
Advances in Cognitive Systems 2 (2012) 239-256 Submitted 9/2012; published 12/2012

Flow Maximization as a Guide to Optimizing Performance:
A Computational Model

Vadim Bulitko BULITKO@UALBERTA.CA

Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E8, Canada

Matthew Brown MBROWN2@UALBERTA.CA

Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2E8, Canada

Abstract
Flow is a psychological state linked to optimizing cognitive performance in humans. In this paper
we propose a simple computational model of flow. We first define the degree of flow as the quality
of the match between the agent’s cognitive skills and the cognitive complexity of its task. In a
hierarchy of increasingly more complex and rewarding tasks, taking on the task of a matching
complexity allows the agent to maximize its performance. It also consequently maximizes the
degree of flow the agent will experience. We take advantage of this connection and make our
agents explicitly aware of the degree of flow they are experiencing. Maximizing the readings from
such a “flow meter” improves the agent’s ability to explore the environment and find problems
of matching complexity. Thus, maximizing the degree of flow becomes a guide to maximizing the
agent’s performance in the environment. We implement these ideas by extending the standard value
iteration learning method with planning and real-time operation and empirically demonstrate that
flow-maximizing agents tend to collect more reward from the environment.

1. Introduction

The psychological condition of flow has been linked to optimizing cognitive performance in hu-
mans (Csikszentmihalyi, 1990). People experiencing the condition of flow appear to be fully en-
gaged in their task, and their cognitive faculties and attention are fully focused on the task. In order
for this to happen, there has to be a match between the task complexity and the individual’s abilities.
Tasks that are too simple or too complex for the individual cause other psychological states such
as boredom or anxiety. Reaching the condition of flow has been linked to a number of benefits,
including higher productivity and happiness. Hence, flow appears to optimize the application of
cognitive abilities in humans. Thus, it is of interest to model flow mathematically as well as to con-
sider whether giving artificial cognitive agents an ability to sense flow and the desire to maximize
flow can optimize their performance too.

We consider environments comprised of tasks of different cognitive complexity. More complex
tasks require a higher cognitive skill level to master but are also more rewarding. We then consider
agents of different levels of cognitive skills. By matching the complexity of the task the agent takes

c© 2012 Cognitive Systems Foundation. All rights reserved.

V. BULITKO AND M. BROWN

on to its skills, the agent stands to improve its performance and collect the most reward out of the
environment. We define the degree of flow an agent is experiencing in its current state as the quality
of the match between the agent’s skills and the complexity of the task the agent is attempting to
solve. The better the match the higher the degree of flow. Thus, matching the agent’s skill level and
the task complexity not only improves the agent’s performance in the environment but also increases
the degree of flow the agent is experiencing.

We take advantage of this connection and postulate that some agents may be explicitly aware of
the degree of flow they are experiencing and intentionally attempt to maximize it. They do so by
taking on tasks whose cognitive complexity matches their cognitive skill level. Consequently, they
improve not only their degree of flow but also their performance on the task. Thus, we can think of
maximizing the degree flow as a guide to maximizing an agent’s performance.

We implement these ideas within the reinforcement learning (RL) framework (Sutton & Barto,
1998). In the RL framework, an agent attempts to maximize the total reward it collects over its life
time. Each reward is a scalar the agent receives from the environment immediately upon taking an
action. We implement flow awareness by adding a second reward signal proportional to the degree
of flow the agent is experiencing. Doing so allows RL agents to more quickly and robustly locate the
task of a matching skill level and, as a result, collect more (non-flow) reward from the environment.

2. Related Work

Several computational models of flow have been proposed. For instance, the synchronization model
of flow links the degree of flow with the amount of synchronization and connectivity between the
attentional and reward networks in humans (Weber et al., 2009). Structural Equation Modeling was
used to connect the degree of flow to other experiences of humans (e.g., time distortion and focus
of attention) (Jin, 2012). These models appear to be specific to the brain faculties of humans and/or
human-specific experiences. Thus, it is not immediately clear how to apply them to AI agents that
may not share the same faculties or experiences.

