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Abstract
We present a framework that allows an observer to determine the structure of occluded portions of
an assembly by estimating the structure of those occluded portions in a way that is consistent with
visible image evidence and world knowledge. Doing this requires determining which portions of
the assembly are occluded in the first place. Since each process relies on the other, we determine
a solution to both problems in tandem. We extend our framework to determine confidence of
one’s assessment of which portions of an observed assembly are occluded, and the estimate of the
structure of those occluded portions, by determining the sensitivity of one’s assessment to potential
new observations. We further extend our framework to determine a robotic action whose execution
would allow a new observation that would maximally increase one’s confidence. The formulation
of our framework further allows for the elegant integration of evidence across modalities. We
demonstrate such ability through the integration of information from natural-language statements
describing the assembly that aid the estimation of its structure and the simultaneous resolution of
both visual and linguistic ambiguity.

1. Introduction

[T]here are known knowns; there are things we know we know. We also know there are
known unknowns; that is to say we know there are some things we do not know. But
there are also unknown unknowns — the ones we don’t know we don’t know.

Donald Rumsfeld (12 February 2002)

People exhibit the uncanny ability to see the unseeable. The colloquial exhortation You have eyes
in the back of your head! expresses the assessment that someone is making correct judgments as if
they could see what is behind them, but obviously cannot. People regularly determine the properties
of occluded portions of objects from observations of visible portions of those objects using general
world knowledge about the consistency of object properties. Psychologists have demonstrated that
the world knowledge that can influence perception can be high level, abstract, and symbolic, and
not just related to low-level image properties such as object class, shape, color, motion, and texture.
For example, Freyd et al. (1988) showed that physical forces, such as gravity, and whether such
forces are in equilibrium, due to support and attachment relations, influences visual perception of
object location in adults. Baillargeon (1986, 1987) showed that knowledge of substantiality, the
fact that solid objects cannot interpenetrate, influences visual object perception in young infants.
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Streri and Spelke (1988) showed that knowledge about object rigidity influences both visual and
haptic perception of those objects in young infants. Moreover, such influence is cross modal: ob-
servable haptic perception influences visual perception of unobservable properties and observable
visual perception influences haptic perception of unobservable properties. Wynn (1998) showed that
material properties of objects, such as whether they are countable or mass substances, along with
abstract properties, such as the number of countable objects and the quantity of mass substances, and
how they are transferred between containers, influences visual perception in young infants. Simi-
lar results exist for many physical properties such as relative mass, momentum, etc. These results
demonstrate that people can easily integrate information from multiple sources together with world
knowledge to see the unseeable.

People so regularly invoke the ability to see the unseeable that we often don’t realize that we
do so. If you observe a person entering the front door of a house and later see them appear from
behind the house without seeing them exit, you easily see the unseeable and conclude that there
must be an unseen door to the house. But if one later opens a curtain covering a large living-room
bay window in the front of the house so that you see through the house and see the back door you
no longer need to invoke the ability to see the unseeable. A more subtle question then arises: when
must you invoke the ability to see the unseeable? In other words how can you see unseeability, the
inability to see? This question becomes particularly thorny since, as we will see, it can involve a
chicken-and-egg problem: seeing the unseen can require seeing the unseeability of the unseen and
seeing the unseeability of the unseen can require seeing the unseen.

The ability to see unseeability and to see the unseeable can further dramatically influence human
behavior. We regularly and unconsciously move our heads and use our hands to open containers to
render seeable what was previously unseeable. To realize that we need to do so in the first place, we
must first see the unseeability of what we can’t see. Then we must determine how to best use our
perceptual, motor, and reasoning affordances to remedy the perceptual deficiency.

We present a general computational framework for seeing unseeability to see the unseeable.
We formulate and evaluate a particular instantiation of this general framework in the context of
a restricted domain, namely LINCOLN LOGS, a children’s assembly toy where one constructs as-
semblies from a small inventory of logs. Two relevant aspects of this domain facilitate its use for
investigating our general computational framework: (a) LINCOLN LOG assemblies suffer from mas-
sive occlusion and (b) a simple but rich expression of world knowledge, in the form of constraints
on valid assemblies, can mitigate the effects of such occlusion. While LINCOLN LOGS are a chil-
dren’s toy, this domain is far from a toy when it comes to computer vision. The task of structure
estimation, determining, from an image, the correct combination of component logs used to con-
struct an assembly and how they are combined, is well beyond the state of the art. Not only is the
computer-vision problem for this domain immensely difficult—occlusion, luminance variation, and
a distinct paucity of features all encumber the process—the computational problem itself affords a
richness and complexity that is not readily apparent.

We present methods for seeing the unseeable (in Section 2) and seeing unseeability (in Section 3)
based on precise computation of the maximum-likelihood structure estimate. Section 4 presents a
rational basis for determining confidence in one’s structure estimate despite unseeability based on
precise computation of the amount of evidence needed to override a uniform prior on the unseeable.
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Figure 1. We generate two kinds of random variables for each grid position q: log-feature variables (a) that
encode the observed image evidence for portions of logs and log-occupancy variables (b) that encode the
structure. The overall process of structure estimation involves determining the unknown values of the log-
occupancy variables (b) from the observed image evidence represented through provided values of the log-
feature variables (a). This process is mediated through the constraints shown in Figure 2(a). (a) The Boolean
log-feature variables Z+

q , Z−
q , Zu

q , Zv
q , and Zw

q encode the presence of the specified image features for
grid position q. (b) The log-occupancy variable Zq for grid position q takes one of a finite set of possible
values: ∅ to denote that q is unoccupied and (m,n) to denote occupancy by the mth notch of an n-notch log.
(c) Example of the underlying symbolic grid of a LINCOLN LOG assembly.

