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Abstract 

Narrative intelligence is an important part of human cognition, especially in sensemaking and 

communicating with people. Humans draw on a lifetime of relevant experiences to explain stories, 

to tell stories, and to help choose the most appropriate actions in real-life settings. Manual 

authoring the required knowledge presents a significant bottleneck in the creation of systems 

demonstrating narrative intelligence. In this paper, we describe a novel technique for automatically 

learning script-like narrative knowledge from crowdsourcing. By leveraging human workers’ 

collective understanding of social and procedural constructs, we can learn a potentially unlimited 

range of scripts regarding how real-world situations unfold. We present quantitative evaluations of 

the learned primitive events and the temporal ordering of events, which suggest we can identify 

orderings between events with high accuracy. 

1.  Introduction 

From ancient Greek plays to modern motion pictures, from bedtime stories to Nobel-prize-

winning novels, storytelling in various forms plays a pervasive role in human culture.  Cognitive 
and psychological research suggests that the prevalence of storytelling may be explained by the 
use of narrative as a cognitive tool for situated understanding (Bruner, 1991; Gerrig, 1993; 
Graesser, Singer, & Trabasso, 1994), as a cornerstone of one’s identity (Singer, 2004), and as a 
means of supporting early development of language (Johnston, 2008).  

We consider narrative intelligence as an entity’s ability to organize and explain experiences 

in narrative terms (Mateas & Sengers, 1999), to comprehend and make inferences about 
narratives we are told (Graesser, Singer, & Trabasso, 1994), and to produce affective responses 
such as empathy to narratives (Mar et al., 2011). Narrative intelligence is central to the cognitive 
processes employed across a range of experiences from entertainment to learning. It follows that 
computational systems possessing narrative intelligence may be able to interact with human users 
naturally because they understand collaborative contexts as emerging narrative and are able to 

express themselves by telling stories. 
In this paper we consider the problem of creating, telling, and understanding stories that 

involve common procedural and social situations. Most stories are about people; these narrative 
intelligence tasks require the ability to recognize and act according to social and cultural norms. 
Furthermore, for virtual agents and robots to co-exist and cooperate with humans the ability to 
explain others’ behaviors and to carry out common tasks involving social contexts is important. 
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For example, during a trip to a restaurant, an agent should know that drinks are typically ordered 
before the food. Likewise, when accompanying a human to the movie theatre, one should know to 
purchase popcorn before finding one’s seats. To omit these elements or to use them at the wrong 

time invites failures in believability, breakdowns in communication, or increased overhead of 
coordination.  

Akin to Fodor’s (1983) notion of central cognitive processes, narrative intelligence is highly 
knowledge intensive. Narrative intelligence tasks such as story understanding and story 
generation require the ability to recognize and act according to technical procedures as well as 
social and cultural norms. Humans draw on a lifetime of relevant experiences from which to 

explain or tell stories, and to help choose the most appropriate actions in real-life setting. 
However, attempts to instill computational systems with narrative intelligence have been limited 
by the high cost of manual coding of extensive knowledge. For example, a simple model of 
restaurant behavior uses 87 rules (Mueller, 2007). A simulation game about attending a prom 
dance (McCoy et al., 2010) requires over 5,000 rules to capture the associated social dynamics. 
Therefore, most narrative understanding / generation systems to date are restricted to operate 

within limited micro-worlds for which knowledge are provided. The ability to automatically 
acquire knowledge may ease this bottleneck.  

We propose a novel technique to learn the knowledge needed for narrative intelligence from 
the stories humans tell, which encode human experiences. We obtained these stories via 
crowdsourcing techniques. Crowdsourcing is the outsourcing of complicated tasks—typically 
tasks that AI cannot perform—to a large number of anonymous workers via Web services (Quinn 

& Bederson, 2011). A common model of crowdsourcing is to break the complex problem into 
many simple sub-problems that can be completed by untrained humans quickly. In our case, the 
knowledge-authoring task is broken into writing many simple stories about a given situation, such 
as visiting a restaurant or going on a date at a movie theatre. Workers write stories in simplified 
natural language that include typical events for that situation. Our algorithm aggregates the stories 
and learns a model of the given situation. Crowdsourcing provides a means for rapidly acquiring 

a highly specialized corpus of examples. An intelligent system uses this specialized corpus to 
build a general model of the situation that can be used for narrative intelligence tasks such as 
story understanding, story generation, or acting in the real world. In contrast, learning from less 
specialized corpora, such as the Penn Treebank or Wikipedia, face the challenges that (a) 
information about the topics of interest do not always exist and (b) satisfactory natural language 
processing that can yield knowledge robust enough for real-world application is still an open 

problem. 
We employ scripts (Schank & Abelson, 1977) as our knowledge representation. Script is a 

form of procedural knowledge that describes how common situations are expected to unfold, 
which can capture technical knowledge as well as social and cultural norms. Scripts are 
specialized forms of schemas or frames and have been found to be practical means for encoding 
expectations of events that occur during frequently experienced situations. Although scripts are 

convenient descriptions of patterns of neural activations associated with procedural behaviors 
(Abelson, 1981), they have been found to be useful for describing human expertise (Glaser, 
1984). Much research into computational narrative understanding and narrative generation has 
used of manually coded script-like knowledge, such as cases or plan libraries. 