In the field of AI, the research on intrinsically-motivated and curiosity-driven learning attempts
to give agents a principled way to explore and learn the environment (Lim & Auer, 2012). Such
research is relevant to flow insomuch as it provides a framework for driving the agent towards novel
tasks. However, it does not explicitly define the notion of flow or seek to match the task complexity
and the agent’s cognitive abilities to increase the degree of flow experienced by the agent.

3. Our Model of Flow

We begin with the intuition for our model and then support it with formal details. For the sake of
clarity and simplicity, we base the quality of the match between the cognitive complexity of a task
and the agent’s cognitive skill level on the amount of planning time the agent needs to expend per
action to handle the task. Other kinds of cognitive resources (e.g., memory, the ability to abstract)
are considered in the future work section.

240

FLOW MAXIMIZATION FOR OPTIMIZING PERFORMANCE

3.1 Intuition

We consider an agent operating in an environment. The timeline is discrete, and on every time step
the agent perceives the environment and forms its state. The agent decides on its action, which it
then passes to the environment. The environment changes in response to the action, and a new time
step begins. The process stops after an a priori fixed number of steps, at which point the agent dies.
Our environment is real-time insomuch as the agent has a fixed time limit on its deliberation during
each time step. If the agent exceeds the limit, it is punished with a negative reward. This represents
the lost opportunity cost (e.g., not hitting a ball at the right time in tennis).

Return maximization. On every time step, the agent receives a scalar reward from the environ-
ment. The agent’s objective is to optimize the cumulative reward collected over its life time. The
agent estimates the potential for cumulative future reward (called “return”) for different actions
taken in different states. Then, given the current state, the agent takes the action that has the highest
estimated return in that state. However, the agent’s cognitive ability to represent expected returns of
states is limited. This may be due to the use of function approximation methods which frequently
over-generalize returns from one state onto another. Alternately, this may be due to state aliasing
where the state features used to represent a state return do not distinguish one state from another.

Thus, depending on the complexity of the environment, the agent may not be able to represent
the returns accurately. The agent uses lookahead (Korf, 1990) to compensate for the inaccuracy of
the expected state returns. The agent looks ahead by imagining itself in future states and simulating
the actions it can take in such states as well as the reward it would collect by taking the actions. This
involves self-reflection as the agent needs to think about its own reactions (rewards) to hypothetical
situations (imaginary states). The action with the highest expected value is then applied in the
current state (Figure 1).

deliberation/self-reflection time

time step

state

re
w

ar
d

action

action selection

Figure 1. A single time step in the life of the agent. At the beginning of the time step, the agent collects
reward from the previous time step and perceives its new state. It then conducts a lookahead, improves its
return estimates and uses them to select the best action.

Lookahead. More time spent looking ahead tends to improve the accuracy of the return estimates
and, consequently, the quality of the agent’s actions. On the other hand, spending too much time
looking ahead causes the agent to exceed the deliberation time limit, resulting in punishment with
negative rewards. The amount of looking ahead is based on the agent’s cognitive ability to learn

241

V. BULITKO AND M. BROWN

and represent optimal returns for an area of the space. Specifically, if for certain states the agent is
unable to learn and represent the returns accurately, then deeper lookahead is needed to compensate.
Conversely, if it is possible to learn and represent the optimal returns more accurately, then the agent
can rely on its learned representation of the returns and select the next action with little lookahead.
In the limit, the agent will cease to look ahead and will choose its actions reflexively, based purely
on its perfect estimates of the state-action returns. This means that the agent’s cognitive ability to
represent return estimates determines the maximum complexity of the task the agent can master.
More complex environments require more lookahead than there is time available.

As proposed in the introduction, we define the degree of flow as the quality of the match between
the agent’s cognitive resources and the cognitive complexity of the task. Within the framework
developed in this section such match quality is measured on the basis of per-action lookahead time
as follows: the degree of flow the agent experiences in a time step is higher the more closely the
deliberation time matches the duration of the time step without exceeding it.