Section 5 presents an active-vision decision-making process for determining rational behavior in
the presence of unseeability based on precise computation of which of several available perception-
enhancing actions one should take to maximally improve the confidence in one’s structure estimate.
Such capability is bootstrapped by our framework’s capacity to integrate evidence from different
views, both imagined and actual. Section 6 further highlights the elegance of our framework by
demonstrating the integration of evidence across modalities; using natural-language descriptions to
aid in resolving ambiguities in structure estimation.

2. Structure Estimation
Speech recognizers use a human language model, on utterances in a generative linguistic domain,
to improve recognition accuracy over the raw recognition rate of the phoneme detectors. Analo-
gously, Siddharth et al. (2011) use a visual language model, on compositional visual structures in a
generative visual domain, to improve recognition accuracy over the raw recognition rate of the part
detectors. In this approach, a complex object is constructed out of a collection of parts taken from a
small part inventory. A language model, in the form of a stochastic constraint-satisfaction problem
(CSP; Lauriere, 1978), characterizes the constrained way object parts can combine to yield a whole
object and significantly improves the recognition rate of the whole structure over the infinitesimally
small recognition rate that would result from unconstrained application of the unreliable part de-
tectors. Unlike the speech-recognition domain, where (except for coarticulation) there is acoustic
evidence for all phonemes, in the visual domain there may be components with no image evidence
due to occlusion. A novel aspect of applying a language model in the visual domain instead of the
linguistic domain is that it can additionally help in recovering occluded information.

This approach is demonstrated in the domain of LINCOLN LOGS, a children’s assembly toy with
a small part inventory, namely, 1-, 2-, and 3-notch logs. In a grammatical LINCOLN LOG assembly,
all logs lie on a symbolic grid imposed over the structure (Figure 1c). The structure of an assembly
can be completely and unambiguously described by specifying the occupancy at each grid position
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2-notch logs occupy 2 adjacent grid points

3-notch logs occupy 3 adjacent grid points

1- and 2-notch logs must be supported at all notches

3-notch logs must be supported in at least 2 notches

log ends must be at the ends of logs

short segments indicate occupancy above or below

long segments indicate presence of a multi-notch log
(a) (b)

Figure 2. (a) The constraints that encode the grammar of LINCOLN LOGS. (b, top) Examples of structures
that satisfy the grammar. (b, bottom) Examples of structures that do not satisfy the grammar, because of
unsupported logs.

(Figure 1b). Not all possible occupancy descriptions denote stable, physically realizable structures.
The space of valid structures can be specified by local constraints on the occupancy of adjacent
grid positions, as shown in Figure 2(a). Enforcing these constraints over the entire structure renders
some assemblies grammatical and others ungrammatical, as shown in Figure 2(b).

LINCOLN LOGS, being cylindrical, generate two predominant image features: log ends, ellipses
that result from the perspective projection of circular log ends, and log segments, line segments that
result from the perspective projection of cylindrical walls. Boolean random variables Z+ and Z−

are constructed to encode the presence of log-end features in the image. Similar Boolean random
variables Zu, Zv, and Zw are constructed to encode the presence of log-segment features in the
image. There is one instance of each such variable, Z+

q , Z−q , Zu
q , Zv

q , and Zw
q , for each grid

position q, as shown in Figure 1(a). We also construct a discrete random variable Zq for each grid
position q that ranges over its possible occupancies in the structure, as shown in Figure 1(b). In the
exposition below, we use Z+, Z−, Zu, Zv, Zw, and Z to denote the collections of the variables Z+

q ,
Z−q , Zu

q , Zv
q , Zw

q , and Zq for all of the grid positions q in the problem at hand.
The values of the log-feature variables are determined directly from the image. The values of the

log-occupancy variables, however, cannot be directly observed. The essence of structure estimation
is to determine the values of the log-occupancy variables. This is done by formulating and solving
a constraint satisfaction problem that mutually constraints the log-feature and log-occupancy vari-
ables, using Algorithm 1. The constraints are formalizations of the world knowledge in Figure 2(a).
Because the image evidence as encoded in the log-feature variables is noisy, unreliable, and incom-
plete (due to occlusion), we cannot treat this as a symbolic CSP and instead treat this as a stochastic
CSP. Within this stochastic framework, structure estimation is performed by establishing priors over
the random variables Z+

q , Z−q , Zu
q , Zv

q , and Zw
q that correspond to log features using image evidence

and establishing a uniform prior over the random variables Zq that correspond to the latent structure.
The random variables that correspond to log features are marginalized 1 and the resulting marginal

1. Marginalization is the process of deriving the joint distribution M of a subset, say {A}, of the constituent vari-
ables of a joint distribution over all of the variables, say {A,B,C}. We compute such as M = Pr (A) =∑

B,C Pr (A,B,C). We utilize this in order to be able to derive the distribution over log occupancies, which is
what we want, from the joint distribution over log occupancies and observed image evidence, which is what we have.
Historically, this term evolved from the practice of displaying the values of a joint distribution Pr(A,B) as a two-
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(a) (b)
size

(X×YX×YZ×Z)
# grid points possible

structures
valid

structures

2× 2× 2× 2 8 5× 106 233
2× 3× 2× 2 12 1010 1341
2× 3× 3× 2 16 1013 6667
3× 2× 2× 3 12 1010 5461
3× 2× 2× 3 18 1015 670179

(c) (d)

Figure 3. Example visibility estimates for (a) log ends and (b) log segments. Green and orange indicate the
visible and occluded features for even layers, while blue and magenta indicate visible and occluded features
for odd layers. (c) Size of the space of LINCOLN LOG assemblies for given grid sizes. XZ is the ground
plane while Y X and Y Z are the heights of the assembly along the respective ground-plane axes. (d) Our
robotic environment for performing structure estimation with a rotating head to image the assembly from
different viewpoints and a robot arm to disassemble the assembly.

