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Abstract
The literature on concept formation has demonstrated that humans are capable of learning concepts
incrementally, with a variety of attribute types, and in both supervised and unsupervised settings.
Many models of concept formation focus on a subset of these characteristics, but none account for
all of them. In this paper, we present TRESTLE, an incremental account of probabilistic concept
formation in structured domains that unifies prior concept learning models. TRESTLE works by
creating a hierarchical categorization tree that can be used to predict missing attribute values and
cluster sets of examples into conceptually meaningful groups. It updates its knowledge by partially
matching novel structures and sorting them into its categorization tree. Finally, the system supports
mixed-data representations, including nominal, numeric, relational, and component attributes. We
evaluate TRESTLE’s performance on a supervised learning task and an unsupervised clustering
task. For both tasks, we compare it to a nonincremental model and to human participants. We
find that this new categorization model is competitive with the nonincremental approach and more
closely approximates human behavior on both tasks. These results serve as an initial demonstration
of TRESTLE’s capabilities and show that, by taking key characteristics of human learning into
account, it can better model behavior than approaches that ignore them.

1. Introduction

Humans can improve their performance with experience. To better understand these capabilities,
numerous research efforts have constructed computational models of human learning (Vanlehn,
Jones, & Chi, 1992; Fisher & Langley, 1990; Li, Schreiber, Cohen, & Koedinger, 2012c; Laird,
Rosenbloom, & Newell, 1986; Langley, Laird, & Rogers, 2009b). Early work on human learn-
ing embraced categorization as a primary mechanism for organizing experiences, recalling them in
new situations, and using them to make decisions (Feigenbaum & Simon, 1984; Fisher & Langley,
1990). In contrast, most recent work in cognitive architectures emphasizes the generation of solu-
tions to problems or the execution of actions (Langley et al., 2009b). However, categorization and
conceptual understanding remain crucial aspects of cognition. For example, there is evidence that
humans spend more time on learning to recognize the conditions for an action than on learning the
steps needed to perform it (Zhu, Lee, Simon, & Zhu, 1996). Thus, we argue that more research
should be conducted on human categorization and the role it plays in learning and problem solving.
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One important aspect of human categorization is that it occurs in an incremental fashion (Giraud-
Carrier, 2000; Love, Medin, & Gureckis, 2004). People revise learned concepts given new infor-
mation rather than reconsidering all prior experiences and learning completely new structures. This
lets them improve their performance given more experience and to flexibly adapt their knowledge
and understanding in response to novel situations in an efficient way. This approach contrasts with
the main thrust of research in machine learning, which emphasizes nonincremental approaches in
an effort to aid performance. Thus, while incremental learners can update their knowledge given
new experiences, their performance is affected by the order in which these experiences occur. For
example, when humans are learning to solve fractions problems, the order in which they receive
problems affects their learning (Rau, Aleven, & Rummel, 2013). More generally, how best to order
practice problems for humans in order to promote robust learning remains an open research ques-
tion (Li, Cohen, & Koedinger, 2012b; Carvalho & Goldstone, 2013) that would stand to benefit
from computational models of incremental acquisition.

A second characteristic of human categorization is that it occurs in a wide range of environ-
ments that can involve structural, relational, nominal, and numeric information. For example, the
work of Carvalho and Goldstone (2013) has shown that the structural similarity of objects present
in examples affects human concept formation. Other work has identified structure mapping as a
crucial ability that allows humans to map their prior concepts to new situations (Forbus, Gentner, &
Law, 1995; Holyoak, 2005). While prior models of concept learning have explored how to handle
relational (Quinlan & Cameron-Jones, 1995), nominal (Fisher, 1987), and numeric (Gennari, Lang-
ley, & Fisher, 1989; Li & Biswas, 2002; Quinlan, 1986) information, less emphasis has been placed
on learning with structural content (Thompson & Langley, 1991; Forbus et al., 1995). Further, few
studies exist that explore how best to model the integration of multiple data types. Of the existing
methods, only a subset integrate nominal and numeric data (Li & Biswas, 2002; Quinlan, 1986;
Gennari et al., 1989). Finally, even fewer studies combine relational (Quinlan & Cameron-Jones,
1995) or structural (Thompson & Langley, 1991; Forbus et al., 1995) information. We claim that
any system attempting to model human categorization should integrate all of these data types into a
single account.

A third characteristic of human concept learning is that it occurs in both supervised and unsu-
pervised settings (Love et al., 2004). In many cases, these two modes of learning are treated as
distinct, but there is evidence that humans can improve their performance on unsupervised tasks
given supervision on a different task (Zhu, Rogers, Qian, & Kalish, 2007). Others have found the
reverse, that humans can improve their performance on supervised tasks given experience on other
unsupervised tasks (Kellman & Garrigan, 2009). Taken together, these findings suggest that humans
share knowledge across these settings, and that models of human categorization should be capable
of operating with and without supervision, with knowledge used for one influencing the other.