Learning. In psychology, the match between task complexity and an agent’s skill is a necessary
condition for the state of flow. The quality of such a match is dynamic since the agent improves
its return estimates over time thereby improving its skills. Specifically, given a novel task (i.e., a
novel area of the state space), the agent’s return estimates are likely to be highly inaccurate. When
the agent deems its return estimates to be inaccurate, it will spend substantial time looking ahead
and can exceed the time step duration leading to a low degree of flow (“the task is too hard”). As
the agent learns the task, the return estimates become more accurate, the amount of deliberation
approaches the duration of the time step, and the flow is maximized (“the task complexity matches
the skills”). As the learning continues, the return estimates become even more accurate, requiring
less lookahead time, and thus the degree of flow decreases (“the task is too easy”). When a task is
mastered (i.e., learned) by the agent, the resulting amount of required lookahead corresponds to the
post-learning cognitive complexity of the task. If this complexity is low, then the degree of flow the
agent experiences is low, and the agent can switch to a new task to increase it.1

Effects of Maximizing Flow. Suppose the environment consists of a hierarchy of tasks (i.e., areas
of the space) of increasing post-learning complexity. Then a flow-maximizing agent will try to
master a task whose post-learning complexity requires just enough lookahead to match the time step
duration, thereby maximizing the post-learning amount of flow. If it also happens that mastering
tasks with high post-learning complexity carries a survival advantage, then maximizing flow is a
potential evolutionary adaptation insomuch as agents that sense flow and seek to maximize it will
tend to have higher fitness than agents that do not do so.

3.2 A Mathematical Model of Flow

To formalize our model, we adopt the standard Markov decision process model with a reinforcement
learning agent operating in it (Sutton & Barto, 1998) and add a real-time constraint to it. We then
extend the framework with the concept of flow.

1. “Civilization advances by extending the number of important operations which we can perform without thinking
about them.” (Whitehead, 1911)

242

FLOW MAXIMIZATION FOR OPTIMIZING PERFORMANCE

3.2.1 The Reinforcement Learning Framework

Definition 1 Let S be the set of the agent’s states. At each discrete time moment t ∈ {1, . . . , T},
the agent is in the state st ∈ S. It observes the state and computes its response – the action
at ∈ A where A is the set of all actions available to the agent. The environment then computes
the next state st+1 by stochastically drawing a state from the transition probability distribution
(p(st, at, s

′) | s′ ∈ S). Here, for any two states s, s′ ∈ S and any action a ∈ A, p(s, a, s′) is the
probability that the agent will end up in state s′ by taking action a in state s. We denote the state
draw operation as st+1 = Λ(st, at). By taking action at in state st, the agent collects a reward
r(at, st) ∈ R. The agent’s objective is to select actions in such a way as to maximize the total
cumulative reward

∑∞
t=1 γ

t−1r(at, st) where γ ∈ (0, 1] is the discount factor.2 The return Q(s, a)
of state s and action a is the expected cumulative discounted reward the agent can collect by starting
in state s, taking action a and then following its policy. The returns are also called the value function.

Note that, while rewards represent immediate benefits that the agent accrues by taking an action
in a state, returns represent long-term benefits. To illustrate, the action of undergoing a surgery can
have a low reward (e.g., the post-surgical pain) but lead to a state with a high return (e.g., healing
the agent). Thus, the agent should act so as to get to states with high returns.

Definition 2 The maximum possible return of the state s and the action a for any agent is Q∗(s, a).

If the agent had access to Q∗, then it could act reflexively (and yet optimally!) by always taking
the action with the highest Q∗: a∗t = arg maxa∈AQ

∗(st, a). The problem lies with the fact that
optimal returns of various states/actions are neither given to the agent a priori nor directly perceived
by it while acting. Thus, the agent must learn such returns from the rewards it is collecting.

Definition 3 At time t, the agent’s approximation to (or estimate of) the return Q∗(s, a) is denoted
byQt(s, a). Our reward-seeking agents uses a real-time version of value iteration to learnQ values.
At each time step t, the agent acts εt-greedily by selecting a random action εt percent of the time and
acting greedily otherwise. The greedy action selection takes the action with the highest expected
return, as predicted by its current value function at ← arg maxa∈AQt(st, a). We compactly denote
the ε-greedy action selection by at ← arg maxεta∈AQt(st, a).

The ε-greedy action selection is done to balance exploration of the environment and exploitation
of the return estimates learned by the agent so far. The exploration parameter εt starts high at t = 1
and is gradually “cooled” toward zero as t approaches the agent’s life time T .