The contribution of this work is threefold: (1) a framework for rapidly acquiring a specialized 
corpus of narrative examples in simple language about specific procedural or sociocultural 

situations, (2) an algorithm for turning acquired chronological sequences of events into a 
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computable model, and (3) the demonstration of crowdsourcing as an effective means for 
controlling the complexity of natural language, so that an intelligent system can increase its 
information gain from the specialized corpus. Learning good models from small corpora, our 

algorithm acquires knowledge needed for narrative intelligence in an accurate, economical, and 
just-in-time manner. A quantitative evaluation shows the quality of the models learned on two 
situations. By leveraging the crowd and its collective understanding of social constructs, we can 
learn a potentially unlimited range of scripts regarding how humans generally believe real-world 
situations unfold. We seek intelligent computational systems that can apply script-like knowledge 
to perform narrative intelligence tasks such as understanding stories, creating new stories, and 

coordinating activities with humans.  

2.  Related Work 

Story understanding systems demonstrate their capabilities by automatically processing a 

narrative text and then answering questions that a human could answer after reading the text 
(Schank & Riesbeck, 1981). Story understanding tasks include identifying atypical event 
sequences, inferring character goals, inferring missing events, summarization, etc. Early story 
understanding systems processed narrative texts by comparing them to hand-coded knowledge 
structures that encoded common occurrences such as scripts, frames, or schemas (cf., Schank & 
Riesbeck, 1981; Mueller, 2007). Automated story generation systems, on the other hand, search 

for a novel sequence of events that meet a given communicative objective, such as to entertain or 
convey a message or moral. The most common approaches to story generation are planning and 
case-based reasoning, as described by Gervas (2009) in an overview. We note that the task of 
generating stories is also knowledge-intensive and many techniques treat the problem as the 
assembly or adaptation of chunks of schematic knowledge. 

Narrative intelligence is closely associated with commonsense reasoning. Recent work on 

commonsense reasoning has sought to acquire propositional knowledge from a variety of sources. 
LifeNet (Singh & Williams, 2003) is a commonsense knowledge base about everyday 
experiences constructed from 600,000 propositions asserted by the general public. However, 
according to Singh and Williams (2003), this technique tends to yield spotty coverage. 
Crowdsourcing techniques promise to address some of the sparseness issues of building 
commonsense knowledge bases (Kuo, Hsu, & Shih, 2012). Most commonsense reasoning 

systems, however, do not attempt to create script-like knowledge representations.  
There has been interest in learning script-like knowledge from large-scale corpora such as 

news corpora and other online sources of textual information (Chambers & Jurafsky, 2008; Girju, 
2003; Kasch & Oates, 2010). Unlike other natural language processing techniques that learn 
correlations between sentences, these systems attempt to find relationships between many events. 
In particular, Chambers and Jurafsky (2008) attempt to identify related sentences and learn their 

partial ordering.  
Gordon et al. (2011) describe an approach to mining causal relations from millions of 

personal webblog stories, under the expectation that this corpus would contain, by virtue of scale, 
causality information for everyday situations. They note the challenges associated with extracting 
causal, commonsense information from such a corpus and also note that increasing the size of the 
corpus from one million to ten million produced statistically insignificant improvements. 

Gordon et al. further suggest that causal information in stories from these sources is best left 
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implicit, and that the ability to select between causal relations does not constitute a full solution to 
open-domain commonsense causal reasoning.  

While large-scale corpus-based script learning can be very powerful, the results from the 

above researchers suggest that it suffers from four notable limitations. First, the topic of the script 
to be learned must be represented in the corpus. For example, one would not expect to learn the 
script for how to go on a date to a movie theatre from a news article corpus. Unfortunately, many 
existing corpora are written for human readers and lack the level of detail required by computer 
algorithms. Second, given a topic, a system must determine which events are relevant to the script 
when there may be many interleaved situations and topics. Third, corpora written for human 

consumption may omit canonical events under the assumption that humans are familiar with the 
situation. This may create a problem when one wishes to computationally learn a sociocultural 
norm as a script. Compared to a general-purpose corpus, crowdsourcing is beneficial in creating a 
highly specialized corpus that contains the exact information to be learned with reduced noise. 
Finally, and compounding the first three problems, extracting information from unconstrained 
natural language remains a challenging problem. 

Our work shares similarities with other crowdsourcing techniques. Jung et al. (2010) extract 
procedural knowledge from eHow.com and wikiHow.com, which provide crowdsourced how-to 
instructions for a wide range of topics. However, these resources are written for human readers 
and still have poor coverage of the most common situations and use complex language that is 
difficult for current technologies.  

In The Restaurant Game, Orkin and Roy (2009) use traces of people in a virtual restaurant to 

learn a probabilistic model of restaurant activity. Because The Restaurant Game is an existing 
virtual game, Orkin and Roy have an a priori known set of actions that can occur in restaurants 
(e.g., sit down, order, etc.). SayAnything (Swanson & Gordon, 2008) is a system that co-creates 
stories with human assistance by mining events from Weblogs and thus does not require a fixed 
domain model. Human players provide every other sentence, which helps to retain story 
coherence, whereas we believe our generalization from stories to scripts provides the necessary 

context to preserve coherence. 