distribution is conditioned on the language model Φ to enforce the constraints from Figure 2(a).
Finally, the assignment to the collection, Z, of random variables Zq, that maximizes this conditional
marginal probability is computed:

argmax
Z

∑
Z+,Z−,Zu,Zv ,Zw

Φ[Z,Z+,Z−,Zu,Zv ,Zw]

Pr
(
Z,Z+,Z−,Zu,Zv,Zw

)
(1)

While this method can determine the conditional probability distribution over consistent structures
given image evidence, doing so is combinatorially intractable. To see why this is so, consider
a simple 2 × 2 × 2 grid representing the underlying structure of a hypothetical LINCOLN LOG

assembly. Even for so small an assembly, since each grid position can take one of seven possible
values, the total number of possibilities (78 ≈ 5 × 106), exponential in the number of grid points,
is huge. This is due to the generative nature of the LINCOLN LOG domain. We illustrate this point
further with Figure 3(c), where we enumerate the number of possible structures and how many of
such are valid given our system of constraints, for a few relatively small grid sizes.

To compute Equation 1, we employ algorithms for each of the constituent processes that help
ameliorate this intractability. These algorithms prune the space so as not to enumerate all possible
structures, and hence cannot obtain the distribution over structures. The conditional marginalization
process is made tractable by pruning assignments to the random variables that violate the grammar Φ
using arc consistency (Mackworth, 1977). The maximization process is made tractable by using a
branch-and-bound algorithm (Land & Doig, 1960) that maintains upper and lower bounds on the
maximal conditional marginal probability. Instead of determining the distribution over structures,

dimensional table with rows for the A entries and columns for the B entries. The values of Pr(A) were derived by
summing along the columns to yield a new row at the bottom margin of the table. The values of Pr(B) were derived
by summing along the rows to yield a new column at the right margin of the table. This led to Pr(A) and Pr(B)
being referred to as marginal probabilities and the derivation process as marginalization.
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Algorithm 1. The structure-estimation algorithm as described in Section 2.

grid-positions← (∀grid-position∈grid) uniform({∅, (1, 1), (1, 2), (2, 2), (1, 3), (2, 3), (3, 3)});
log-features← (∀log-feature∈grid) detector(log-feature,image);
best-probability← −∞;
while csp-solutions-exist() do

probability←
∏

bound(log-features)

Pr(log-feature)
∏

bound(grid-positions)

Pr(grid-position);

if (∀log-features)bound(log-feature)∧ (∀grid-positions)bound(grid-position) then
if probability > best-probability then

best-probability← probability;
best-structure← grid-positions;

end
backtrack();

end
if probability < best-probability then backtrack();
bind(select(unbound(grid-position ∪ log-feature)));
arc-consistency(constraints);
if inconsistent() then backtrack()

end

this yields a single most-likely consistent structure given the image evidence, along with its proba-
bility. Algorithm 1 gives pseudo-code for the structure-estimation process.

3. Visibility Estimation

Image evidence for the presence or absence of each log feature is obtained independently. Each
log feature corresponds to a unique local image property when projected to the image plane under
the known camera-relative pose. A prior over the random variable associated with a specific log
feature can be determined with a detector that is focused on the expected location and shape of that
feature in the image given the projection. This assumes that the specific log feature is visible in the
image, and not occluded by portions of the assembly between the camera and that log feature. We
show example visibility of log-end and log-segment features for a simple LINCOLN LOG assembly
in Figure 3(a,b). When the log feature f , a member of the set {+,−, u, v, w} of the five feature
classes defined above, at a position q, is not visible, the prior can be taken as uniform, allowing the
grammar to fill in unknown information. We represent the visibility of a feature f at position q by
the boolean variable V f

q , where:

Pr(Zf
q = true) ∝ image evidence when V f

q = true (2a)

Pr(Zf
q = false) =

1

2
otherwise. (2b)

In order to do so, it is necessary to know which log features are visible and which are occluded so
that image evidence is only applied to construct a prior on visible log features, using Equation 2(a),
and a uniform prior is constructed for occluded log features, using Equation 2(b). Thus, in Rums-
feld’s terminology, one needs to know the known unknowns in order to determine the unknowns.
This creates a chicken-and-egg problem. To determine whether a particular log feature is visible,
one must know the composition of the structure between that feature and the camera. Likewise, to
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determine the structure composition, one must know which log features are visible. While earlier
work (Siddharth, Barbu, & Siskind, 2011) demonstrated successful automatic determination of log
occupancy at occluded log positions, it could only do so given manual annotation of log-feature vis-
ibility. In other words, while Zq was automatically inferred, it required manual annotation of V f

q .
Further, manual annotation of V f

q required implicit human awareness of Zq.
We extend this prior work to automatically determine visibility of log features in tandem with

log occupancy. Our novel contribution in this section is mutual automatic determination of both Zq

and V f
q solving the chicken-and-egg problem inherent in doing so with an iterative algorithm rem-

iniscent of expectation maximization (Dempster, Laird, & Rubin, 1977). We start with an initial
estimate of the visibility of each log feature. We apply the structure-estimation procedure to esti-
mate the occupancy of each symbolic grid position and use the estimated structure to recompute a
new estimate of log-feature visibility and iterate this process until a fixpoint is reached. There are
two crucial components in this process: determining the initial log-feature visibility estimate and
reestimating log-feature visibility from an estimate of structure.

