1. The bullet shaped nose of the Shinkansen train inspired in part by the kingfisher’s beak.
(Adapted from The Biomimicry Institute’s Ask Nature, www.asknature.org.)

 FUNCTIONAL MODEL SIMULATION FOR EVALUATING DESIGN CONCEPTS

153

The redesign of the Japanese Shinkansen trains in the 1990s is a well-known example of

biologically inspired design (Baumeister et al., 2012; Benyus, 1997; French, 1994; Vincent &
Mann, 2002). The conceptual phase here entails analogies in which the target problems come
from design domains and the source analogues come from biology. Historically, this paradigm
has been a source of design creativity and innovation. Its recent transformation into a design
movement has been driven in large part by the need for environmentally sustainable designs.
Goel, McAdams and Stone (2014) provide a compilation of recent progress on computational
theories, techniques, and tools for biologically inspired design.

Analogical reasoning is also a common method of conceptual design in general (Goel, 1997).
Although we developed our computational technique for evaluating design concepts through
functional model simulation in the context of biologically inspired design, the technique is
potentially applicable to general analogical design. Suppose that a designer uses an analogy to
address a given problem in systems design, and that, after proposing a conceptual design, she
wants to verify it. Our computational technique can help the designer verify the proposed
conceptual design by simulating her functional model, comparing its simulation results to that
model, and presenting its evaluation for inspection by the designer.

3. Structure-Behavior-Function Modeling

An SBF model of a system contains three submodels. The function submodel specifies functions,
each of which describe the intended or perceived purposes of the system. The behavior submodel
specifies behaviors, each of which describes the internal causal mechanisms by which a function
is achieved, and the structure submodel specifies the physical components, substances, and
connections between the components that give rise to the behaviors. Here we describe only the
parts of the function and behavior models relevant to functional model simulation.
 A function model is composed of one or more functions, each of which specifies (a) a name
that uniquely identifies it, (b) a “provides” condition that defines values of component and
substance attributes in the world that must be true at the completion of the function, and (c) a
pointer to a behavior that provides an implementation of that function.

Figure 2. The analogy to owl wing fimbriae aided the redesign of the train pantographs.

B. WILTGEN AND A. K. GOEL

154

A behavior model consists of one or more behaviors composed of states and transitions. A
behavioral state is specified as a set of component and substance attributes and their values. This
may be a Start state (from whence the behavior begins), a Stop state (where the behavior ends), or
an Intermediate one. A transition between two states describes a transformation from the Before
state (where the transition begins) to the After state (where the transition ends). A transition is
annotated with zero or more explanations, which specify why or how the Before state became the
After state.

4. Illustrative Example: SBF Model of the Shinkansen Train

Figure 3 illustrates an SBF model of the conceptual design for the Shinkansen train with a small
vortex generator attached to its pantograph (a mechanical linkage). As the train moves, air flows
over the small vortex generator on the pantograph. This interaction creates low turbulence, which
in turn reduces the noise made by the train to low noise.
 The top half of each box in Figure 3 identifies the name of the function and the bottom half
identifies its “provides” condition, which is the (possibly partial) state of the world that explicitly
results from the function. For example, the function TrainGeneratesAerodnyamicNoise declares
that the NoiseCreated by the Train will be Low when it is done, and the function Engine-

Figure 3. Decomposition of the function for reducing aerodynamic noise of the Shinkansen train.
Each box represents a function and specifies its name (top half) and the “provides” condition (bottom
half). The provides condition specifies the state of the world as a result of the function. The circled B
represents a behavior. Each function indexes the behavior responsible for achieving it, and that
behavior specifies its decomposition into subfunctions.

 FUNCTIONAL MODEL SIMULATION FOR EVALUATING DESIGN CONCEPTS

155

CausesTrainToAccelerate declares that the Accelerating state of the Train will be On when it has
completed. The B in a circle represents a behavior, and an arrow extending from a function to a
circled B denotes a pointer to the behavior that achieves that function.
 The function TrainGeneratesAerodynamicNoise is the top-level function. Its behavior de-
scribes situations in which the train is going from standstill to high velocity and producing low
noise. EngineCausesTrainToAccelerate is a subfunction of this top-level function, and its beha-
vior describes the result of the train’s throttle being turned on, which in turn causes the train to
accelerate and increase its velocity. AirFlowAcrossPantographFormsTurbulence is another sub-
function at the same level. Its behavior describes air flowing towards the pantograph and small
vortex generator, which causes low turbulence. AirFlowAcrossSmallVortexGeneratorFormsLow-
Turbulence is a subfunction of AirFlowAcrossPantographFormsTurbulence, and its behavior des-
cribes how a low amount of turbulence results from the small vortex generator producing a small
(represented by the Low value) vortex size. TurbulenceCausesNoise is the final subfunction of
the top-level function, and its behavior describes how low noise is created given low turbulence.