To explore these aspects of human categorization, we developed TRESTLE, an incremental
model of probabilistic concept formation in structured domains that builds on prior research in
categorization (Fisher, 1987; McKusick & Thompson, 1990; Thompson & Langley, 1991). This
approach maps novel structures to its existing knowledge in an online fashion and updates its cate-
gorization knowledge based on these new structures. TRESTLE also handles mixed representations,
letting it function with nominal, numeric, relational, and component attributes. Finally, the approach
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Figure 1. A screenshot of a player building a tower in RumbleBlocks. The final tower must cover the light
blue energy balls and survive a simulated earthquake to be successful.

supports partial matching, so it can process incomplete or partially specified input. These features
let TRESTLE use its categorization knowledge for predicting missing attributes in supervised set-
tings and for clustering examples in purely unsupervised situations. In this paper, we present an
example domain based on the educational game RumbleBlocks (Christel et al., 2012) that contains
nominal, numeric, relational, and structured information, describe TRESTLE’s approach to learn-
ing concepts in this domain, and present a preliminary evaluation of the algorithm that compares it
with more specialized approaches and with humans. We show that the model can learn probabilistic
concepts given supervision and make predictions based on these concepts at human levels of per-
formance. Additionally, for unsupervised clustering, it produces clusters that have reasonably high
agreement with human clusterings. These results provide an initial demonstration of how TRESTLE
models human concept formation in structured domains.

2. The RumbleBlocks Domain

To investigate human learning in a rich domain, we have explored data from RumbleBlocks (Christel
et al., 2012), an educational game designed to teach concepts of structural stability and balance to
young children. What makes this domain interesting is the detailed structural quality of game tasks.
Players build a tower out of blocks in a two-dimensional, continuous world with a realistic rigid
body physics simulation, designing their towers to cover a series of energy balls in an attempt to
power an alien’s spaceship (see Figure 1). These energy balls function as both scaffolding and
constraints on players’ designs. After designing their tower, players place the spaceship on the
tower, which charges the ship and causes an earthquake. If the tower survives the earthquake with
the spaceship intact, then the player succeeds and goes on to the next level; otherwise he fails and
must try the level again.

Each level of the game is designed to emphasize one of three primary concepts of structural
stability and balance: objects that are symmetrical, that have wide bases, and that have lower centers
of mass are more stable. While the drag-and-drop actions of tower construction are necessary to
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succeed in the game, they are not relevant its educational goals. The central learning challenge for
players of RumbleBlocks is to understand how to categorize the states of the game world as good or
bad examples of the game’s target concepts.

RumbleBlocks provides several interesting hurdles when attempting to model players’ concep-
tual learning. The biggest challenge is in representing the richly structured space of the game. States
exist in a continuous space but also possess nominal (e.g., block types) and structural information
(e.g., high level patterns like arches). Additionally, the physics simulation that models the earth-
quake is nondeterministic and susceptible to minor perturbations in rigid body physics. Therefore,
two towers that appear similar have a small chance of being treated differently in terms of the suc-
cess criteria, resulting in noisy evaluation feedback. This noisy feedback makes it more challenging
to learn the correct concepts and makes ordering effects more pronounced; if a borderline tower
fails early in a student’s problem sequence, then he will be more likely to avoid similar structures
throughout his play than if the tower had succeeded. Finally, RumbleBlocks lets students partake in
both supervised and unsupervised learning. They receive supervised feedback regarding the success
of their towers, but are left to learn the game’s target concepts (i.e., wide base, low center of mass,
and symmetry) in an unsupervised way.

An early attempt exploring how players learn in RumbleBlocks sought to model the acquisition
of structural patterns as a grammar induction task through a process called CFE or Conceptual
Feature Extraction (Harpstead, MacLellan, Koedinger, Aleven, Dow, & Myers, 2013). CFE, which
is similar to the grammar learning approach used by SimStudent (Li, Cohen, & Koedinger, 2012a),
takes a series of examples and discretizes them to a grid before exhaustively generating a two-
dimensional context-free grammar that is capable of parsing each example in every possible way.
The parse trees for each example are then converted into feature vectors using a bag of words
approach, where each symbol in the grammar has its own feature. The generated feature vectors are
then used by traditional learning methods for prediction or clustering. The goal was to construct
features that capture the maximal amount of structural information in the examples so that this
information could be used in learning.

The CFE approach was successful for clustering student solutions in order to understand how
players’ design patterns differed from those expected by the game’s designers (Harpstead et al.,
2013), but it has not been evaluated as part of a model of human categorization in RumbleBlocks.
There are several obstacles to using CFE to model human categorization. First, the algorithm runs
in a batch fashion instead of incrementally and requires all the examples for each task to gener-
ate its grammar. Thus, any examples with previously unseen features would require the learning
of an entirely new grammar. Second, the grammar rule formalism used by CFE breaks down in
continuous environments and when two-dimensional objects cannot be cleanly decomposed across
axes. For example, when given a set of blocks in a spiral pattern, it cannot decompose the structure
along the horizontal or vertical axes; subsequently, it cannot reduce the structure to the primitive
grammar elements and fails at parsing the block structure. Finally, CFE and other similar grammar
approaches (Talton, Yang, Kumar, Lim, Goodman, & Mech, 2012) cannot handle missing data in
that they cannot partially match during parsing. Thus, if an attribute is missing from the training set,
then examples containing that attribute cannot be parsed during run time. Similarly, if an attribute
is always present in training but not at run time, then some examples would not be parsable.
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3. The TRESTLE Model

In order to better model human concept formation in the RumbleBlocks domain we developed
TRESTLE,1 a system that incrementally constructs a categorization tree given the sequential pre-
sentation of instances. This categorization tree can then be used to make predictions about the given
instances or to generate cluster labelings. At a high level, TRESTLE proceeds through three major
steps when given an instance:

1. Partial matching, which structurally renames the instance to align it with existing concepts;
2. Flattening, which converts a structured instance into an unstructured one while preserving

its structural information with a specific naming scheme; and
3. Categorization, which incorporates the example into existing knowledge and, if necessary,

makes predictions.