We determine the initial log-feature visibility estimate, V f
q , by assuming that the structure is

a rectangular prism whose top face and two camera-facing front faces are completely visible, and
whose other faces are not. No assumptions are made about the constituents of the structure, its
pose, or the camera views used. We use the camera-relative pose of the symbolic grid (which can be
determined without any knowledge of the structure) together with the maximal extent of each of the
three symbolic grid axes, three small integers which are currently specified manually, to determine
the visible faces. We determine the image positions for four corners of the base of this rectangular
prism and the bottommost three such image positions as they correspond to the endpoints of the
lower edges of the two frontal faces. It is possible that one of these faces is nearly parallel to the
camera axis and thus invisible. We determine that this is the case when the angle subtended by
the two lower edges is less than 110◦ and discard the face whose lower edge has minimal image
width. This process does nothing more than establish that, in the absence of a structure estimate
from which to derive visibility, the front and top faces of the grid are the only parts for which the
log-feature random variables have image evidence as their support, using Equation 2(a). All other
parts of the grid are taken to have the uniform distribution as their support, using Equation 2(b), as
a means of saying that we assume nothing about them.

We update the log-feature visibility estimate from a structure estimate by rendering the structure
in the context of the known camera-relative pose of the symbolic grid. We characterize each log
feature with a fixed number of points, equally spaced around circular log ends or along linear log
segments and trace a ray from each such point’s 3D position to the camera center, asking whether
that ray intersects some bounding cylinder for a log in the estimated structure. We take a log feature
to be occluded when 60% or more of such rays intersect logs in the estimated structure. Structure
estimation isn’t adversely affected by a moderate number of log features incorrectly labeled as oc-
cluded because it can use the grammar to determine occupancy of the corresponding grid positions.

We perform such rendering efficiently by rasterization. We begin with an empty bitmap, iterate
over each log feature and each occupied grid position that lies between that log feature and the
camera center, and render a projection of the bounding cylinder of the log at that grid position on
the bitmap.
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Algorithm 2. The visibility-estimation algorithm as described in Section 3, using Algorithm 1.

visible← top and front of structure;
current-structure← ∅;
repeat

previous-structure← current-structure;
current-structure← structure-estimation((∀log-feature/∈visible) Pr(log-feature) = 1

2
);

visible← ∅;
rendered-image← render-structure(current-structure);
forall the log-features ∈ grid do

if is-visible(log-feature, rendered-image) then visible← visible ∪ {log-feature}
end

until previous-structure = current-structure;

This renders all possible occluders for each log feature, allowing one to determine visibility by
counting the rendered pixels at points that correspond to the projected rays.

The above process might not reach a fixpoint and instead enter an infinite loop of pairs of
visibility and structure estimates. In practice, this process reaches a fixpoint or enters a short loop
within three to four iterations, making loop detection straightforward. When a loop is detected,
we select the structure in the loop with the highest probability estimate. Algorithm 2 provides the
pseudo-code that summarizes the above process.

4. Structure-Estimation Confidence
While the structure-estimation process can determine the occupancy of a small number of grid
positions when only a single set of occupancy values is consistent with the grammar and the image
evidence, it is not clairvoyant; it cannot determine the structure of an assembly when a large part
of that assembly is occluded and many different possible structures are consistent with the image
evidence. In this case, we again have an issue of unknowns vs. known unknowns: how can one
determine one’s confidence in one’s structure estimation? If we could determine the conditional
distribution over consistent structures given image evidence, Pr(Z|I), a measure of confidence
could be entropy of this distribution, H(Z|I). However, as discussed previously, computing this
distribution is intractable and consequently so is computing its entropy.2 Thus we adopt an alternate
means of measuring confidence in the result of the structure-estimation process.

Given a visibility estimate, V f
q , structure estimate, Z, and priors on random variables associated

with log features computed with image evidence, Zf
q , one can marginalize over the random variables

associated with visible log features and compute the maximum-likelihood assignment to the random
variables associated with occluded log features, Ẑf , consistent with a given structure estimate:

Ẑf = argmax
Zf
q

V f
q =false

∑
Zf
q

V f
q =true

Φ[Z,Z+,Z−,Zu,Zv ,Zw]

Pr(Z,Z+,Z−,Zu,Zv,Zw)

2. The entropy H(Z) of a random variable Z is
∑

z∈Z Pr(z) log Pr(z). It measures the information content of a
random variable, or lack thereof. Computing this requires summing over all elements in Z.
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One can then ask the following question: what is the maximal amount δ that one can shift the prob-
ability mass on the occluded log-feature random variables away from the uniform prior, reassigning
it to the opposite element of its support, such that estimated structure remains the same? Or in
simpler terms: Assume an initial structure estimate derived from a uniform prior over occluded log
features. How much hypothetical evidence for such features is needed to change my mind about the
structure? We compute δ using a modified structure-estimation step:

argmax
Z

∑
Z+,Z−,Zu,Zv ,Zw

Φ[Z,Z+,Z−,Zu,Zv ,Zw]

Pr(Z,Z+,Z−,Zu,Zv Zw) = Z

when, for all qf where V f
q = false, Pr(Zf

q = ¬Ẑf
q ) = 1

2 + δ and Pr(Zf
q = Ẑf

q ) = 1
2 − δ. We

call such a δ the estimation tolerance. Then, for any estimated structure, one can make a confidence
judgment by comparing the estimation tolerance to an overall tolerance threshold δ∗. One wishes
to select a value for δ∗ that appropriately trades off false positives and false negatives in such con-
fidence judgments: we want to minimize the cases that result in a positive confidence assessment
for an incorrect structure estimate and also minimize the cases that result in a negative confidence
assessment for a correct structure estimate. Because the methods we present in the next section can
gather additional evidence in light of negative confidence assessment in structure estimation, the
former are more hazardous than the latter because they preclude gathering additional evidence and
lead to an incorrect structure estimate while the latter simply incur the cost of additional evidence
gathering. Because of this asymmetry, our method is largely insensitive to the particular value of δ∗

so long as it is sufficiently high to not yield excessive false positives.
One can determine the estimation tolerance by binary search for the smallest value of δ ∈