Figure 4 depicts the behavior that implements the TrainGeneratesAerodynamicNoise function.
In this figure, boxes represent states with the name of the state in the top and the condition in the
bottom. For example, this figure says that the TurbulenceAmount of Air is Low in the state
FlowingAirFormsTurbulence. StartState is the start state for this behavior, and Turbulence-
CausesNoise is the stop state. Arrows represent transitions. For simplicity, we have not included
the explanatory annotations on the transitions in the figure. Table 1 lists the causal explanations
that annotate these transitions.

Figure 4. The behavior that implements the TrainGeneratesAerodynamicNoise function in the Shin-
kansen Train model. Boxes represent states and arrows represent transitions between states. Table 1
provides the explanations on the transitions.

B. WILTGEN AND A. K. GOEL

156

5. Functional Model Simulation for Design Concept Verification

As mentioned in the introduction, our hypothesis is that an SBF model captures the kinds of
knowledge needed for verifying a design concept. In particular, as Section 4 illustrates, the SBF
model captures five kinds of knowledge needed for verification by functional model simulation:
(1) functions of the design that must be verified, (2) causal behaviors intended to accomplish the
functions, (3) explanations for each state transition in a causal behavior, (4) the design structure,
where the components annotate state transitions in the behaviors, and (5) a recursive function-
behavior-function decomposition. Figure 3 presents an illustration. We now describe our
approach to using these knowledge contents for design concept verification.
 We implemented our computational technique, SBFCalc, as a Java program that takes as input
an SBF model of a candidate design concept. SBFCalc simulates the model, replacing the values
of attributes in the specification of the behavioral states with attributes and values it infers
through simulation. It then evaluates the derived behaviors with respect to the desired functions
and the specified behaviors.

5.1 Evaluating the Behavior Model

When evaluating a model, SBFCalc must verify the behaviors of the model because they are how
the functions are achieved, and thus errors in behaviors may reflect misconceptions or modeling
mistakes about how the system works. Our computational technique takes a two-step process to
evaluate each behavior. First, it simulates the behavior: given the attributes’ values in the start

Table 1. Causal explanations for the transitions in Figure 4.

Transition

Identifier
Explanations for that Transition

T1

 Function: EngineCausesTrainToAccelerate
 Equation E1 “qual: Pantograph.Velocity is directly proportional to the qualitative expression

Train.Velocity:After - Train.Velocity:Before”
 Equation E2 “qual: Air.FlowOverPantograph is directly proportional to the qualitative

expression Pantograph.Velocity:After - Pantograph.Velocity:Before”

T2

 Equation: E1 “qual: Train.Velocity is directly proportional to the qualitative expression
Train.Accelerating:After “

 Equation E2 “qual: Pantograph.Velocity is directly proportional to the qualitative expression
Train.Velocity:After - Train.Velocity:Before”

 Equation E3 “qual: Air.FlowOverPantograph is directly proportional to the qualitative
expression Pantograph.Velocity:After - Pantograph.Velocity:Before”

T3 The same explanations as for T2

T4  Function AirFlowAcrossPantographFormsTurbulence

T5
 Function TurbulenceCausesNoise
 Equation E1 “qual: Train.NoiseCreated is directly proportional to the qualitative expression

Air.NoiseCreated:After - Air.NoiseCreated:Before”

 FUNCTIONAL MODEL SIMULATION FOR EVALUATING DESIGN CONCEPTS

157

state, it infers the attributes and values for the subsequent states. Second, it compares the inferred
states with the originally specified states: a difference between an inferred state and the
equivalent specified state signals a potential problem.
 To simulate a behavior, SBFCalc begins at the start state of the behavior, traverses the outgoing
transition, and infers the attributes and values of the subsequent states based the explanatory
annotations on the transitions. SBFCalc recursively repeats this process for each subsequent state
until it runs out of transitions to traverse. The annotations on the transitions have several types
(Goel, Rugaber, & Vattam, 2009). Below we describe how SBFCalc reasons about two kinds of
annotations: functions (as indicated in Figure 3) and equations. We also describe implicit value
forwarding, a technique used to infer the value of an attribute in the absence of any annotations
that affect it.