3.  Crowdsourcing Narrative Examples  

Whereas humans have a lifetime of experiences from which to construct correct and functional 

models, our system must rapidly acquire experiences and learn from them. Crowdsourcing 
provides a means for accessing humans’ distributed memories of relevant real-world experiences. 
We hire anonymous workers on the crowdsourcing platform of Amazon Mechanical Turk 
(AMT). Given the name of a situation, e.g., going to a restaurant, going on a date to a movie 
theatre, or attending a wedding, our system uses a three-stage process to construct a general 
model of the situation, which is represented as a branching script.  

1. We ask crowd workers to provide linear, natural language narratives of the given situation. 
This set of linear narratives may be considered as a way to rapidly experience relevant 
situations. For lay workers, providing step-by-step narratives is a more intuitive means to 
convey information than manipulating complex graphical structures.  

2. We identify the events—primitive activities that comprise the script. We do not assume the 
existence of a set of known actions or events. Instead, we identify sentences in the 
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crowdsourced narratives that describe the same activities, which are extracted as primitive 
events in the situation.  

3. We construct the script, which establishes a partial order between the events. The second and 

third steps together comprise a form of learning by demonstration, where the primitive 
actions are a priori unknown.  

The crowdsourcing paradigm usually involves breaking a complex task into simple subtasks. In 
this case, we simplify knowledge authoring into writing short narratives about a given situation. 
Knowledge is then learned from aggregating these narratives. This is in contrast to, for example, 
letting workers write production rules or manipulate complex graphical models. We do this for 

two reasons. First, simplifying the task maximizes the number of potential participants and lowers 
the cost of hiring. We believe telling stories is a natural mode of communication that most people 
are capable of. Second, in order to learn about special or rare situations such as submarine 
accidents, it may be necessary to collect stories from experts. Telling stories is found to be an 
effective means for human experts to share tacit knowledge (Hedlund, Antonakis, & Sternberg 
2002), which is procedural knowledge that is hard to articulate even for experts. Thus, we believe 

this form of data collection appeals to both ordinary workers and domain experts. 
Our approach starts with publishing a number of tasks on Amazon Mechanical Turk, each of 

which requests a crowd worker to write a short narrative about a particular situation. After some 
time, a small, highly specialized corpus, containing examples of how the situation can unfold, is 
collected. The crowdsourced corpus facilitates subsequent learning for two reasons: One, the 
corpus contains highly specialized information about a specific situation. Two, we can guide the 

crowd workers in how best to communicate their knowledge. To reduce our reliance on immature 
natural language technologies, we ask crowd workers to:  

 Use proper names for all the characters in the task. This allows us to avoid co-reference 
resolution altogether. We provide a cast of characters for common roles, e.g., for the task of 
going to a fast-food restaurant, we provide named characters in the role of the restaurant 
patron, the cashier, etc. Currently, these roles must be hand-specified, although we envision 

future work where the roles are extracted from commonsense knowledge bases.  

 Segment the narrative into events such that each sentence contains a single activity.  

 Use simple natural language such as using one verb per sentence, avoiding conditionals, 
complex, and compound sentences.  

We refer to each segmented activity as a step. Figure 1 shows two narratives about the same 
situation.  

Once a corpus of narrative examples for a specific situation is collected from the crowd, we 
begin the task of learning a script. Our computational script representation differs from prior 
work on script-based systems. We represent a script as a set of before relations, B(e1, e2) for all 
events e1 and e2 signifying when e1 must strictly occur before e2. These relations coincide with 
causal and temporal precedence information, which are important for narrative comprehension 
(Trabasso & Sperry, 1985; Graesser, Singer, & Trabasso, 1994). A set of before relations allows 

for partial ordering, which can allow for variations in legal event sequences for the situation. 
Figure 2 shows a visualization of a script as a set of before relations between events. Note the 
support for variations and alternatives. When events in a script belong to different variations of 
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the same situation, underlying statistical data determines when events should never co-occur in 
the same narrative. The tasks of learning the main events that occur in the situation and learning 
the ordering of events are described in the following sections. 

4.  Event Learning 

Event learning is a process of determining the primitive units of action to be included in the 
script. By working from natural language descriptions of situations, we learn the salient concepts 
used by a society to represent and reason about common situations. We must overcome several 
challenges: (a) the same step may be described in different ways; (b) some steps may be omitted 
by some workers; (c) a task may be performed in different ways and therefore narratives may 

have different steps, or the same steps but in a different order. Our approach is to automatically 
cluster steps from the narratives based on semantic similarity such that clusters come to represent 
the consensus set of events that should be part of the script. There are many possible ways to 
cluster sentences based on semantic similarity; below we present the technique that leverages the 
simple language encouraged by our crowdsourcing technique. 