In this section we describe how TRESTLE represents both instances and concepts. We also clarify
the processing steps that it carries out to learn from each instance.

3.1 Instance and Concept Representations

TRESTLE uses two representations to support learning: one for instances (i.e., specific examples
it encounters) and one for concepts (i.e., generalizations of examples in memory). Instances are
encoded in TRESTLE as sets of attribute values, where each attribute can have one of four types:
nominal (e.g., the type or color of a block); numeric (e.g., the position of a block in continuous
space); component (e.g., a block with type and dimension attributes is a component of a greater
tower); and relational (e.g., that two blocks are vertically adjacent). Figure 2 shows an example
of a RumbleBlocks tower and how it is represented using these four attribute-value types. In this
example, we include the “On” relation to demonstrate how relations are encoded, but in practice
the component information is often sufficient for learning meaningful concepts. Our subsequent
evaluation does not use these hand-generated relations; we only used the component and success
information that was automatically provided by the game engine.

In response to being presented with instances, TRESTLE forms a hierarchy of concepts, where
each concept is a probabilistic description of the collection of instances stored under it. This prob-
abilistic description is stored in the form of a probability table that tracks how often each attribute
value occurs in the underlying instances (e.g., see Figure 2). These tables can be used to find the
probability of different attribute values occurring in an instance given its concept label. Addition-
ally, the concept maintains a count of the number of instances it contains, so that the probability of
the concept given its parent concept can be computed.

3.2 Partial Matching

When presented with an instance, TRESTLE searches for the best partial match between the in-
stance and the root concept, which contains the attribute-value counts of all previous instances.

1. TRESTLE source code is available at http://github.com/cmaclell/concept_formation.
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Figure 2. A tower in RumbleBlocks, its representation as an instance in TRESTLE using the four attribute-
value types (nominal, numeric, component, and relational), and the representation of a TRESTLE concept
that might describe the instance. The concept stores the number of instances categorized as this concept, the
probability of each nominal attribute value given their occurrence counts, and the normal density function for
each numeric attribute given the mean and standard deviation of their values. The arrows denote the mapping
between blocks, instance components, and components in the concept.

Each match consists of a partial mapping between the component attributes in the instance to com-
ponent attributes in the root concept. For example, Component1 in the instance shown in Figure
2 might be renamed to C4. When component attributes are renamed, any relation attributes that
reference them are also updated; for instance (On Component1 Component2) might become (On
C4 C8). TRESTLE currently only performs matching at the root for efficiency reasons, although
future work might explore effects of matching on intermediate concepts.

The quality of a match is determined by how similar the resulting instance is to the root concept.
Similarity is computed as the expected number of attribute values that can be correctly guessed after
incorporating the matched instance into the root. Under the assumption that an attribute Ai with
value Vij can be guessed with the probability P (Ai = Vij) and is correct with the same probability,
maximizing the similarity is equivalent to maximizing

∑
i

∑
j P (Ai = Vij)

2. This optimization
function can be efficiently computed using only the root concept’s probability table.

To select the best match, TRESTLE searches the space of all matches using best-first search.
To heuristically evaluate the quality of each state in this search TRESTLE computes the change in
the number of expected correct guesses for the component attributes it has already matched as well
as the best possible improvement in expected correct guesses for unmatched component attributes.
By default, TRESTLE uses this heuristic to guide a beam search (Wilt, Thayer, & Ruml, 2010)
under the assumption that greedy approaches are more psychologically plausible than optimal ones.
However, this heuristic is admissible and ensures that the best possible match is found when used
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with the A* algorithm, which TRESTLE optionally supports. The mapping between the instance
and concept in Figure 2 is an example of a best match using beam search.

3.3 Flattening

After matching the instance to the root concept, TRESTLE then flattens the instance using two pro-
cedures. First, it converts all relational attributes directly into nominal attributes. Second, compo-
nent attributes are eliminated by concatenating component and attribute names into a single attribute
name. Throughout the paper we denote this conventionally using dot notation. For examples, the
instance in Figure 2 would be flattened as {Successful: “False”, Component1.type: “UFO”, Com-
ponent1.angle: 0.0, Component1.left: 0.1, Component1.right: 2.8, · · ·, “(On Component1 Compo-
nent2)”: “True”, “(On Component2 Component3)”: “True” }. The flattening process effectively
eliminates the component and relational attributes while preserving their information in a form that
can be used during partial matching to rename later instances. Flat representations can be converted
back into a form that contains component and relational attributes. Once converted into a flat repre-
sentation the instances only contain nominal and numeric attributes that can be handled by existing
approaches to incremental categorization.