5.1.1 Reasoning about Quantitative Equations

Recall that a transition in a behavior describes the transformation of one state (the Before state) to
another state (the After state), and a transition is annotated with zero or more explanations. Each
explanation clarifies why or how the system moves from the Before state to the After state.
Equation explanations can be either quantitative or qualitative, which are denoted by the prefixes
“quant:” and “qual:”, respectively.
 A quantitative equation says that an attribute’s value in the After state will be equal to a
mathematical expression in which variables denote component or substance attributes that resolve
to numerical values. The syntax of a quantitative equation is:

quant: <Attribute> = <Expression>

Here, “quant:” signifies that this is a quantitative equation, <Attribute> is an attribute of a
component or substance to which we are assigning a value (e.g., Box.Weight, where Box is a
component and Weight is one of its attributes), and <Expression> refers to a mathematical
expression that may contain attributes as variables. Each attribute in <Expression> has an
additional :Before or :After tag, indicating if the value should be taken from the attribute’s value
in the Before state or the After state, respectively. For example, an <Expression> could be
Box.NumberOfOranges:After * Orange.Weight:Before.

To solve an <Expression>, all attributes within the expression must resolve to numerical
values. SBFCalc checks to see if it has a value for all the attributes within an <Expression>. If
there are any After attributes within the expression for which there is no value, it may need to
solve another equation in the transition before it can resolve the After attribute in that expression.
For example, consider a hypothetical situation in which there are two equation explanations on
the same transition:

quant: Box.Weight = Box.NumberOfOranges:After * Orange.Weight:Before
quant: Box.NumberOfOranges = Box.NumberOfOranges:Before + 1

To solve the <Expression> in the first equation, SBFCalc must know the value for
Box.NumberOfOranges:After, which requires solving the second equation. It tackles such
situations in two ways. First, it initially reasons about function explanations and implicit value

B. WILTGEN AND A. K. GOEL

158

forwarding so that it knows as many After values as possible before reasoning about equations.
Second, it takes an iterative approach by solving at most one equation at a time, starting with an
equation with no unresolved attributes. If no equations are solvable, SBFCalc fails the task and
exits. An <Expression> might also be unsolvable because it contains Before attributes for which
SBFCalc does not know a value. This is also covered by the iterative approach because all
attributes in an <Expression> must be resolvable for it to be solvable.
 Figure 5 depicts a hypothetical example of reasoning with quantitative equation. This example
also uses implicit value forwarding. The Before and After states describe the change in weight of
a box due to an increase in the number of bricks in the box. The transition between these two
states is annotated with two quantitative equations. The first equation, E1, describes how to
calculate the weight of the box. The second equation, E2, describes how an additional brick is
being added from the Before state to the After state.

5.1.2 Reasoning about Qualitative Equation Explanations

A qualitative equation specifies whether an attribute’s value, defined as a quantity in a predefined
quantity space, in the After state is either directly or inversely proportional to a qualitative or
quantitative expression. SBFCalc uses two predefined quantity spaces, one with quantities Zero,
Low, Medium, High, and Maximum and the other with quantities Off and On. A qualitative
expression is one in which all attributes resolve to values in the two quantity spaces. The syntax
of a qualitative equation is:

qual: <Attribute> is (directly | inversely) proportional to the
 (quantitative | qualitative) expression <Expression>

Here, “qual:” signifies a qualitative equation, and <Attribute> means the same as in quantitative
equations, except that its value now is a quantity in a quantity space rather than a numerical value.
To solve a qualitative expression, SBFCalc first replaces all the attributes with their respective
values, using the same procedure for deciding whether the <Expression> is solvable as with
quantitative expressions. Next, it replaces the qualitative values with their numerical equivalents
and then solves the <Expression> as if it were a quantitative expression. SBFCalc then inspects
the result to see if it is either less than, equal to, or greater than zero. If the specified relationship
is directly proportional, the value of <Attribute> will increase if the result of <Expression> was

Figure 5. Hypothetical example of reasoning using quantitative equations.

 FUNCTIONAL MODEL SIMULATION FOR EVALUATING DESIGN CONCEPTS

159

greater than zero, stay the same if the result was equal to zero, or decrease if the result was less
than zero. If the relationship is inversely proportional, the increase and decrease conditions are
reversed. However, the change in <Attribute> is limited in that an attribute’s value can never
increase beyond the maximum quantity in the quantity space, nor can it ever decrease below the
minimum quantity in the quantity space.

Figure 6 depicts a hypothetical example using both a qualitative equation and a function
explanation. The Before and After state pair of this example describes how the room remaining
in a cup decreases as the amount of soda poured into the cup increases. The model annotates the
transition between the two states with both a qualitative equation explanation and a function
explanation. Reasoning about the function explanation determines that the After value of
Soda.AmountPoured is Medium. The qualitative equation E1 specifies that the RoomRemaining
attribute of Cup is inversely proportional to the change in value of Soda.AmountPoured. Thus, if
AmountPoured increases between the Before and After states, then RoomRemaining will
decrease and vice versa, with the limitation that they cannot increase or decrease beyond the
bounds of their quantity spaces.