(0, 0.5) that results in a different estimated structure, a time-consuming process. But we don’t
actually need the value of δ; we only need to determine whether δ < δ∗. We do this by simply
asking whether the estimated structure, Z, changes when the probabilities are shifted by δ∗, i.e.,
Pr(Zf

q = ¬Ẑf
q ) = 1

2 + δ∗ and Pr(Zf
q = Ẑf

q ) = 1
2 − δ

∗. This involves only a single new structure
estimation. Initializing the branch-and-bound structure-estimation algorithm with the probability of
the original structure estimate given the modified distributions for the random variables associated
with occluded log features speeds this process up.

5. Gathering Additional Evidence

Structure estimation can be made more reliable by integrating multiple sources of image evidence.
We perform structure estimation in a robotic environment, illustrated in Figure 3(d), that facilities
automatically gathering multiple sources of image evidence as needed. This workspace is imaged
by a camera mounted on a pendulum arm that can rotate 180◦ about the workspace, under computer
control, to image the assembly from different viewpoints. This can be used to view portions of the
assembly that would otherwise be occluded. Moreover, a robotic arm can disassemble a structure
on the workspace to reveal the lower layers of a structure that would otherwise be occluded by
higher layers. These methods can further be combined. Generally speaking, we seek a method for
constraining a single estimate of an initial structure with multiple log features derived from different
viewpoints and different stages of disassembly.
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We can do this as follows. Let Z be a collection of random variables Zq associated with log
occupancy for a given initial structure. Given multiple views i = 1, . . . , n with collections Zi of
random variables Z+

q , Z−q , Zu
q , Zv

q , and Zw
q associated with the image evidence for log features

from those views, we can compute:

argmax
Z

∑
Z1...Zn

Φ[Z,Z1]∧···∧Φ[Z,Zn]

Pr (Z,Z1, . . . ,Zn)

Two issues arise in doing this. First, though one can estimate the camera-relative pose of the struc-
ture independently for each view, this does not yield the registration between these views. There are
only four possible symbolic orientations of the structure in each view so for n views we need only
consider 4n−1 possible combinations. We can greedily search for the combination that yields the
maximum-likelihood structure estimate by incrementally adding views to the structure-estimation
process and registering each added view by searching for the best among the four possible reg-
istrations. Second, in the case of partial disassembly, we need to handle the fact that the partially
disassembled structure is a proper subset of the initial structure. We do this by omitting random vari-
ables associated with log features for logs that are known to have been removed in the disassembly
process and not instantiating constraints that mention such omitted random variables.

We can combine the techniques from Section 4 with these techniques to yield an active-vision
(Bajcsy, 1988) approach to producing a confident and correct structure estimate. One can perform
structure estimation on an initial image and assess one’s confidence in that estimate. If one is not
confident, one can plan a new observation, entailing either a new viewpoint, a partial-disassembly
operation, or a combination of the two and repeat this process until one is sufficiently confident
in the estimated structure. We plan new observations by asking the following question: which
of the available actions maximally increases confidence? Like before, if we could determine the
conditional distribution over consistent structures given image evidence, we could select the action
which maximally decreases entropy. But again, neither computing this distribution nor consequently
computing its entropy is tractable, as discussed previously. Thus we adopt an alternate means of
measuring increase in confidence.

Consider view i of the n current views. For such i, consider the given visibility estimates
V f
iq , priors Zf

iq on the log-feature random variables computed with image evidence, and a structure
estimate Z constructed from such views. We can marginalize over random variables associated with
visible log features V f

iq = true and compute the maximum-likelihood assignment Ẑf to the random
variables associated with occluded log features that is consistent with a given structure estimate:

Ẑf = argmax
Zf
iq ,V

f
iq=false

∑
Zf
iq ,V

f
iq=true

Φ[Z,Z1]∧···∧Φ[Z,Zn]

Pr(Z,Z1, . . . ,Zn)

We determine those log features that are invisible in all current views but visible in a new view
resulting from a hypothetical action. One can then ask the following question: what is the maximal
amount δ′ that one can shift the probability mass on these random variables away from the uniform
prior, reassigning it to the opposite element of its support, such that the estimated structure with
the new view remains the same. In simpler terms: Assume an initial structure estimate derived
from a uniform prior over occluded log features. Imagine a hypothetical action which renders such
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occluded log features visible. For such an imagined view, how much hypothetical evidence for such
log features, in all current views, is needed to change my mind about the structure?

For an action yielding a new view, j, we compute δ′ as

argmax
Z

∑
Z1...Zn Zj

Φ[Z,Z1]∧···∧Φ[Z,Zn]∧Φ[Z,Zj ]

Pr(Z,Z1, . . . ,Zn,Zj) = Z

when Pr(Zf
iq = ¬Ẑf

iq) = 1
2 + δ and Pr(Zf

iq = Ẑf
iq) = 1

2 − δ ∀q
f : V f

jq = true ∧ (∀i)V f
iq = false.

We perform binary search to find δ′ for each hypothetical action and select the one with the lowest δ′.
This nominally requires sufficiently deep binary search to compute δ′ to arbitrary precision. One
can make this process faster by performing binary search on all hypothetical actions simultaneously
and terminating when there is only one action lower than the branch point. This requires that binary
search be only sufficiently deep to discriminate between the available actions.