3.2.2 Enhancing Return Estimates with Lookahead

The action-selection rule above relies on Qt — estimates of the true state-action values. With inac-
curate Qt values looking ahead can improve action selection, similarly to game-playing programs
and real-time heuristic search (Korf, 1990). We use the form of look ahead summarized in Figure 2
and Algorithm 1.

243

V. BULITKO AND M. BROWN

st
a

..
.

s03

s02
a0
2

a0
3

s0m+1

a0
m

k probes

|A| actions

r02

r03

r0m

r0m+1

s01

...

update Q0
t(s

0
m, a0

m)

update Q0
t(s

0
3, a

0
3)

update Q0
t(s

0
2, a

0
2)

update Q0
t(st, a)

Figure 2. For each candidate action a, the agent launches k hypothetical probes of m steps each (a single
probe is shown). The rewards imagined along such probes are used to enhance the Q values of the state-
action pairs along each probe.

In a given state st, the agent determines the per-action amount of deliberation nt in line 3,
Algorithm 1. The agent factors this amount into kt and mt and then for each action (line 7) runs
kt probes (line 8) of mt actions each (line 11). A probe to evaluate action a ∈ A is an imaginary
sequence of actions applied from the current state on. It is used to imagine future rewards the agent
is likely to collect by starting in the current state st with the action a and then acting according to its
return estimates. The rewards imagined during lookahead are used to enhance the return estimates
for the current time step. The enhanced estimates are denoted by Q′t in the pseudo-code.

Each probe starts in the agent’s current state st = s′1 (line 9) and action a = a′1. The agent
then imagines the possible resulting state s′2 and the reward it would collect r′1 = r(s′1, a

′
1).

To compute the state resulting from application of the action a in the state s, the agent draws
a state s′ from S according to the distribution (p(s, a, s′) | s′ ∈ S). The agent then selects the
next action according to its return estimates: a′2 = arg maxa∈AQ

′
t(s
′
2, a) (line 12) and the cy-

cle repeats for mt actions (line 11). As a result of the probe, the agent will have a sequence
of imagined states: (s′1 = st, s

′
2, . . . , s

′
mt+1), a sequence of actions taken between these states:

(a′1 = a, a′2, . . . , amt) and the sequence of rewards that would be collected when taking the actions:
(r′1, r

′
2, . . . , r

′
mt

). After the probe terminates in the state s′mt+1 the agent estimates the cumulative
reward it would be able to collect from that state on, if the probe were allowed to run indefinitely:
r′mt+1 = maxa∈AQ

′
t(s
′
mt+1, a) (line 16).

2. Note that there is a disconnect between evaluating the agents which try to maximize an infinite discounted sum of
rewards by running them a finite number of steps. Such artificial reward discounting is a common practice in the field
of RL, as doing otherwise requires including the remaining life time (tmax − t) in the state description.

244

FLOW MAXIMIZATION FOR OPTIMIZING PERFORMANCE

Algorithm 1: Algorithm for real-time Q-learning with lookahead (γ, r, p, T)

1 initialize Q1 to uniformly random values in [0, 1]
2 for t = 1, 2, . . . , T do
3 determine the amount of deliberation: nt ← ∆(st)
4 set probe length: mt ← b

√
ntc

5 number of probes: kt ← b
√
ntc

6 initialize enhanced state-action return estimates: Q′t ← Qt
7 for a ∈ A do
8 for i = 1, . . . , kt do
9 s′1 ← st

10 γ1 ← 1
11 for j = 1, . . . ,mt do

12 select probe action: a′j ←
{
a if j = 1

arg maxa′∈AQ
′
t(s
′
j , a
′) otherwise.