4.1  Sentence Similarity 

Following Lintean and Rus (2010), we compute the similarity between two sentences as the 
similarity between their grammatical structures. We use the Stanford parser (Klein & Manning, 
2003) to extract the grammatical structure of a sentence as a directed graph (by collapsing and 

propagating relations in the basic tree structure). Each edge on the graph describes a grammatical 
relation involving two words. One word is designated as the governor of the relation and the other 
word is the dependent. Each relation also has a type. When two grammatical relations are of 
different types, their similarity is zero. When the two relations belong to the same type, the 
similarity is the average of the word similarity between the governors and the word similarity 
between the dependents. The semantic similarity between two words is computed based on 

WordNet (Miller, 1995). Empirically, we found the Resnik (1995) word similarity function to be 
the most useful. 

 

 

 

 

 

 

 

Story A Story B 

a. John drives to the restaurant. 

b. John stands in line. 

c. John orders food. 

d. John waits for his food. 

e. John sits down. 

f. John eats the food. 

… 

a. Mary looks at the menu. 

b. Mary decides what to order. 

c. Mary orders a burger. 

d. Mary finds a seat. 

e. Mary eats her burger. 

… 

Figure 1. Fragments of crowdsourced narratives. Figure 2. A criminal trial script, adapted 

from Chambers and Jurafsky (2009).  
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After pairwise similarities between grammatical relations from two sentences are computed, 
the maximum matching between the relations is found using the Hungarian algorithm. For the 
pairs in the best matching, we directly sum their similarity as the similarity between two 

sentences. More formally, sentence A and sentence B are described with a set of relations 
   {            } and    {            }  A matching         pairs one element in 
  with at most one element in  . The maximum matching    maximizes ∑  (   )(   )  , where 
 (   ) is the similarity between two grammatically relations. The similarity between the two 
sentences is thus ∑  (   )(   )   . 

Finally, we rely on event location—a step’s location as the percentage of the way through a 

narrative—to disambiguate semantically similar steps that happen at different times, especially 
when a situation is highly linear with little variation. For example, when going to a movie theatre, 
one will “wait in line” to buy tickets and then may “wait in line” to buy popcorn. These two 
activities may share many grammatical similarities, but will differ in their locations in the 
narrative. The similarity between two sentences is a weighted sum of grammatical similarity and 
location similarity. 

4.2  Event Clustering 

We identify events that frequently occur in a given situation by clustering similar steps in 
collected narratives, using the similarity measure computed above. The resultant clusters are the 

events that can occur in the given situation. We use OPTICS (Ankerst et al., 1999) as our 
clustering algorithm due to its robustness under noisy input and capability to detect clusters of 
different shapes and density. Noise arises from human performance and from computational 
errors (i.e. imperfect similarity measures and imperfect grammatical parsing). The system 
employs density-based clustering, which is based on the intuition that a cluster is formed when a 
number of points are close to one another. Thus, OPTICS requires one parameter, the minimum 

size of a cluster   , which is the minimum number of points needed for a cluster to be 
recognized. We extract the leaf clusters from the hierarchical clustering structure produced by the 
system. 

4.3  Experiments and Results 

To evaluate our event learning algorithm, we collected two sets of narratives for the following 
situations: going to a fast food restaurant, and taking a date to a movie theater. While restaurant 
activity is a fairly standard situation for story understanding, the movie date situation is meant to 
be a more accurate test of the range of socio-cultural constructs that our system can learn. Our 
experience suggests that on AMT, we can hire a worker to write a story for roughly $0.60. 

Table 1 shows the attributes of each crowdsourced corpus. 
For each situation, we manually created a gold standard set of clusters against which to 

calculate precision and recall. Table 2 presents the results of event learning on our two 
crowdsourced corpora, using the MUC6 cluster scoring scheme (Vilain et al., 1995) to match 
actual cluster results against the gold standard. The purity of a cluster measures intra-cluster 
homogeneity. Higher purity indicates higher cluster quality. For a single cluster   , it is defined as 

maximum portion of sentences in    that actually belong to the same class:  

      (  )  
 

|  |
   
 
|{          ( )   }|   
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where   denotes the gold standard class label. The overall purity over all clusters is defined as a 
weighted average: 

       
 

 
∑|  |

 

      (  )   

where   is the total number of sentences.  
Table 2 shows the quality of clusters in terms of precision, recall, F1 score, and purity. We 

compare the results obtained by using only the semantic similarity between sentences and results 
after the relative location of steps in crowdsourced narratives are also incorporated. It can be seen 
that the location information improves the clustering accuracy.  

The two data sets contain some significant differences, which led to difference in 

performance. The movie date corpus has a significantly greater number of unique verbs and 
nouns, longer narratives, and greater usage of colloquial language. Interestingly, the movie date 
corpus contains a number of non-prototypical events about social interactions (e.g.,  John and 
Sally hug) that rarely appear. We have configured OPTICS to conservatively identify clusters, 
resulting in a large number of outliers. This has the effect of creating pure clusters at the expense 
of recall. This is more pronounced in the movie data because of the greater variation in language 

usage.    