3.4 Categorization

To categorize flattened instances, TRESTLE employs the COBWEB algorithm (Fisher, 1987; McKu-
sick & Thompson, 1990), which recursively sorts instances into a hierarchical categorization tree.
At each concept encountered during sorting, it considers four possible operations (shown in Figure
3) to incorporate the instance into its tree: adding the instance to the most similar child concept;
creating a new child concept to store the instance; merging the two most similar child concepts
and then adding the instance to the resulting concept; and splitting the most similar child concept,
promoting its children to be children of the current concept, and recursing. COBWEB determines
which operation to perform by simulating each action and computing the category utility (Fisher,
1987) of the resulting child concepts. Like the similarity value being maximized during partial
matching, this represents the increase in the average number of expected correct guesses achieved
in the children compared to their parent concept; thus it is similar to the information gain heuristic
used in decision-tree induction (Quinlan, 1986). Mathematically, the category utility of a set of
children {C1, C2, · · · , Cn} is

CU({C1, C2, · · · , Cn}) =

∑n
k=1 P (Ck)[

∑
i

∑
j P (Ai = Vij |Ck)2 −

∑
i

∑
j P (Ai = Vij)

2]

n
,

where P (Ck) is the probability of a particular concept given its parent, P (Ai = Vij |Ck) is the
probability of attribute Ai having value Vij in the child concept Ck, P (Ai = Vij) is the probability
of attribute Ai having value Vij in the parent concept, and n is the number of child concepts. Each
of these terms can be efficiently computed via a lookup of the probability tables stored in the parent
and child concepts.

For numeric attributes, COBWEB uses a normal probability density function to encode the
probability of different values of a numeric attribute. Given this assumption, the sum of squared
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Figure 3. The four operations used by the COBWEB (Fisher, 1987) to incorporate matched instances into its
categorization tree. Each shaded node depicts the location of the instance being sorted into the tree before
and after an operation. The blue dotted lines represent nodes and links that are being added to the tree and
red dashed lines represent nodes and links that are being removed from the tree.

attribute-value probabilities is replaced with an integral of the squared probability density function,
which in the case of a normal distribution is simply the square of the distribution’s normalizing
constant. Thus,

∑
i

∑
j P (Ai = Vij |Ck)2 −

∑
i

∑
j P (Ai = Vij)

2 is replaced with
∑
i

1
σik
− 1

σi
in

the case of numeric attributes, where σik is the standard deviation of values for the attribute Ai in
child concept Ck and σi is the standard deviation of values for the attributeAi in the parent concept.
For more detailed justification of this modification to category utility, see Gennari et al. (1989).

Figure 4 shows a simple example of a TRESTLE categorization tree from the RumbleBlocks
domain and how it is updated in response to new instances. For the purposes of the example,
we represent concepts as the images of the instances they contain rather than probability tables.
Thus, concepts with a single instance are a single image while concepts with many instances are
represented as multiple overlapping images to reflect their probabilistic nature. Figure 4(a) shows
an existing categorization tree containing two previously incorporated instances. In Figure 4(b),
TRESTLE is presented with a new instance, evaluates the category utility of its four operations,
and decides that creating a concept to represent the new instance has the highest utility. The new
concept is shown in the right leaf of Figure 4(b). In Figure 4(c), TRESTLE is presented with another
example. In this case, the new instance is similar to two existing concepts, so TRESTLE decides that
merging the two concepts and adding the new case to the merged concept has the highest category
utility. After performing the merge action, the system continues categorization by considering the
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(a) Original tree (b) Creating a new concept (c) Merging two existing concepts
and creating a new one

Figure 4. A simple example of how TRESTLE’s categorization tree is updated in response to two new in-
stances. The original tree (a) is modified in (b) and (c) to incorporate the instances shown at the top. In each
case, the path of the instance through the categorization tree is shown in bold. The concepts are depicted as
overlapping images of the instances that they contain to represent their probabilistic nature.

four operations at the merged node and decides that creating a new concept to represent the instance
has the highest utility. The newly created concept is depicted by the middle node at the bottom of
the tree in Figure 4(c). When TRESTLE encounters future instance, it updates the tree in a similar
fashion using the four operations shown in Figure 3.

3.5 Prediction and Clustering

During learning, COBWEB uses this categorization technique to incorporate new instances into its
conceptual hierarchy. The resulting tree can then be used to make predictions about novel instances
or provide clusterings of the examples to varying depths of specificity.

When TRESTLE makes predictions, it follows its normal partial matching and flattening pro-
cedures but employs COBWEB’s non-modifying categorization process. In this version of catego-
rization, an instance is sorted down the tree, but concepts do not update their probability tables to
reflect the example. Additionally, the system only considers the creating and adding operations at
each concept. When categorization encounters a leaf or a situation where the creating operation has
the highest category utility, it returns the current concept. The resulting concept’s probability table
is then used to make predictions about attribute values of the instance, with each missing attribute
predicted to have its most likely value according to the table.

In addition to prediction, TRESTLE can cluster data by using COBWEB to categorize instances
into its concept tree and assign labels based on the selected concepts. Using this process, TRESTLE
produces a hierarchical clustering of the data. Alternatively, TRESTLE can convert this hierarchical
clustering into a flat clustering by labeling all instance by the most general unsplit label (initially
the root concept for all instances). For more specific cluster labels, TRESTLE progressively applies
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COBWEB’s splitting procedure to the most general unsplit concept labels until a desired level of
specificity is achieved.