5.1.3 Reasoning about Function Explanations

Figure 3 illustrates the centrality of functional decomposition to SBF modeling. The functional
decomposition allows a partitioning of the large and complex verification problem into a series of
smaller and simpler verification problems. Figure 3 also illustrates that in SBF modeling,
behaviors mediate functional decomposition: a behavior specifies how a function is decomposed
into subfunctions, or conversely, how the functions of components are composed into the
functions of systems as a whole.
 A function explanation on a transition in a behavior indicates that a subfunction is responsible
for the change in some or all of the attributes’ values from the Before state to the After state. To
address a function explanation, SBFCalc runs a simulation of the behavior linked to the function

Figure 6. Hypothetical example for reasoning with a qualitative equation and a function explanation.

B. WILTGEN AND A. K. GOEL

160

in the explanation. The system then sets the attributes and values based on that simulation’s
output.

Figure 6 depicts a hypothetical example of reasoning about a function explanation. When
SBFCalc encounters this example, it simulates the behavior pointed to by the function
PersonPoursSoda and uses the simulation’s output to infer the After state attributes and values. In
this case, the behavior pointed to by the function PersonPoursSoda has the same output as its
“provides” condition, so the system infers that the AmountPoured attribute of Soda in the After
state is equal to Medium.

5.1.4 Reasoning with Implicit Value Forwarding

In addition to reasoning about equation and function explanations, SBFCalc uses a technique that
we call implicit value forwarding. In a given Before and After state pair, the system may not
always be able to infer the After state values for all the attributes in the Before state. When this is
the case, it assumes that the values of those attributes remain the same. Thus, it will set the After
state’s value for that attribute to be the same as the Before state’s value.

Figure 7 depicts a hypothetical example without (the top half of the figure) and with (the
bottom half of the figure) implicit value forwarding. Without this mechanism, the value for the
WaterFlowing attribute of Hose is missing in State B—the After state—because SBFCalc could
not infer it from any explanation on the transition. With implicit value forwarding, the system
still cannot infer the value from any explanation, but it sets Hose.WaterFlow = On for State B,
forwarding it from State A, the Before state.

Figure 7. Hypothetical example without (top half) and with (bottom half) implicit value forwarding.

 FUNCTIONAL MODEL SIMULATION FOR EVALUATING DESIGN CONCEPTS

161

5.1.5 Tying Things Together: Inferring an After State

The previous sections looked at how SBFCalc reasons about/with quantitative and qualitative
equations, function explanations, and implicit value forwarding to determine values in the After
state. We will briefly describe how, given a Before state, an After state, and a set of explanations,
the system combines these various techniques to infer the values for the After state.

SBFCalc builds a map that connects Before and After state attributes to their values in those
states. This map is only applied to the After state at the end of reasoning about the Before-After
state pair. The system first stores the Before attribute and values pairs in the map, then reasons
over any function explanations on the transition, storing the After state attribute and value pairs
that it infers. Next, it uses implicit value forwarding to store After state attributes and values that
(a) have not already been set by the function explanation reasoning and (b) will not be set by the
equation explanation reasoning, as determined by inspecting the equation annotations on the
transition. After this, it processes the qualitative and quantitative equations (if any exist) and
stores the results in the map. Finally, it uses the map to set the After state attributes and values.

5.2 Evaluating the Function Model

The function model is comprised of one or more functions. Verification of this model ensures
that the proposed conceptual design actually delivers the functions desired of it. To this end, our
computational technique determines the extent to which the behavior responsible for a function
actually achieves it. After it has completed its behavior simulations and evaluations, SBFCalc
evaluates all the functions. Conceptually, the “provides” condition of a function specifies the
state of the world that must be true at the execution of the function, and the behavior it points to
should implement the function. Therefore, the Stop state of a behavior should reflect a world
state that is consistent with the “provides” condition. For a given function, SBFCalc compares the
attribute and value pairs from this condition with the attribute and value pairs that result from the
simulated behavior, looking for contradictions and thereby determining whether the behavior will
achieve the desired function.

6. Evaluation of Model Simulation for Design Verification

We have evaluated SBFCalc on a small set of verification cases in biologically inspired design. In
this section, we first describe of the case of the Shinkansen Train in some detail, and then briefly
summarize two other cases on which we have tested the computational technique.

6.1 The Case of the Shinkanesen Train

Although we ran SBFCalc against the entire Shinkansen Train model (shown in Figures 3
through 5), for brevity we will only report here the verification results related to the top-level
TrainGeneratesAerodynamicNoise function (Figure 3) and its associated behavior. Figure 8
depicts the results of function verification. Attribute and value pairs with a + prefix were in the
behavior output but not in the function’s “provides” condition. Only one attribute and value pair,
Train.NoiseCreated = Low, is missing this prefix, as it was in both the behavior’s output and the
function’s “provides” condition. As can be seen, SBFCalc deems the output of the inferred
behavior to be completely compatible with the target function. Note the many extra attribute-

B. WILTGEN AND A. K. GOEL

162

value pairs produced by the behavior, which suggests a more complex world state than examining
the function’s “provides” condition alone.
 We found that the attribute-value pairs that appear in both the simulated and original behavioral
states (see Figure 4) were identical. However, we also found that the simulated behavioral states
had many other attribute-value pairs. Figure 9 illustrates these additional pairs for each behavioral
state of Figure 4. We have prefixed these additional attribute-value pairs with a +.