6. Natural Language

An interesting feature of our framework is that it allows for elegant inclusion of information from
other modalities. Natural language, for example, can be integrated into our approach to draw ad-
ditional evidence for structure estimation from utterances describing the structure in question. A
sentence, or set of sentences, describing a structure need not specify the structure unambiguously.
Much like additional images from novel viewpoints can provide supplementary but partial evidence
for structure estimation, sentences providing incomplete descriptions of structural features also can
provide supplementary but partial evidence for structure estimation.

We have investigated this possibility via a small domain-specific language for describing some
common features present in assembly toys. This language has: three nouns (wall, window, and
door), four spatial relations (left of, right of, perpendicular to, and coplanar to), and one conjunction
(and). Sentences constructed from these words can easily be parsed into logical formulas.

Analogous to how a CSP encodes the validity of an assembly through a set of constraints,
such logical formulas derived from sentential descriptions can also constrain the structures to be
considered. The words in our vocabulary impose five constraints:

1. A wall is composed of a rectangular vertical coplanar set of grid points. All grid points in the
wall must be occupied.

2. A door is composed of a rectangular vertical coplanar set of grid points. All grid points inside
the door must be unoccupied. All grid points on the door posts must be log ends facing away
from the door. All grid points on the mantel must be occupied by the same log. The threshold
must be unoccupied and at the bottom of the structure.

3. A window is similar to a door whose threshold is occupied by the same log and is not con-
strained to be at the bottom of the structure.

4. Perpendicular to constrains the grid points of two entities to lie on perpendicular axes. Copla-
nar to is analogous.

5. Right of or left of constrain the relative coordinates of the grid points of two entities.

We have given formal semantic definitions for 8 words in terms of CSP fragments. These are defined
informally in English above. We omit the formal definitions since they are tedious. Nonetheless, our
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implementation parses sentences containing these words and applies the rules of compositional se-
mantics to derive an overall CSP that reflects the semantics of the sentence, from the CSP fragments
that reflect the semantics of the individual words. This CSP which encodes constraints derived
from natural language is then combined with the CSPs which encode constraints derived from the
visual language model to perform structure estimation. We thus compute a joint multiple-view and
natural-language structure estimate as follows. Let Z be a collection of random variables Zq asso-
ciated with log occupancy for a given initial structure. Given the set of constraints Ψ derived from
natural language and multiple views i = 1, . . . , n with collections Zi of random variables Z+

q , Z−q ,
Zu
q , Zv

q , and Zw
q associated with the image evidence for log features from those views, we compute

argmax
Z

∑
Z1...Zn

Φ[Z,Z1]∧···∧Φ[Z,Zn]∧Ψ[Z]

Pr (Z,Z1, . . . ,Zn)

An example of how such an extension improves results is shown in Figure 6. The key idea here is
that the CSP is a modality-neutral internal mental representation that can be fed information derived
by vision, language, or both, allowing cross-modal inference.

A system that can accept and use such cross-modal information is in keeping with our broader
research effort to model human cognition. All information that is available to the human brain is
provided by means of sensory input—eyes, ears, touch, etc. To this effect, we fashion our systems
to accept inputs with the same modalities as humans; i.e., raw camera input for vision, natural-
language text or speech for language, and motor-control primitives for proprioception.

7. Results
We gathered a corpus of five different images of each of 32 different structures, each from a different
viewpoint, for a total of 160 images. The structures were carefully designed so that proper subset
relations exist among various pairs of the 32 distinct structures.

We first evaluated automatic visibility estimation. We performed combined visibility and struc-
ture estimation on 105 of the 160 images and compared the maximum-likelihood structure estimate
to that produced by Siddharth et al. (2011) using manual annotation of visibility. For each image,
we compare the maximum-likelihood structure estimate to ground truth and compute the number of
errors. We do this as follows. Each one-, two-, or three-notch log in either the ground truth or esti-
mated structure that is replaced with a different, possibly empty, collection of logs in the alternate
structure counts as a single error (which may be a deletion, addition, or substitution). Further, each
collection of r adjacent logs with the same medial axis in the ground truth that is replaced with a
different collection of s logs in the estimated structure counts as min(r, s) errors. We then compute
an error histogram of the number of images with fewer than t errors. Figure 4(a) shows the error
histograms for manual visibility annotation and automatic visibility estimation. Note that the latter
performs as well as the former—our automatic visibility-estimation process appears to be reliable.

We then evaluated structure-estimation confidence assessment. We computed the false-positive
rate and false-negative rate of our confidence-assessment procedure over the entire corpus of 105
images, where a false positive occurs with a positive confidence assessment for an incorrect structure
estimate and a false negative occurs with negative confidence assessment for a correct structure
estimate. This resulted in only three false positives and seven false negatives on our corpus.
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(a) (b)
Figure 4. (a) Error histograms for structure estimation with manual visibility annotation (in blue) and auto-
matic visibility estimation (in red). All of the structures estimated had 12 or fewer errors. Note that the
latter performs as well as the former. (b) Error histograms for the baseline structure estimation (in dark blue)
and each of the active-vision process (partial disassembly in light blue, multiple views in yellow, and the
combination of these in red). Note that our active-vision processes consistently reduce estimation error.