4. Experimental Evaluation

We designed TRESTLE to model three key aspects of human concept learning: incremental process-
ing, use of multiple information types (nominal, numeric, component, and relational), and operation
in both supervised and unsupervised settings. Further, implicit in this design is the claim that, by
taking these three aspects of human categorization into account, we can better model human cate-
gorization. Thus, we had two goals for our experimental evaluation: to demonstrate TRESTLE’s
abilities to perform incremental learning with multiple types of information in both supervised and
unsupervised capacities, and to show that, by taking these into account, it models human perfor-
mance better than similar systems that do not.

To demonstrate TRESTLE’s functionality, we assessed its behavior on two tasks: a supervised
learning task and an unsupervised clustering task. For each task we used player log data from the
RumbleBlocks domain, which contains nominal, numeric, and component information. Addition-
ally, we wanted to test our claim that the system models human categorization better than alternative
ones. To achieve this goal, we compared TRESTLE to CFE, a nonincremental approach to learn-
ing in structured domains. To establish a baseline for the comparison, we had humans perform
both tasks. We then compared the behavior of both systems to the human behavior to assess which
approach better models the latter’s learning.

4.1 Task 1: Supervised Learning

For the supervised learning task, each learner (TRESTLE, CFE, and human) was sequentially pre-
sented with RumbleBlocks towers and asked to predict if the tower successfully withstood the earth-
quake. They were then given correctness feedback about their prediction (i.e., provided the success
label). Instances for this task were taken randomly from all player solutions to the same level of
RumbleBlocks. To avoid a naive strategy of base rate prediction, we chose a level whose overall
success ratio was roughly even (a symmetry level in which 48.9% of player towers stood). We
presented each learner with 30 randomly selected and randomly ordered examples and averaged the
accuracy for each approach across opportunities.

To determine human behavior for this task, we used Amazon Mechanical Turk to have 20 hu-
mans perform sequential prediction using the interface shown in Figure 5. We asked participants
to decide if a screenshot of an example tower fit into “Category 1” (successful) or “Category 2”
(unsuccessful) before telling them the correct category. We presented labels abstractly to avoid hu-
man raters using their intuitive physics knowledge, which would not be accessible to either of the
computational models.

CFE is a nonincremental approach for handling structural information that must be paired with
another learning algorithm in order to do prediction or clustering. To sequentially predict the success
labeling of solutions, we paired CFE with CART, a decision-tree learner implemented in the Scikit-
learn library (Pedregosa et al., 2011). Because CART is nonincremental, we rebuilt its decision
tree after viewing each new training instance. We applied this approach to 1,000 random training
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Figure 5. The sequential prediction task as presented to Amazon Mechanical Turk workers, who were asked
to categorize 30 RumbleBlocks solutions into one of two categories: Category 1 (successful) or Category 2
(unsuccessful). They were not given any information about the meaning of the category labels, but they were
given correctness feedback after each attempt.

sequences and averaged the correctness of the predictions across opportunity counts. We used
CART for prediction because its internal structure is similar to TRESTLE’s (i.e., they both construct
tree structures), but learning in CART is nonincremental and optimizes for prediction of a single
attribute. This similarity on all but these two dimensions makes CART a reasonable candidate
for testing the importance of incrementality and multi-attribute prediction when modeling human
categorization.

We applied TRESTLE to this task by having it predict each instance’s success label. After
each prediction, we trained it with the correct instance label in order to update its knowledge base.
Similar to our approach with CFE, we performed this process with 1,000 random training sequences
and averaged the correctness of the predictions across opportunity counts.

The results of average prediction accuracy for 30 sequentially presented instances can be seen
in Figure 6. Human labelers appear to converge around 70% accuracy, suggesting that learning the
success concept is somewhat difficult for them, likely due to both the abstraction presented in the
interface and the noise in the outcome variable. In contrast, the CFE approach performs better than
humans, converging to roughly 83% accuracy. TRESTLE performs roughly equal to the humans,
with a difference in confidence intervals that is most likely due to the differences in sample size (20
humans vs. 1,000 agents).

CFE learns more rapidly, with a steeper learning curve, probably because it is nonincremental,
using a previously generated grammar, and processing all training cases at each step in batch fash-
ion. Its higher asymptotic accuracy most likely results from optimizing for prediction of a single
attribute. In contrast, TRESTLE learns incrementally from the examples producing a shallower
learning curve and optimizes for its ability to predict all attributes, so its overall accuracy predicting
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Figure 6. The average performance of 20 participants, 1,000 runs of TRESTLE, and 1,000 runs of CFE for
predicting whether solutions to a RumbleBlocks level survived an earthquake (shaded regions denote the 95%
Lowess confidence intervals). We see that the incremental TRESTLE algorithm performs less well than the
nonincremental CFE algorithm, but that TRESTLE more closely approximates human performance.

the single attribute of success is lower. Our results suggest that, although these differences decrease
predictive accuracy, they result in a model that more closely aligns with human behavior. This
agrees with previous studies on human category learning, which suggest that humans often opti-
mize for more general and flexible learning goals, and that this optimization occurs incrementally
(Love et al., 2004). Overall, these findings support our claim that TRESTLE is a better model of
human learning than CFE because it is incremental and it commits to being able to predict any miss-
ing attribute value. CFE may function better as a pure machine learning system and achieve higher
accuracy, but it is a poorer model of human learners on the RumbleBlocks task than TRESTLE.