As noted above, the behavioral states simulated by SBFCalc for this function’s behavior agreed
with all the state conditions in the original in that no attributes had different values. This is a
positive outcome because it shows that the functional model of the train correctly specified its
behaviors. In the results for another behavior, SBFCalc found a different value for one attribute,
showing that it can find differences if they occur. Second, our computational technique identified
many additional attribute-value pairs in the simulated behavior that likely came from implicit
value forwarding and function explanation reasoning. Although these do reflect differences
between the simulated and original behaviors, we are considering how to handle the new
attribute-value pairs because they do not represent contradictions in the model, and they may have
been deliberately left out by the modeler.
 The successful verification of the conceptual design of the Shinkansen train provides evidence
in support of our hypothesis that an SBF model captures the kinds of knowledge useful for
verifying the design concept. Several aspects of SBF models for enabling functional model
simulation and design concept verification are especially noteworthy: Knowledge of the structure
of the design is distributed through annotations on the state transitions in the behaviors; this
enables functional model simulation to take design structure into account. Each state transition in
a behavior is annotated by explanations on the transition; this enables behavioral simulation.
Function is broken down through a recursive function-behavior-function decomposition; this
ensures that the behavior corresponding to any function in the hierarchy is small and simple and
that it can be simulated easily and efficiently.

Figure 8. Results of evaluating the TrainGeneratesAerodynamicNoise function of the Shinkansen
Train model.

 FUNCTIONAL MODEL SIMULATION FOR EVALUATING DESIGN CONCEPTS

163

6.2 Additional Case Studies

In addition to the Shinkansen train design, we have tested our computational technique on two
additional examples. For the sake of brevity, we provide here only short descriptions of them as
evidence for the generality of our approach. In the first study, we intentionally allowed an
SBFCalc-identified error to persist to illustrate its ability to catch incorrectness in models.
 In the first case, we modeled a medical patch inspired by the spiny headed worm. We derived
this from McKeag (2015), wherein he describes efforts to design biologically inspired attachment
(or attachment-removal) mechanisms in the domain of invasive surgery. The patch incorporates
conical tips on a needle array. When the patch is inserted, the tips swell, allowing the patch to
adhere to the location. Our model of this device contains a superfunction (PatchHoldsOn) and a
subfunction (TipsSwell), each with its own behavior. PatchHoldOn’s behavior describes the
patch being inserted and obtaining a 3.5 adhesion strength relative to staples. This behavior
contains three states and two transitions. TipsSwell’s behavior, which describes the tips swelling,
contains two states and one transition.
 When we ran SBFCalc on the SBF functional model of the medical patch, the simulated
behaviors agreed with the behavioral models, except that both included additional state attribute-
value pairs due to implicit value forwarding and, in the behavior for the superfunction, function

Figure 9. The results of evaluating the behavior that achieves the TrainGeneratesAerodynamicNoise
function of the Shinkansen Train model. Boxes represent states and arrows represent transitions
between states.

B. WILTGEN AND A. K. GOEL

164

explanation reasoning. This is similar to the results we presented earlier. SBFCalc found the
PatchHoldsOn function to be compatible with its behavior’s results. However, SBFCalc found
the TipsSwell function to be incompatible with its behavior, for that function’s “provides”
condition states that NeedleArray.TipSize should be Large when instead the behavior resulted in
it being Medium1. This provides evidence that our approach to functional model simulation can
both verify that a conceptual design is correct and can also catch errors in the design concept.
 Until now, we have presented SBFCalc as a technology for verifying design concepts. In a
second case study, we also modeled the source analogue for the small vortex generator that
appeared in our train example. Unlike the earlier examples, this illustrates the usefulness of
SBFCalc for validating source analogues. The SBF model describes how the fimbriae
(serrations) on the owl’s primary wing feathers create micro-turbulences that let the owl fly
quietly. This model, derived from McKeag (2012) and Hoeller (2013), contains a superfunction
(OwlFliesSilently) and a subfunction (FimbriaeBreakDownAir), each with its own behavior.
OwlFliesSilently’s behavior contains three states and two transitions that describes the owl
moving and creating low noise. FimbriaeBreakDownAir’s behavior contains two states and one
transition that describe how the air moving past the owl generates micro-turbulences.
 When we ran SBFCalc on this model of an owl’s flight, the simulated behaviors agreed
completely with the specified ones, with the exception that, as with our prior examples, it
identified additional attribute-value pairs through implicit value forwarding and, in the behavior
for the superfunction, function explanation reasoning. It also found both functions to be
compatible with their behaviors. These findings illustrate that SBFCalc can help verify source
analogues in analogical design in addition to verifying candidate designs. The case studies
further support our original hypothesis. In particular, they indicate that SBF models capture the
kinds of knowledge needed to verify the correctness of conceptual designs, identify errors in
design concepts, and verify source analogues in biologically inspired design.