4.4  Improving Event Clustering with Crowdsourcing 

While our event learning process achieves acceptably high accuracy rates, errors in event 

clustering may impact overall script learning performance. To improve event-clustering accuracy, 
we can adopt a technique to improve cluster quality using a second round of crowdsourcing, 
similar to that proposed by Boujarwah, Abowd, and Arriaga (2012). Workers are tasked with 
inspecting the members of a cluster and marking those that do not belong. Under sufficient 
agreement, a particular step can be removed from its cluster. Next, workers are tasked to identify 
which cluster these “un-clustered” steps should be placed into. Crowdsourcing is often used to 

improve on artificial intelligence results and we hypothesize that we can increase clustering 
accuracy to near perfect in this way. However, in the long term our goal is minimize the use of 
the crowd so as to speed up script acquisition and reduce costs. This stage of our framework is 
currently under development.  

5.  Script Learning  

Once we have the events that can occur during a given situation, the next stage is to learn the 
script structure. We learn before relations (e.g., before(e1,  e2)) between all pairs of events e1 and 
e2. See Figure 2 for an example visualization of a script as a graph. Chambers and Jurafsky train 

Table 1. Characteristics of the crowdsourced data sets. 

Situation Number 

of 

stories 

Mean 

number 

of steps 

Unique 

verbs 

Unique 

nouns 

Fast food restaurant 30 7.6 55 44 

Movie theatre date 68 11 105 99 
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their models on the Timebank corpus (Pustejovsky et al., 2003), which uses temporal signal 
words. Because we are able to leverage a highly specialized corpus of narrative examples of the 
desired situation, we can probabilistically determine before relations between events directly from 
the crowdsourced narrative examples. This process produces a general model of expected event 
ordering for the given situation. Our process for script learning involves two procedures:  

1. Initial script construction—a procedure that infers absolute ordering between events from 
observed orderings in crowdsourced narrative examples. Due to the inherent uncertainty and 
errors existing in human-authored narratives and clustering of sentences, this procedure may 
be sensitive to the selected parameters. It may overlook some relations or include wrong 
relations.  

2. Script improvement—a heuristic procedure that restores missing before relations by 

analyzing the impact of each relation on the global script structure. To make the procedure 
robust against parameter selection, we use a high threshold, which leads to missing relations, 
together with this procedure to restore them. We optimize the script structure by minimizing 
an error metric, which accounts for differences in the script structure and crowdsouced 
narrative examples. 

5.1  Initial Script Construction 

Script construction is the process of identifying the script structure that most accurately explains 
the set of crowdsourced narratives.  For every pair of events e1 and e2, we create two hypotheses 
before(e1, e2) and before(e2, e1). We count the amount of evidence for and against each 

hypothesis. Let s1 be a step in the cluster that represents event e1, and let s2 be a step in the cluster 
that represents event e2. If s1 and s2 appear in the same input narrative, and if s1 appears before s2 
in the narrative, then we consider this as an observation in support of before(e1, e2). If s2 appears 
before s1 in the same narrative, this observation supports before(e2, e1).  

A hypothesis before(e1, e2) is only accepted when we are sufficiently confident that the 
probability of e1 appearing before e2 is higher than 50%. We perform a one-tailed hypothesis 

testing based on the binomial distribution. The confidence of before(e1, e2) is thus defined as 

            ∑(
 

 
)

 

   

 

  
   

where   is the number of observations supporting either before(e1, e2) or the opposite hypothesis 

before(e2, e1), and   is the observations that support before(e1, e2). We accept the hypothesis only 
if the confidence exceeds a threshold     (0.5,1].  

Table 2. Precision, recall, F1, and purity scores for the restaurant and movie data sets. 

Situation 

Gold std. 

num. 

events 

Semantic similarity Semantics + Location 

Precision Recall F1 Purity Precision Recall F1 Purity 

Fast food  21 0.879 0.649 0.746 0.831 0.880 0.688 0.772 0.836 

Movie date 56 0.761 0.539 0.631 0.642 0.837 0.587 0.690 0.724 
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Graphically, a node represents an event and a directed edge represents a before relation, as in 
Figure 2. Our script representation requires the graph to be acyclic. We eliminate loops involving 
only two events by setting     0.5, which makes it impossible to accept both before(e1, e2) and 

before(e2, e1). We also forbid self-loops. However, the graph may contain loops that involve three 
or more events. For a simple loop that does not share edges with other loops, we break the loop 
by removing the lowest confidence edge in the loop. The general case of finding a minimum 
feedback edge set is NP-hard and APX-hard (Kann, 1992), which we do not tackle in this paper. 
When global threshold    is set to a sufficiently large value, complex loops will always be 
eliminated.  

   and    apply to the entire graph and allow us to generate an initial estimate of the script 
structure through simple observation counts. In practice, we find that the graph quality is sensitive 
to the selection of parameters. Pre-selection of a set of parameters that always work for the entire 
graph is often impossible as different parts of the graph may respond well to different parameters. 
Thus, it is desirable for graph estimation to be robust against parameter selection, and to locally 
relax the global thresholds for some relations. We achieve these goals by using a high threshold 

for    and then restoring missing relations back into the script to minimize a measure of graph 
error, as described below. 