Next, we evaluated the active-vision process for performing requisite actions to improve struc-
ture estimation confidence on 90 images from our corpus. So as not to render this evaluation depen-
dent on the mechanical reliability of our robot (which is tangential to the current paper) and focus
the evaluation on the computational method, we use the fact that our corpus contains multiple views
of each structure from different viewpoints to simulate moving the robot head to gather new views
and the fact our corpus contains pairs of structures in a proper-subset relation to simulate using the
robot to perform partial disassembly. We first evaluated simulated robot-head motion to gather new
views. For each image, we took the other images of the same structure from different viewpoints as
potential actions and perform our active-vision process. We next evaluated simulated robotic disas-
sembly. For each image, we took images of proper-subset structures taken from the same viewpoint
as potential actions and perform our active-vision process. We finally evaluated simulated combined
robot-head motion and robotic disassembly. For each image, we took all images of proper-subset
structures taken from any viewpoint as potential actions and perform our active-vision process. For
each of these, we computed the error histogram at the termination of the active-vision process.

(a) (b) (c) (d)
Figure 5. Estimated structure through the following four methods: (a) Baseline structure estimation. (b) Par-
tial disassembly. (c) Multiple views. (d) Combined partial disassembly and multiple views. Overlayed log
color indicates correct (green) or incorrect (red) estimation of log occupancies.
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(a) View 1 (b) View 2 (c) View 1 + 2 (d) View 1 + Language
Figure 6. An example of joint structure estimation from image evidence and natural language. (a) Structure
estimation from an initial view. (b) Structure estimation from a second view alone. (c) Structure estimation
using information from both views from the viewpoint of the first view. (d) Structure estimation integrating
image evidence from the first view with the sentence window left of and perpendicular to door. Overlayed
log color indicates correct (green) or incorrect (red) estimation of log occupancies.

Figure 4(b) shows the error histograms for each of the active-vision processes together with the error
histogram for baseline structure estimation from a single view on this subset of 90 images. Figure 5
shows the final estimated structure when performing each of the four processes from Figure 4(b) on
the same initial image. Note that our active-vision processes consistently reduce estimation error.

We demonstrate natural-language integration in Figure 6. In (a), structure estimation is per-
formed on a single view, which due to occlusion, is unable to determine the correct structure. A
second view is acquired. Note that this second view suffers from far more occlusion than the first
view and produces a far worse structure estimate (b). The information available in these two views
is integrated and jointly produces a better structure estimate than either view by itself (c). However,
this estimate is still imperfect. To demonstrate the utility and power of integrating visual and lin-
guistic information, we intentionally discard the second view and construct an estimate from just
a single image, together with a single linguistic description, each of which is ambiguous taken in
isolation. The user provides the sentence window left of and perpendicular to door. Note that this
sentence does not fully describe the assembly. It does not specify the number of windows and doors,
their absolute positions, or the contents of the rest of the structure. Yet this sentence, together with
the single image from the first view, is sufficient to correctly estimate the structure (d).

8. Related Work
Our work shares three overall objectives with prior work: estimating 3D structure from 2D images,
determining when there is occlusion, and active vision. However, our work explores each of these
issues from a novel perspective.

Prior work on structure estimation (e.g., Saxena, Sun, & Ng, 2007; Lee, Hebert, & Kanade,
2009; Gupta, Efros, & Hebert, 2010) focuses on surface estimation, recovering 3D surface from 2D
images. In contrast, our work focuses on recovering the constituent structure of an assembly: what
parts are used to make the assembly and how such parts are combined. Existing state-of-the-art
surface reconstruction methods (e.g., Make3D, Saxena, Sun, & Ng, 2008 ) are unable to determine
surface structure of the kinds of LINCOLN LOG assemblies considered here. Even if such surface
estimates were successful, they are insufficient to determine the constituent structure.

Prior work on occlusion determination (e.g., Gupta, Efros, & Hebert, 2010; Hoiem, Efros, &
Hebert, 2011) focuses on finding occlusion boundaries; the 2D image boundaries of occluded re-
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gions, and estimating occlusion of object surfaces (e.g., Bohg et al., 2011; Mösenlechner & Beetz,
2011) in 3D using shape priors and symmetries. In contrast, our work focuses on determining oc-
cluded parts in the constituent structure. We see no easy way to determine occluded parts either
from occlusion boundaries or from occluded surfaces since such alone are insufficient to determine
even the number of occluded parts, let alone their types and positions in a 3D structure.

Prior work on active vision (e.g., Maver & Bajcsy, 1993) focuses on integrating multiple views
into surface estimation and selecting new viewpoints to facilitate such in the presence of occlusion.
In contrast, our work focuses on determining the confidence of constituent structure estimates and
choosing an action with maximal anticipated increase in confidence. We consider not only view
changes but also robotic disassembly to view object interiors. Also note that the confidence es-
timates used in our approach are mediated by the visual language model. We might not need to
perform active vision to observe all occluded structure as it might be possible to infer part of the
occluded structure. Prior work selects a new view to render occluded structure visible. We instead
select an action to maximally increase confidence. Such an action might actually not attempt to
view an occluded portion of the structure but rather increase confidence in a visible portion of the
structure in a way that when mediated by the language model ultimately yields a maximal increase
in the confidence assessment of a portion that remains occluded even with the action taken.

9. Conclusion
We have presented a general framework for (a) seeing the unseeable, (b) seeing unseeability, (c) a
rational basis for determining confidence in what one sees, (d) an active-vision decision-making
process for determining rational behavior in the presence of unseeability, and (e) the capability
to integrate natural-language descriptions into the estimation process as evidence of capability to
integrate information across modalities. We instantiated and evaluated our general framework in the
LINCOLN LOG domain and found it to be effective. This framework has many potential extensions.

One can construct random variables to represent uncertain evidence in other modalities, such as
language and speech, and augment the stochastic CSP to mutually constraint these variables together
with the current random variables that represent image evidence and latent structure so that a latent
utterance describes a latent structure. One can then use the same maximum-likelihood estimation
techniques to produce the maximum-likelihood utterance consistent with a structure, marginalizing
over image evidence. This constitutes producing an utterance that describes a visual observation.