7. Related Research

This work builds on several lines of research in conceptual design, functional modeling,
qualitative simulation, analogical design, and biologically inspired design. The process of
engineering design consists of several phases, with problem formulation and conceptual design
being the earliest phases (Dym & Brown, 2012; French, 1985; Hubka & Eder, 1988; Pahl et al.,
2007). The task of conceptual design takes a desired function as the input; the goal is to generate
a structure that delivers this function. Thus, the task is abstracted as a function-to-structure
mapping. This is why languages for formulating design problems typically specify the desired
functions, the operating environment, the performance criteria, and constraints on structure
(Helms & Goel, 2014; MacLellan et al., 2013).

This abstraction has led to the development of several functional modeling schemes
(Chandrasekaran, Goel, & Iwasaki, 1993; Gero & Kannengiesser, 2004; Kitamura et al., 2004;
Rasmussen, 1985; Sembugamoorthy & Chandrasekaran, 1986; Umeda & Tomiyama, 1997).
According to Simon (1996), a functional model of a design provides a functional decomposition
of the design and a functional explanation of how the structure of the design delivers the desired
functions. Functional models typically use behavior as an intermediate abstraction to explain how
the structure achieves the functions. Our technique works on Structure-Behavior-Function (SBF)

1 This is the error that we allowed to persist in order to demonstrate error detection.

 FUNCTIONAL MODEL SIMULATION FOR EVALUATING DESIGN CONCEPTS

165

models, in which a behavior is a causal process that composes the functions of sub-systems into
the functions of the system as a whole (Goel, Rugaber, & Vattam, 2009).
 Cognitive systems research on analogical reasoning has a long history (Falkenhainer, Forbus, &
Gentner 1989; Hofstadter, 1995; Holyoak & Thagard 1996). Regarding computational approaches
specifically for analogy evaluation, Falkenhainer (1987) evaluated an analogy by simulating a
qualitative model of the inferred concept and comparing the results of the simulation with
observations. Falkenhainer leverages observations of actual data for verification, while our work
instead compares the results of simulation to a conceptual model. In addition, we use our
computational technique to verify the source analogue.
 Other researchers have also pursued verification of functional models using qualitative
simulation. For example, Price (1998) uses “functional labels” to analyze the results of a
simulation derived from a component model. Klenk et al.’s (2012) work combines qualitative
simulation with Modelica models of designs, verifying functional requirements against simulation
results drawn from topologies. D’Amelio et al. (2011) use qualitative reasoning to simulate
Function-Behavior-State models (Umeda & Tomiyama, 1997) in order to detect anomalous states
due to redesign or module combinations. Iwasaki et al. (1995) verify functions by simulating a
component model with additional behavioral pieces and comparing resultant trajectories against a
function description that includes behavioral descriptions.
 Our computational technique differs from these methods in two significant ways. First, it
preserves the hierarchical nature of SBF models by independently performing a simulation and
verification pass for each function-behavior pairing in a model. Other models may have
abstraction built in (e.g., Price’s (1998) “[e]ncapsulate complex behavior within a component”),
but their simulations and thus verifications produce results for the entire model in one chunk. Our
technique enables individual verifications to stay focused on one function or one behavior at a
time even if the functional decomposition is very large, which should make results easier to
handle. Additionally, we believe our work is a step towards the “[m]ulti-level modelling”
mentioned by Price et al. (2006) as necessary to achieve future targets for qualitative reasoning.
 Second, our technique leverages the same causal process representation (state diagrams) for
both reasoning and representing simulation results, whereas other work uses representations for
reasoning (e.g., component models or model fragments) that differ from the state-based
representations in their simulation results. Our approach allows a natural comparison between the
state diagrams produced by the simulation and those made by the modeler. In addition, from the
perspective of SBF modeling, this also means that our technique does not require modelers to
learn a new representation it since it leverages something that is already part of SBF models,
although modelers will need to learn our equation syntax.

Finally, a sister project in our laboratory on scientific modeling has developed an interactive
technique for verifying conceptual models of ecological phenomena through simulation using off-
the-shelf simulation platforms (Joyner, Goel, & Papin, 2014). The work we have described here
differs in that it evaluates design concepts through simulation of associated functional models in
the context of system design.