5.2  Script Improvement 

In this section, we describe a technique to improve the graph estimation by locally adjusting 
thresholds of before relation acceptance in order to better conform to the corpus data. Since a 
script encodes event ordering, we introduce an error measure based on the expected number of 
interstitial events between any pair of events. The error is the difference between two distance 
measures, DG(e1, e2) and DN(e1, e2). DG(e1, e2) is the number of events on the shortest path from e1 
to e2 on the graph (e1 excluded); this is also the minimum number of events that must occur 

between e1 and e2 in all legal totally ordered sequences consistent with the before relations of the 
script. In contrast, DN(e1, e2) is the normative distance from e1 to e2 averaged over the entire set of 
narratives. For each input narrative that includes sentence s1 from the cluster representing e1 and 
sentence s2 from the cluster representing e2, the distance (i.e. number of interstitial sentences plus 
one) between s1 and s2 is dN(s1, s2). DN(e1, e2) is thus the average of dN(s1, s2) over all such input 
narratives. Outlier sentences that do not belong to any events are not counted as interstitial 

sentences. The mean squared graph error (MSGE) for the entire graph is defined as  

     
 

   
∑ ∑(  (     )    (     ))

 

        

   

where P is the set of all ordered event pairs (e1, e2) such that e2 is reachable from e1 or that they 

are unordered.  
We utilize this error measure to improve the graph based on the belief that DN represents the 

normative distance we expect between events in any narrative accepted by the script. That is, 
typical event sequences in the space of narratives described by the script should have DG(e1, e2) ≈ 
DN(e1, e2) for all events. A particularly large deviation from the norm may indicate that some 
edges with low confidence could be included in the graph to make it closer to user inputs and 

reduce the overall error.  
We implement a greedy, iterative improvement procedure that reduces mean square graph 

error in a script (Table 3). For each pair of events (e1, e2) such that e2 is reachable from e1 in the 
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graph of directed edges, we compute a set of potential predecessor events, denoted by E. For all  
ei  E, if ei were the immediate predecessor of e2 then DG(e1, e2) would be equal to DN(e1, e2). 
Starting from the pairs of events with the largest deviation from the norm, computed as  

DN(e1, e2) – DG(e1, e2), we check if adding an edge eie2 will create any cycles or increase 
MSGE. If not, the edge is added to the graph. This intuition is illustrated in Figure 3 where the 
edge (dashed arrow) from event C to event B was originally rejected due to insufficient 
confidence; adding the edge to the graph creates the desired separation between events A and B. 
Note that adding an edge may also increase overall graph error by changing the distance between 
other nodes. Our improvement procedure repeats until no new changes to graph structure can be 

made that reduce the mean square graph error.  
We find a relatively high    (  0.7) combined with the graph improvement step leads to 

robust graph estimation. A conservative Tp initially discards many edges in favor of a more 
compact graph with many unordered events. After that, the improvement algorithm 
opportunistically restores the relations of different levels of evidence as long as graph error can 
be reduced. This effectively relaxes the threshold locally. Rare events are automatically excluded 

from the graphs because their relations to all other events do not meet our probability and 
confidence thresholds.  

5.3  Experiments and Results 

Figure 4 shows scripts learned for the fast food restaurant and movie theatre date situations. 
These plots were learned from the gold standard clusters under the assumption that a second 
round of crowdsourcing (as described in Section 4.4) can achieve near perfect clustering. The 
event labels are English interpretations of each event for presentation purposes only, based on 
manual inspection of the sentences in each event. For clarity, edges that do not affect the partial 
ordering are omitted from the figure. The asterisks in Figure 4 indicate edges that were added 

during graph improvement. Table 4 shows statistics for mean square graph error reduction. Over 
32 sets of different parameter settings, we found that iterative graph improvement led to an 
average error reduction of 21.0% and 7.5% for the fast-food restaurant and movie date situations 
respectively. Note that it is not always possible to reduce graph errors to zero when there are 
plausible ordering varations between events. For example choose menu item and wait in line can 
happen in any order, introducing a systematic bias for any graph path across this pair.   

In general, we tend to see ordered relations when we expect causal necessity, and we see 
unordered events when ordering variations are supported by the data. Visual inspection of the 

Table 3. The script graph improvement algorithm. 

 

Q := all of events (e1, e2) such that e2 is reachable from e1 or unordered 

Foreach (e1, e2)  Q in order of decreasing DN(e1, e2) – DG(e1, e2) do:  

E := the set of event ei that satisfy DG(e1, ei) = DN(e1, e2) – 1 

Foreach ei  E do: 

 If edge eie2 is not in the graph  and adding it to the graph will 

not create a cycle do: 

Add eie2 to the graph  

Return graph 
 

 

 

 

 

Figure 3. Compensation for errors 

between pairs of events. Dashed 

lines are low-confidence relations. 
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graphs suggests that some before relations are missed, especially near the beginning of the script. 
Our script construction algorithm errs on the side of omitting links with low probability, unless it 
can infer the existence of the link to reduce MSGE. We currently suffer from sparseness of data at 
the beginning and end of the situation because different crowd workers start and stop their 
examples at different points. Clustering errors can result in duplicate events.    