In a similar vein, one can use the same maximum-likelihood estimation techniques to produce
the maximum-likelihood sequence of robotic actions consistent with building a structure, marginal-
izing over utterance or image evidence. This would constitute building a structure by understanding
a linguistic description of that structure or by copying a visually observed assembly.

Alternately, one can combine evidence from an uncertain visual perception of a structure with
evidence from an uncertain linguistic description of that structure to reduce structure-estimation
uncertainty. This would constitute using vision and language to mutually disambiguate each other.
Further, one could augment one’s collection of potential actions to include speech acts as well as
robotic-manipulation actions and search for the action that best improves confidence. This would
constitute choosing between asking someone to provide you information and seeking that informa-
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tion yourself. One could determine what another agent sees from what that agent says and decide
what to say so that another agent can see what is unseeable to that agent yet is seeable to you.

Overall, this can lead to a rational basis for cooperative agent behavior and a theory of the
perception-cognition-action loop which incorporates mutual belief, goals, and desires where agents
seek to assist each other by seeing what their peers cannot, describing such sight, and inferring what
their peers can and cannot see. We are currently beginning to investigate potential extensions to our
general approach and hope to present them in the future.

The ultimate goal of cognitive-systems research is to emulate human-level intelligence in an
artificial agent. Humans interact physically with the real world, as perceived, and we expect our
cognitive systems to do so as well. However, the real world is highly complex, metric, and noisy.
Even the simple world of LINCOLN LOGS has a huge number of distinct propositions Zq, Z+

q , Z−q ,
Zu
q , Zv

q , and Zw
q that combine to yield an astronomical number of possible worlds as illustrated

in Figure 3(c). The relationships between these propositions are governed by a metric physical
process, namely projection of the 3D world onto the 2D image plane, not a logical one. Moreover,
even the best current state-of-the-art computer-vision systems cannot reliably determine categorical
presence of even simple image features like lines and ellipses as are needed in our task. The current
mind set in the computer-vision community is that it is likely impossible to do so without high-
level top-down inference. In this paper, we demonstrate several such sources of high-level top-
down inference: the world knowledge encoded in the grammar, the ability to reason about visibility
through imagination (the rasterized rendering process), the ability to determine confidence through
counterfactual reasoning (would I change my mind if I observed something different), the ability
to plan a course of action to achieve a desired knowledge-state goal, and the ability to integrate
information from both language and vision. These are all forms of high-level top-down inference
that outstrip those that are considered or even appreciated by the computer-vision community but
are well within the province of cognitive systems. The take-home message is that computer-vision
and cognitive-systems research can mutually benefit tremendously from cross-fertilization.

But in order for this to happen, it is necessary for the cognitive-systems community to under-
stand and appreciate the richness and difficulty of computer vision. The cognitive-systems commu-
nity has long developed methods for meta-reasoning: reasoning about beliefs, desires, and intentions
(Moore, 1982; Bratman, Israel, & Pollack, 1988; Bratman, 1990; Cohen & Levesque, 1990; Rao &
Georgeff, 1991; Hobbs et al., 1993). However, such has been formulated around symbolic represen-
tations of a small number of large-scale phenomena:¬CAN(SEE(DOOR)), IS(WALL,BETWEEN(SELF,DOOR)),
WANT(CAN(SEE(DOOR))), and DISASSEMBLE(WALL) → ¬IS(WALL,BETWEEN(SELF,DOOR)). Moreover, actions
are abstracted into coarse-grained symbolic representations like DISASSEMBLE(WALL) that do not ex-
pose the myriad low-level state changes that these objects go through as a result of such an action
and how such state changes impact high-level concepts like IS(WALL,BETWEEN(SELF,DOOR)).

Computer vision, however, deals with a huge number of small-scale phenomena: presence or
absence of the myriad pixels and edge fragments that combine to yield parts, the myriad parts that
combine through articulation and deformation to yield objects, and the myriad motions and state
changes that these objects go through when performing even a simple action like DISASSEMBLE(WALL).
Moreover, these phenomena are inherently metric: position, shape, and intensity of edge fragments,
continuous parameters of articulation and deformation, and descriptions of motion in terms of ve-

92



SEEING UNSEEABILITY TO SEE THE UNSEEABLE

locity and acceleration. Yet even at this small scale, reasoning about beliefs, desires, and intentions
is beneficial. Our variables Zq, Z+

q , Z−q , Zu
q , Zv

q , and Zw
q are propositions about the state of the

world. Our variables V f
q are meta-level propositions about knowledge states. One difference be-

tween our work and classical work about knowledge states is that we have many such: several for
each of the many possible components and component positions. Another difference is that the re-
lation between the two is too rich and complex to be described by a logical theory; instead we have
a metric imagination process built out of a rasterizing 3D rendering engine. Another is that all these
myriad variables have distinct levels of uncertainty that is metrically correlated with the low-level
projection process: greater level of occlusion leads to higher-degree of uncertainty. Solving the
cognitive-systems issues in a computer-vision context requires reasoning about a huge number of
uncertain small-scale metric phenomena that are related by metric physical principles.

The way forward requires a bridge between the cognitive-systems and computer-vision com-
munities. Cognitive systems will only ever be able to deal with real-world perceptual input if it
accepts the fact that the propositional structure must be fine-grained (about numerous small per-
ceptual entities that comprise any cognitive concept), metric (about actual sizes, shapes, positions,
velocities, accelerations, forces, etc.), and noisy. Computer-vision systems will only ever be able
to yield reliable aggregate assessments of the environment at large with high-level top-down world
knowledge and inference. These two must speak a common language. We have taken a small step
in demonstrating what such a language would look like in this paper.
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