8. Conclusions

As one of its major goals, research in computational design seeks to develop techniques for
evaluating design concepts early in the conceptual phase. Engineering typically abstracts this task

B. WILTGEN AND A. K. GOEL

166

as finding a function-to-structure mapping and engages the use of functional models of the design
concepts. Simulation, in particular functional model simulation, is a potential method for early
evaluation of design concepts. The question then becomes what kinds of knowledge, and what
forms of knowledge representation and organization, may support functional model simulation of
such concepts?

We posited that the knowledge captured by Structure-Behavior-Function models would enable
functional model simulation for design concept verification. In particular, we showed evidence
that SBF models capture several kinds of knowledge, described in section 5, that are useful for
verifying design concepts.

Three aspects of SBF models are especially important for enabling qualitative simulation and
design verification: (1) Knowledge of the structure of the design on state transition annotations in
behaviors enables simulation to account for structure; (2) Explanations that annotate state
transitions in a behavior enable behavioral simulation; and (3) The recursive function-behavior-
function decomposition ensures that each function’s behavior will be small and simple, enabling
easy and efficient simulation. Regarding (3), SBF models decompose and organize the
simulations of the conceptual design into simulations of smaller, simpler subsystems, and
organize and abstract the simulations of the subsystems into simulation of the system as a whole.
 We described a computational technique called SBFCalc that evaluates design concepts
through simulation of their SBF models. This technique represents the main contribution of this
work and rests at the intersection of conceptual design, functional modeling, and qualitative
simulation. We demonstrated its capabilities for verifying design concepts in the context of
biologically inspired system design using functional model simulation. In particular, the
Shinkansen train case study shows that our technique can verify the correctness of conceptual
design, the medical patch study indicates that it can identify errors in design concepts, and the
owl flight study demonstrates that it can verify source analogues in biologically inspired design.

That said, our technique does have room to grow. First, we believe that a designer could use
the same technique not only to verify proposed conceptual designs and source analogues but also
to verify the functional models of deficient designs. Second, our computational technique should
support more types of causal explanations so that it can interpret and usefully evaluate models
written in a larger subset of the SBF language. Finally, our technique should better handle
ambiguity in qualitative equations, which due to their abstractness, may have ambiguous results.
For example, given a simulation result that says a value (e.g., Low) should increase, it may be
unclear whether it should stay the same or change to Medium or High. To account for this kind of
ambiguity in simulation, SBFCalc should produce an envisionment with multiple trajectories,
with each one representing a possible configuration of values through the state space. Our system
could then verify the given behavior against these projected trajectories. Considering trajectories
in verification builds conceptually on work by Iwasaki et al. (1995) and Klenk et al. (2012), who
generated them via simulation for reasoning about this task.

Acknowledgements

We thank Spencer Rugaber and Arvind Jagannathan for their contributions to the SBF editor.
This paper is a significantly revised version of Wiltgen and Goel (2015), and has benefited from
feedback from Pat Langley, Ken Forbus, and anonymous reviewers of the earlier paper.

 FUNCTIONAL MODEL SIMULATION FOR EVALUATING DESIGN CONCEPTS

167

References

Baumeister, D., Tocke, R., Dwyer, J., Ritter, S., & Benyus, J. (2012). Biomimicry resource
handbook. Missoula, MT: Biomimicry 3.8.

Benyus, J. (1997). Biomimicry: Innovation inspired by nature. New York: William Morrow.

Boehm, B. W. (1984). Verifying and Validating Software Requirements and Design
Specifications. IEEE Software, January, 75-88.

Chandrasekaran, B. (1990). Design problem solving: A task analysis. AI Magazine, 11, 59-71.

Chandrasekaran, B., Goel, A., & Iwasaki, Y. (1993). Functional representation as a basis for
design rationale. IEEE Computer, 26, 48–56.

D’Amelio, V., Chmarra, M. K., & Tomiyama, T. (2011). Early design interference detection
based on qualitative physics. Research in Engineering Design, 22, 223-243.

Dym, C., & Brown, D. (2012). Engineering design: Representation and reasoning (2nd ed.). New
York: Cambridge University Press.

Falkenhainer, B. (1987). An examination of the third stage in the analogy process: Verification-
based analogical learning. Proceedings of the Tenth International Joint Conference on
Artificial Intelligence (pp. 260–263). San Francisco: Morgan Kaufmann Publishers Inc.

Falkenhainer, B., Forbus, K., & Gentner, D. (1989). Structure-mapping engine: Algorithm and
examples. Artificial Intelligence, 41, 1–63.

French, M. (1985). Conceptual design for engineers (2nd ed.). Berlin: Springer-Verlag.