13 imagine the next state: s′j+1 ← Λ(s′j , a
′
j)

14 imagine the reward to be collected: r′j ← r(s′j , a
′
j)

15 adjust the discount factor γj+1 ← γjγ

16 imagine the residual reward r′mt+1 ← maxa∈AQ
′
t(s
′
mt+1, a)

17 for j = 1, . . . ,mt do
18 update Q′t(s

′
j , a
′
j)← (1− αt)Q′t(s′j , a′j) + αt

∑mt+1
x=j γxr

′
x

19 adjust discount factor: γx ← γx/γ, x ∈ {j + 1, . . . ,mt + 1}

20 execute the action: at ← arg maxεta∈AQ
′
t(st, a)

21 observe the resulting state st+1

22 update the return estimate using the collected reward and the new state:
Qt+1(st, at)← (1− αt)Qt(st, at) + αt [r(st, at) + γmaxa∈AQt(st+1, a)]

The agent then updates its Q′t(s
′
j , a
′
j) values along the probe (j ∈ {1, . . . ,mt}) in line 17.

Each Q′t(s
′
j , a
′
j) is updated with respect to the reward values imagined for the rest of the probe:

r′j , r
′
j+1, . . . , r

′
mt+1 in line 18. The updates use a learning rate (step size) αt which is “cooled”

towards 0 over time. Our way of updating the value function from imaginary experience is similar
to the Dyna architecture (Sutton, 1990).

Once kt probes have been run for each action, the agent εt-greedily selects the action at in line 20
using the lookahead-enhanced return estimates Q′t. As described earlier, the exploration parameter
εt is “cooled” towards 0 over time (not shown in the pseudo-code). Finally, the agent updates its
return estimate using the actual collected reward in line 22. We use the standard Bellman-update
learning rule with the step size αt. Note that the lookahead-enhanced return estimates (Q′t) are used
only to select the next action. Actual states, rewards and actions are used to update Qt which are
subsequently carried over to the next time step.

245

V. BULITKO AND M. BROWN

3.2.3 Dynamic Selection of Lookahead Depth

Note that the probes are not run in the environment but are simulated in the agent’s mind. A larger
number of longer probes is likely to give better estimates of each state-action value Q′t(s, a) and
thus improve the agent’s action selection. However, simulating longer probes takes more time and
thus may be disadvantageous in a real-time environment. Specifically, if the total work of running
kt probes of mt actions each exceeds the maximum planning time tmax allotted to each action
(i.e., mtkt > tmax) then the agent receives a punishment in the form of a negative reward φt < 0.

The amount of deliberation depends on the current state st and is computed by the function ∆
in line 3. Intuitively, the amount of deliberation should depend on the accuracy of the agent’s return
estimates Qt(st, ·). Specifically, the agent should run just enough probes so that the Qt enhanced to
Q′t by the lookahead will allow it to select an optimal action:

Q∗(st, arg maxεta∈AQ
′
t(st, a)) = maxa∈AQ

∗(st, a).

Without knowing the true values Q∗, it may be impossible for the agent to determine the mini-
mum amount of lookahead it needs in the current state. Indeed, selecting the right lookahead depth
has been an open research question (Bulitko et al., 2008; Luštrek & Bulitko, 2006; Bulitko et al.,
2003). The problem difficulty is further compounded when the return estimates are not tabular but
use state features (e.g., when Q(s, a) is a weighted sum of features of state s). In this paper, we
assume that the lookahead depth selection function ∆ is provided to the agent (e.g., evolved via
simulated evolution).

3.2.4 Flow

Described thus far, our mathematical model is a real-time variant of the simple value iteration similar
to real-time dynamic programming (Barto, Bradtke, & Singh, 1995). We assume the environment
contains different subareas of the state space, called tasks, such that different tasks require the agent
to use different lookahead depths in order to achieve optimal action selection. In other words,
different tasks have different post-learning complexity. If more complex tasks carry a higher reward
then a reward-maximizing agent should find and learn the task whose post-learning complexity
matches the agent’s cognitive ability. Technically, this means that the lookahead depth the agent
needs to select optimal actions for the task (after learning) matches the amount of time available
in the environment (tmax). Indeed, the lookahead required for yet more complex tasks will lead
to exceeding tmax time available per action, thereby lowering the overall performance (and the
reward collected). In psychological terms, the task will be too hard and will result in frustration.
On the other hand, mastering less complex tasks brings the lookahead under tmax. However, less
complex tasks also carry lower reward, which decreases the lifetime reward the agent collects.
Psychologically speaking, the task is too easy, and the agent is bored.