To evaluate our script construction technique, we again crowdsource the checking of the 

learned script. Crowd workers are asked to check the correctedness of the learned before relations 
between events as well as the absence of such relations. For this study, we used the movie date 
script, shown in Figure 4 (right). We randomly sampled 30 pairs of adjacent events, i.e. events in 
the automatically generated script that are ordered by a before relation without any interstitial 
events. We also randomly sampled 29 pairs of parallel events, i.e. events for which the script 
indicates no necessary ordering relative to one another. From AMT, we recruited 144 workers. 

Each worker was paid $0.12-$0.20 to check seven pairs of events.  

        

Figure 4. Scripts generated for the fast-food restaurant (left) and movie date (right) situations. Asterisks 

denote relations restored by the graph improvement procedure. 

choose 
restaurant

drive to 
restaurant

walk/go into restaurant

read menu

choose menu 
item

wait in line

drive to drive-thru

take out wallet place order

pay for food

wait for food

drive to window

get food

find table

sit down

eat food

clear 
trash

leave 
restaurant

drive 
home

*

*

put arms 
around

buy tickets

drink soda

buy popcorn 
and soda

show tickets

buy popcorn

enter theatre

find seats

movie begins

sit down

eat popcorn

hold hands

use 
bathroom

say goodbye

go home

kiss

Sally enters car pick Sally up
John drives to 

Sally's

drive to theater

park car
John meets 

Sally
arrive at theater

buy refreshments
buy drinks

talk

watch movie

movie ends

stand up

leave theater walk to car

enjoy movie

hug

*
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Each worker was instructed to consider each pair of events in the context of going on a date 
to the move theater. Each pair of events (A, B) was presented to a worker in a randomized order 
(50% of workers saw A before B and 50% of workers saw the opposite) and workers were asked 
whether (a) it is more likely that A comes before B, (b) it is more likely that B comes before A, or 
(c) that they are unable to tell which should come first. In order to avoid randomly clicking 

behaviors, two of the seven pairs were designed as validation questions. These two pairs of events 
do not appear anywhere in the script, but were manually written and have obvious orderings. If a 
worker provided a wrong answer on either of two pairs, all of his or her answers were considered 
invalid and discarded. Each worker was allowed to participate in the study only once.  

Table 5 shows the results of our study. Rows indicate subsets of the data. The first three rows 
show the results from all sampled pairs, all sampled adjacent pairs, and all sampled parallel pairs 

(the remaining rows are explained later). The columns measure accuracy—the percentage of time 
human workers agree with our scripts—at different levels of worker agreement. We measure 
human agreement on each pair of events as the entropy of their answers. The entropy for the j

th
 

pair of events (     ) is defined as:  

       (  )   ∑ (   )    (   )

 

   

   

where       {      (     )       (     )         (     )}  The probability distribution 
 (  ) is observed directly from human responses for the pair (     ). The columns of Table 5 
show statistics for event pairs with increasing entropy from left to right (i.e. decreasing worker 
agreement). For example, the first column include only pairs where workers unanimously agree 
(entropy = 0), which are 29% of all pairs evaluted (row “All”), and of those 29%, workers agreed 
with the ordering in our script 76% of the time. Lowering the entropy threshold filters out pairs of 

events with low agreement from consideration.  
We draw four sets of conclusions about our script learning algorithm in the movie situation: 

 Overall accuracy. Our overall accuracy is greater than 53%. When we examine only pairs 
for which workers perfectly agree with each other our accuracy is as high as 76%, although 
this only accounts for about 29% of our total sampled pairs. We found that when humans 
could not reach consensus on a pair of events, they tend to also disagree with our system. 

 Adjacent events. Our system is very accurate when it comes to determining when a before 
relation should exist between a pair of events. Workers agree with our before relations at or 
above 90% of the time when they can reach good consensus (entropy < 0.6). This suggests 
our algorithm is a good model of the ground truth. Accuracy remains high (  0.7-0.8) even 
where workers tend to disagree. 

Table 4. Error reduction for the restaurant and the movie situations. 

Situation 

Error before 

Improvement 

Error after 

Improvement 
Average Error  

Reduction 
Avg. Min. Avg. Min. 

Fast food  2.56 0.97 2.09 0.86 21.0% 

Movie date 4.03 2.48 3.77 2.11 7.5% 
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 Parallel events. For all parallel pairs, workers agreed with our system only 28% of the time. 

However, workers agreement is generally lower for parallel events than adjacent events. 
Unanimous agreement can be reached on only 17% of all pairs, in contrast to 40% for 
adjacent pairs. The lack of agreement on many of these pairs suggests insufficient collective 
social expectation of the orderings. The reason that individual worker may prefer one 
ordering to another may be attributed to the way questions were asked (which ordering is 

more likely). Even though one ordering is likely, the other ordering may be also possible. Our 
results suggest that although we are missing before relations that would eliminate parallel 
events our system may be correctly placing events as parallel in the graph when there is very 
little agreement on ordering.  

 Removing events with sparse data. The last three rows of Table 5 show the results when we 

remove all pairs involving events before “buy tickets” and three events at the end: “go 
home”, “walk to car”, and “say goodbye” from the data. As people start and end their 
example narratives at different points, data about these events are more sparse than rest of the 

script. This leads to lower confidence in event orderings and a high degree of parallelism 
between events. Our results confirm our observation: when we eliminate these events at the 
beginning and the end, accuracy increases 13%-20% for parallel pairs. 