4.2 Task 2: Unsupervised Clustering

The results of the supervised learning task show that TRESTLE performs similarly to humans,
but we are also interested in demonstrating its unsupervised learning capabilities and investigating
whether its underlying representation of knowledge is qualitatively similar to that in humans. A
strong similarity between their organizations of knowledge would strengthen our claim that it offers
a better model of human learning than CFE. In particular, if its organization of concepts aligns with
that of humans, it would suggest that the agreement with humans on the supervised learning task
is the result of a similar organization of knowledge rather than both learners performing poorly
by chance. To examine this aspect of TRESTLE, we used an unsupervised learning task in which
towers were clustered without any information about their success or other category labels. For this
evaluation, we chose records from three levels of RumbleBlocks that were part of an in-game test.
These levels were attractive because they have many player solutions and because the energy ball
mechanic was removed for the test setting, allowing for a wider variance of player solutions than
other levels.
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To establish a human baseline, we had two researchers from our laboratory independently hand
cluster screenshots of all the player solutions to each level. These raters were told to group solutions
that looked similar and to ignore any blocks that did not appear to be part of the solution tower
(e.g., blocks off to the side of the frame), but were not given any other guidance. To measure
agreement between raters, we calculated the adjusted Rand index between their clusterings (Rand,
1971). This measure is a generalization of Cohen’s Kappa that allows for raters to use different
numbers of categories. Values range from -1 to 1, with random clusterings producing an average of
zero. The average obtained across all three levels was 0.88, which is high. Given the reasonably high
agreement between raters, we chose one of the human clusterings to be used in further comparisons
with the machine approaches. The labeling from this rater had an average of 33 clusters across the
three levels.

As a comparison, we applied the CFE process to generate feature vectors for the RumbleBlocks
solutions. For each level, we clustered the feature vectors using the G-means algorithm (Hamerly
& Elkan, 2004), which functions like a wrapper around k-means using a heuristic that tries to form
clusters with a Gaussian distribution among features to choose a good value for k. This process
produced a clustering of solutions for each level. We ran it ten times and we report the average and
standard deviation in adjusted Rand index between the CFE and human clusterings.

To examine TRESTLE’s ability to cluster RumbleBlocks solutions, we had it create a catego-
rization tree for each level, with instances categorized into the tree in a random order. After all
instances had been categorized once, we shuffled them and categorized them a second time, taking
the concepts into which they were sorted as their labeling. We could have clustered instances using
a single run, but we were interested in trying to maintain parity to the humans, who were given
all the examples at once and allowed to recategorize them. To model this task we categorized the
instances twice to give TRESTLE the opportunity to form an initial categorization tree from all the
examples once before committing to labels.

Both the human labeling and the CFE clustering produced flat clusterings, so for comparison
purposes we transformed TRESTLE’s hierarchical clustering into a nonhierarchical one. As men-
tioned earlier, a flat clustering can be produced by splitting concepts in the tree starting at the root
and returning the most general unsplit concept as a label for each instance. This process can be done
with an arbitrary number of splits; for example, zero splits will return the root concept as the label
for every instance, one split will return the children of the root as concept labels, and two splits will
return a more refined set of concept labels produced by further splitting one of the children. This
process is similar to the one used to produce flat clusterings from agglomerative techniques. Given
that the number of splits is arbitrary, we report the results for the first three splits of the categoriza-
tion tree to provide a sense for how the clusterings at different levels of the hierarchy agree with
human clusterings. As with the CFE evaluation, we repeated this process ten times and we report
the average and standard deviation in adjusted Rand index between the human labelings and each
split of the TRESTLE labelings.

Table 1 compares the two machine clusterings with the human clustering. For the Center of Mass
and Wide Base levels, TRESTLE produced clusterings with the highest agreement with humans. In
the Symmetry level, the CFE approach produced the most human-like clusterings, but this level had
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Table 1. The adjusted Rand index agreement between the model clusterings and human clusterings. We report
the average and standard deviation of this measure across ten clustering runs.

Level Model ARI STD

Center of Mass Trestle (one split) 0.37 0.03
(n=251) Trestle (two splits) 0.50 0.08

Trestle (three splits) 0.54 0.13
CFE 0.51 0.08

Symmetry Trestle (one split) 0.16 0.08
(n=249) Trestle (two splits) 0.34 0.08

Trestle (three splits) 0.44 0.08
CFE 0.47 0.04

Wide Base Trestle (one split) 0.56 0.02
(n=254) Trestle (two splits) 0.47 0.10

Trestle (three splits) 0.41 0.05
CFE 0.42 0.02

the greatest number of human clusters (40), so TRESTLE might have benefited from more splits.
In general, TRESTLE seems to better match human behavior than CFE on this task.