French, M. (1994). Invention and evolution: Design in nature and engineering (2nd ed.). New
York: Cambridge University Press.

Gero, J., & Kannengiesser, U. (2004). The situated function-behavior-structure framework.
Design Studies, 25, 373-391.

Goel, A. (1997). Design, analogy and creativity. IEEE Intelligent Systems, 12, 62–70.

Goel, A. (2013). One thirty year long case study; Fifteen principles: Implications of an AI
methodology for functional modeling. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 27, 203-215.

Goel, A., McAdams, D., & Stone, R. (Eds.). (2014). Biologically inspired design: Computational
methods and tools. London: Springer-Verlag.

Goel, A., Rugaber, S., & Vattam, S. (2009). Structure, behavior & function of complex systems:
The structure-behavior-function modeling language. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 23, 23–35.

Helms, M., & Goel, A. (2014). The four-box method: Problem formulation and analogy
evaluation in biologically inspired design. ASME Journal of Mechanical Design, 136, 1–12.

Hoeller, N. (2013). Tools: Structure-Behavior-Function and functional modeling. Zygote
Quarterly, Spring, 150–167.

Hofstadter, D. (Ed.). (1995). Fluid concepts & creative analogies: Computer models of the
fundamental mechanisms of thought. New York: Basic Books.

Holyoak, K., & Thagard, P. (1996). Mental leaps: Analogy in creative thought. Cambridge, MA:
MIT Press.

Hubka, V., & Eder, E. (1988) Theory of technical systems. Berlin: Springer-Verlag.

B. WILTGEN AND A. K. GOEL

168

Iwasaki, Y., Vescovi, M., Fikes, R., & Chandrasekaran, B. (1995). A causal functional
representation language with behavior-based semantics. Applied Artificial Intelligence, 9, 5-31.

Joyner, D., Goel, A., & Papin, N. (2014). Intelligent generation of agent-based simulations from
conceptual models. Proceedings of the Eighteenth International Conference on Intelligent User
Interfaces (pp. 289-298). Haifa, Israel.

Kitamura, Y., Kashiwase, M., Fuse, M., & Mizoguchi, R. (2004). Deployment of an ontological
framework for functional design knowledge. Advanced Engineering Informatics, 18, 115–127.

Klenk, M., de Kleer, J., Bobrow, D., Yoon, S., Hanley, J., & Janssen, B. (2012). Guiding and
verifying early design using qualitative simulation. Proceedings of the ASME 2012
International Design Engineering Technical Conferences & Computers and Information in
Engineering Conference IDETC/CIE 2012. Chicago, IL.

MacLellan, C., Langley, P., Shah, J., & Dinar, M. (2013). A conceptual aid for problem
formulation in early conceptual design. ASME Journal of Computing and Information Science
in Engineering, 13.

McKeag, T. (2012). Auspicious forms: Designing the Sanyo Shinkansen 500-Series bullet train.
Zygote Quarterly, 2, 14-35.

McKeag, T. (2015). Case study: Sticky wicket: A search for an optimal adhesive for surgery.
Zygote Quarterly, 12, 18-41.

Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. (2007). In K. Wallace & L. Blessing (Eds.),
Engineering design: A systematic approach (3rd ed.). New York: Springer-Verlag.

Price, C. (1998). Function-directed electrical design analysis. Artificial Intelligence in
Engineering, 12, 445-456.

Price, C., Trave ́-Massuye`s, L., Milne, R., Ironi, L., Forbus, K., Bredeweg, B., Lee, M.H., Struss,
P., Snooke, N., Lucas, P., Cavazza, M., & Coghill, G. (2006). Qualitative futures. Knowledge
Engineering Review, 21, 317–334.

Rasmussen, J. (1985). The role of hierarchical knowledge representation in decision making and
system management. IEEE Transactions on Systems, Man, and Cybernetics, 15, 234–243.

Sembugamoorthy, V., & Chandrasekaran, B. (1986). Functional representation of devices and
compilation of diagnostic problem-solving systems. In J. Kolodner & C. Riesbeck (Eds.),
Experience, Memory, and Learning, 47–73. Mahwah, NJ: Erlbaum.

Simon, H. A. (1996). Sciences of the artificial (3rd ed.). Cambridge, MA: MIT Press.

Umeda, Y., & Tomiyama, T. (1997). Functional reasoning in design. IEEE Intelligent Systems,
12, 42–48.

Vincent, J., & Mann, D. (2002). Systematic technology transfer from biology to engineering.
Philosophical Transactions of the Royal Society of London A, 360, 159-173.

Wiltgen, B., & Goel, A. (2015). Evaluating design concepts through functional model simulation.
Proceedings of the Third Annual Conference on Advances in Cognitive Systems. Atlanta, GA.