We further note that our system may utilize an active learning scheme similar to this evaluation 
methodology. To improve a script, the system can potentially seek worker feedback about 
ordering between events for which the system has low confidence.  

6.  Limitations 

Most social situations contain some choices which lead to common, disparate variations of 
situations. Our script learning technique does not yet distinguish between alternative variations,. 

As a result, a script can contain events that should not occur in a single instance of the same 
situation. For example, our fast-food restaurant script contains events from both the drive-through 
situation and the eating-in situation, and one would expect that “driving up to the window” would 
preclude “sitting down in the restaurant”. Correlation statistics, such as mutual information 
between unordered events, can be used to detect mutually exclusive and optional events, although 
our work on this is at a preliminary stage. 

The kinds of stories humans find interesting are usually those that deviate from the norm. Our 
current approach would find it challenging to capture these uncommon variations of a situation. 
This is due to the requirement of statistical significance in deriving before relations. However, the 
learned model of ordinary situations can act as a stepping-stone for further learning of 

Table 5. Results of the script accuracy study. 

 entropy = 0 entropy < 0.4 entropy < 0.6 entropy < 0.8 entropy < ∞ 

acc. % pairs acc. % pairs acc. % pairs acc. % pairs acc. % pairs 

 All 0.76 0.29 0.64 0.42 0.66 0.54 0.54 0.78 0.53 1.00 

 Adjacent 1.00 0.40 0.93 0.50 0.90 0.67 0.82 0.73 0.70 1.00 

 Parallel 0.20 0.17 0.20 0.34 0.25 0.41 0.22 0.79 0.28 1.00 

 All-sans-ends 0.80 0.24 0.73 0.37 0.68 0.46 0.48 0.76 0.49 1.00 

 Adjacent-sans-ends 1.00 0.35 0.50 0.50 0.83 0.60 0.69 0.80 0.60 1.00 

 Parallel-sans-ends 0.33 0.14 0.40 0.24 0.43 0.33 0.25 0.76 0.33 1.00 
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extraordinary variations. Such learning may happen in the form of querying the crowd for 
interesting variations to our model. For example Boujarwah et al. (2012) query the crowd for 
ways in which scripts can be violated. Alternatively, our model might guide the parsing of and 

learning from a wider, general-purpose natural text corpora that, as noted in Section 2, are more 
likely to naturally contain interesting script deviations. 

Currently we have fairly restrictive constraints on the input narratives. Specifically, we 
require that (1) events are described in a strictly chronological order and (2) all stories describe 
the same situation. These constraints may be also relaxed by bootstrapping further learning with 
models learned with our approach. Advances in natural language understanding can help relax the 

constraints on natural language.  
Closely inspecting Figure 4, we note that before relations sometimes appear to capture causal 

necessity and other times merely temporal ordering. We hypothesize that our before relations 
approximate causal knowledge in the same way that humans heuristically reason about causality. 
In the general case, causation cannot be concluded based on mere correlation, and counterfactual 
interventions (e.g. observing sunrise after the rooster is slaughtered) are required to strictly 

determine causal relations (Pearl, 2010). However, Barthes (1975), an influential narratologist, 
notes that when reading a story causal relations between events can be inferred simply by co-
occurrence and the explicit temporal ordering of the events. Storytellers avoid tangential events, 
essentially filtering out correlations that are not also causal. This provides justification that 
learning from crowdsourced narrative examples can be an effective means of learning by 
demonstration. More causal knowledge, if needed, may be queried from crowd workers with 

questions about counterfactuals as similar to Trabasso and Sperry (1985). 

7.  Conclusions 

We have demonstrated that crowdsourcing can provide an intelligent system with direct access to 

the rich set of experiences possessed by humans. The system we describe in this paper is able to 
learn from those experiences to create procedural scripts about sociocultural situations that can 
then be applied to narrative intelligence tasks such as understanding stories, creating new stories, 
or coordinating activity with humans. Crowdsourcing provides an effective means to filter 
irrelevant information, segment narratives into individual steps, and control the complexity of 
natural language. This provides an advantage over learning from general-purpose corpora. 

Capitalizes on these advantages, we are able to learn both the primitive events from the 
segmented natural language and ordering constraints on these events.  

Our evaluation suggests that our system achieves high accuracy at identifying the primitive 
events of a situation. Further, our system is good at determining before relations between events, 
as agreed by crowd workers. While it does omit ordering constraints, there tend to be many 
events for which there is no collectively agreed ordering.  

Script learning overcomes one of the primary bottlenecks in acquiring procedural and 
sociocultural knowledge required for tasks of narrative intelligence. Our approach makes it 
possible to extend narrative intelligence of computational systems beyond a single, handcrafted 
micro-world. One of the strengths of our approach is the way in which we can leverage shared 
social constructs acquired directly from humans. Our approach learns the events that make up 
common situations directly from the language people use to describe those situations; event 

ordering captures shared social and cultural understanding based on people’s descriptions of 
experiences.  
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