5. Discussion

One interpretation of our results is that TRESTLE is a better model of human behavior while CFE
is a better machine learning approach, in that it achieves greater performance. Both our prediction
and clustering results support this interpretation. First, TRESTLE’s predictive accuracy is closer
to human predictive accuracy, while CFE has higher accuracy than both TRESTLE and humans.
Further, TRESTLE’s organization of knowledge more closely agrees with humans than the organi-
zation produced using CFE. The two approaches differ, in part, because of the different motivations
underlying their designs. CFE was originally created as a means of transforming instances in a
structured domain into feature vectors so that other traditional learning algorithms (e.g., CART or
k-means) could function in the space. It was designed primarily for use in offline settings, such
as post-hoc analysis of RumbleBlocks solutions, rather than for making online decisions. This is
why the algorithm makes use of exhaustive grammar generation and computes features based on
all possible parses of structures, in an attempt to maximize its coverage of the space despite the
additional training costs. TRESTLE, on the other hand, arises out of existing theory on human
categorization and takes a probabilistic approach to the problem of coverage. Rather than focus on
multiple potential interpretations of a tower it looks at probabilistic similarity with existing knowl-
edge. Additionally, TRESTLE maintains more psychological plausibility by avoiding exhaustive
processes; for example, it does not seem very plausible that new players of RumbleBlocks have a
preexisting RumbleBlocks grammar, nor that they are visually parsing towers using many grammar
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rules (CFE generated about 6,000 for RumbleBlocks). In summary, our results support the claim that
TRESTLE is a better model of human behavior than CFE because it is incremental and optimizes
for the prediction of any attribute.

Our results also serve as an initial demonstration of TRESTLE’s abilities to operate in domains
with nominal, numeric, component, and relational attributes. While machine learning approaches
exist that support each of these characteristics individually, rarely are they integrated into a single
system. Further, ones that do support numeric, nominal, and relational attributes, such as FOIL
(Quinlan, 1990), do not typically operate incrementally. Thus, we argue that TRESTLE is one of
the few systems that supports all of these capabilities, making it a novel contribution and particu-
larly well suited for modeling human categorization in a wide range of settings. For example, there
is an active debate about whether blocking or interleaving similar types of problems is better for
student learning (Carvalho & Goldstone, 2013). One hypothesis is that blocking problems supports
students’ ability to map structure across similar problems and thus supports the acquisition of struc-
tural knowledge. The contrasting hypothesis is that interleaving problems better supports students’
ability to identify discriminating features. Previous work with intelligent tutors has suggested that
interleaved instruction is preferable (Li et al., 2012b), but this work first induced a grammar in batch
from all examples (similar to CFE), effectively pre-blocking learning of common structure. Given
this pretrained structural knowledge, it makes sense that the model would learn best from inter-
leaved problems because it only needed to identify discriminating features. In contrast, a model like
TRESTLE would be well qualified to explore the issue of blocked vs. interleaved instruction, as it
models the incremental acquisition of both structural information and discriminating features.

In addition to supporting multiple attribute types, our analysis demonstrates that TRESTLE
supports both supervised and unsupervised learning. We argue that this makes it a more general
model of learning than CFE, which employed separate machine learning algorithms (i.e., CART
for prediction and k-means for clustering) for the two tasks. In the current work, we evaluated the
system on separate supervised and unsupervised tasks, but TRESTLE should also support hybrid
tasks that involve partial supervision. We claim that this capability makes TRESTLE ideal for
modeling human learning in semi-supervised settings. In summary, our studies demonstrate the
wide range of settings that TRESTLE supports and provide evidence that it is a better models human
behavior than CFE in the RumbleBlocks domain.

6. Related Work

We have mentioned previously that the TRESTLE model builds on earlier accounts of concept for-
mation in the COBWEB family (Fisher, 1987; McKusick & Thompson, 1990; Gennari et al., 1989).
However, we should also discuss how it relates to these previous systems and other similar mod-
els of human categorization that attempt to accomplish similar goals. One early account of human
categorization was EPAM (Feigenbaum & Simon, 1984), which modeled human memorization of
nonsense syllables. It learned incrementally from sequentially presented training examples and took
structural information (i.e., the organizations of letters) into account. Additionally, EPAM organized
its experiences using a discrimination network, which has a tree structure similar to that used by
TRESTLE. COBWEB (Fisher, 1987) extended this idea to take into account attribute-value proba-
bilities during concept formation. Further, COBWEB/3 (McKusick & Thompson, 1990) added the
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ability to handle numeric information. However, these newer approaches did not support the ability
to handle structural information originally supported by EPAM.

CLASSIT (Gennari et al., 1989) was another variant of COBWEB that supported both numeric
information and component information. Like TRESTLE, it used both partial matching and flat-
tening steps to handle component information during categorization. However, CLASSIT lacked
support for both nominal or relational information. LABYRINTH (Thompson & Langley, 1991)
was developed to support component, nominal, and relational information. Like TRESTLE, it
utilized a partial matching step to rename component objects in order to maximize category util-
ity. During categorization, the system supported components by categorizing subcomponents in a
bottom-up fashion and replacing component values with nominal concept labels. LABYRINTH
also generalized subcomponent labels during the categorization of higher-level components. This
bottom-up categorization approach let it utilize subcomponent information to improve prediction of
higher-level attributes, but it could not use higher-level component information when categorizing
subcomponents. In contrast, TRESTLE’s flattening mechanism takes into account the attribute-
values of all components in a holistic way when making predictions. Finally, neither CLASSIT nor
LABRYINTH have been compared to humans or other systems, so it is unclear how their perfor-
mance would compare to that of TRESTLE.

There also exist other systems that have similar goals, but do not derive from the COBWEB fam-
ily. For example, SimStudent (Li, Matsuda, Cohen, & Koedinger, 2014) shares TRESTLE’s aim of
modeling novice learning via a combination of statistical and structural learning. As in TRESTLE,
SimStudent combines both unsupervised (perceptual representation) and supervised (skill) learning.
One key difference is that TRESTLE is more unified (with a single learning mechanism) and fully
incremental, whereas SimStudent has four learning mechanisms (one for representations and three
for skills), with representation learning running in batch prior to skill learning. For comparison
purposes, CFE is analogous to SimStudent, in that they use similar grammar learners and classifi-
cation/clustering algorithms. To the extent that CFE is a good approximation of SimStudent, our
results suggest that TRESTLE may model human learning better than SimStudent in that the latter,
like CFE, is likely to learn faster than humans. More generally, our evidence supports the hypothe-
sis that an incremental integration of representation and classification learning better models human
behavior than separate, nonincremental, representation and classification learners. Elements of skill
learning that go beyond classification (e.g., SimStudent’s action-sequence learner) are targets for
further research on TRESTLE.

SAGE (Kuehne, Forbus, Gentner, & Quinn, 2000; McLure, Friedman, & Forbus, 2010) is an-
other system that shares the goal of modeling human concept formation in structured domains. It
learns concepts by matching new instances to existing structures and generalizing matching con-
cepts to include the instances. If no match is found, then it creates a new concept to cover the
instance. For comparison purposes, SAGE is analogous to a form of TRESTLE that is nonhier-
archical; it maintains only the children of the root and it cannot split merged concepts because it
does not maintain more specific variants. This difference makes it harder for SAGE to recover from
early misconceptions and biases it towards forming overly abstract concepts (Kuehne et al., 2000).
Thus, in many respects TRESTLE could be viewed as an extension of SAGE that overcomes these
limitations and adds support for nominal and numerical information. Another key difference is that
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SAGE partially matches each instance to every concept, whereas TRESTLE only partially matches
instances to its root concept.2 This difference makes its partial matching more efficient (one match
vs. many matches), but it is unclear how it affects performance. Future versions of TRESTLE
should explore this tradeoff. One strength of SAGE is that it agrees with data on human behavior
(Kuehne et al., 2000). It would be interesting to explore how the differences between the two models
impact their agreement with observations.

In summary, the literature includes several incremental and nonincremental models of concept
formation. However, each model tends to support only a subset of attribute types and rarely is their
behavior compared with that of other systems or with humans. TRESTLE is novel in that it unifies
facets of previous incremental approaches by supporting concept formation over nominal, numeric,
structural, and relational information. It also extends systems like SAGE to support concept revi-
sion. Finally, its behavior on RumbleBlocks compares favorably to that found in humans.

7. Conclusion and Future Work

In this paper, we presented TRESTLE and demonstrated its ability to incrementally learn concepts
from mixed-data environments in both a supervised and unsupervised fashion. However, our eval-
uation of the system is preliminary, and more work is necessary to fully assess its capabilities. In
particular, we should evaluate TRESTLE’s ability to perform more flexible prediction tasks (Fisher,
1987), but first, we must determine how to frame these tasks in structured domains. For example,
should we evaluate a system’s ability to predict specific attribute values, or should we assess its abil-
ity to predict entire missing components with multiple attribute values? This problem is complicated
by structure mapping, which makes it difficult to align component predictions during evaluation.

In addition to assessing the current system’s capabilities, we should integrate it with methods
for planning and executing action. For example, we could extend TRESTLE to support “functional”
attributes that have actions as values. This would let it decide what action to take given an instance.
Unlike systems that separate concept and skill knowledge (e.g., Langley, Choi, & Rogers, 2009a),
this extension would let TRESTLE use functional information to guide its formation of concepts
and vice versa.

We should also explore the implications of TRESTLE for supporting designers. Prior work
shows that concept formation systems can be used in this area. For example, Reich (1993) devel-
oped BRIDGER to support bridge design, but his approach did not support component or relational
information. More recently, Talton et al. (2012) demonstrated how to generate novel designs using
grammar patterns induced from examples provided by designers, but their work did not support
mixed data types or missing attributes. TRESTLE could extend both approaches to support novel
tasks, such as completing partially specified designs that are described with mixed data types. We
would also like to explore how it could help game designers better understand the space of player
solutions by clustering solutions with common structural patterns. This application was part of the
original motivation for CFE, but our clustering results suggest that TRESTLE is better suited to the
task and may even provide more information through its hierarchical organization of concepts.

2. TRESTLE compares the similarity of matched instances to its concepts during categorization, but it does not perform
additional partial matching.
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Finally, we should explore how we can use the system as a computational model of human
learning in educational settings. In particular, we would like it to stimulate student’s learning in in-
telligent tutoring systems and educational games. In these contexts, the model could be used to test
and improve different instructional materials before they are given to students and thus determine
the best ordering of activities. Additionally, TRESTLE could automatically construct domain mod-
els, in the form of concept hierarchies, through training (Harpstead, MacLellan, & Aleven, 2015).
Whether they contain correct or buggy knowledge, such models could then be used in intelligent
tutoring systems to provide students with improved context-sensitive feedback and instruction.

In summary, TRESTLE is a model of incremental concept formation in structured domains.
It carries out supervised learning and unsupervised clustering over nominal, numeric, component,
and relational information. Experiments show that it can achieve performance that is comparable
to CFE, a previously developed nonincremental approach. Furthermore, although CFE achieves
higher predictive accuracy, TRESTLE better matches human behavior because it takes key aspects
of human categorization into account. Our studies demonstrated these capabilities and provided an
initial demonstration of how it can be used to model human categorization.
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