It is possible to find the task with post-learning complexity matching the agent’s cognitive ability
merely by trial and error (i.e., without any explicit awareness of flow). However, every error the
agent makes (e.g., taking on a task that is too complex or too simple) has a lost opportunity cost. By
equipping our agents with an explicit awareness of flow, finding the task of a matching complexity
can be accelerated, resulting in higher lifetime rewards.

246

FLOW MAXIMIZATION FOR OPTIMIZING PERFORMANCE

Definition 4 The degree of flow F (s) experienced by the agent in the state s is inversely propor-
tional to over- or under-utilization of the agent’s cognitive resources. Mathematically, F (s) =
f/(|nt − tmax| + ξ) where nt is the per-action amount of deliberation the agent expended in state
s. The maximum amount of deliberation allowed per action, tmax, is a domain-specific constant
and ξ is a small positive constant to keep F (s) bounded when nt = tmax. The constant f is the
flow-awareness coefficient and is specific to the agent.

We incorporate the flow into the agent’s decision-making by introducing F into the agent action-
selection rule (line 20 of Algorithm 1). The flow-enhanced version is:

at ← arg maxεta∈A

[
Q′t(st, a) +

∑
s∈S

p(st, a, s)F (s)

]

which means that the agent prefers to take actions that lead to states with a higher expected degree
of flow. The values of F are initially random over all states but are updated by the agent as:

F (st)←
f

|nt − tmax|+ ξ

at each time step. Note that the flow values of states, F , exist only in the agent’s mind and are
agent-specific since the flow-awareness coefficient f is an agent-specific parameter. If they were
a part of the environment, they would make it non-Markovian since each F (st) would depend not
only on the agent’s current state st but also on the amount of deliberation nt expended by the agent
in the state. Thus, we keep F separate from the actual rewards received from the environment.

4. Empirical Evaluation

Given the definition of flow in the reinforcement learning framework presented above, a natural
question is whether maximizing flow can give the agent a boost in performance — a higher lifetime
reward. In this section, we present a simple study which gives an empirical answer to the question
above. We start by developing a simple testbed, then describe an implementation of the agent
framework in it and finally show the results.

4.1 The Stacked Rings Environment

We need an environment containing tasks of various cognitive complexity. In the MDP setting, the
tasks are subgraphs of the state transition graph. The complexity will come from the amount of
lookahead the agent needs to master each subgraph. In the following, we satisfy these requirements
with a simple and scalable deterministic MDP.

The deterministic transition graph is a hierarchy of rings. Visually, we can think of a stack of I
rings (Figure 3). Each rings has N main states, where N is a multiple of 4. The action a1 moves
the agent along the current ring. Each application of a1 gives the agent a reward of i/I which
means that higher rings are more rewarding. In the example in the figure, the agent can collect the
per-action reward of 1/2 by going around the bottom ring and the per-action reward of 2/2 at the

247

V. BULITKO AND M. BROWN

a1

a1

a2

a2

a1

a1

a3

a4

action next state reward
a1 next main ring state or side loop i/I
a2 same state or next main ring state −1 or 1
a3 same state or one ring up −1
a4 same state or one ring down −1

a1 next side loop state or main ring i/I or −2i(i+ 3)/I
a2 same state −1
a3 same state −1
a4 same state −1

Figure 3. Left: a simplified visualization of the stacked ring environment for two main rings (I = 2) of eight
states each (N = 8). Right: transition and reward models for actions taken in main ring states (top half of
the table); transition and reward models for actions taken in side loop states (bottom half of the table).

top ring. As also shown in the figure, the agent can switch rings by taking actions a3 (going up
one ring) and a4 (going down one ring) when it is in certain states on each ring. Every fourth main
ring node has connections to the adjacent upper and lower rings allowing the agent to go up (a3) or
down (a4). Otherwise, actions a3 and a4 simply return the agent to the same state. These actions
are shown as dotted/dashed arrows in Figure 3.

As described so far, a reward-maximizing agent ought to travel to the highest ring and then
circle around it forever. This is due to all rings’ having identical cognitive complexity, based on the
description so far. To make higher rings more complex, we introduce traps. These are implemented
as side loops attached to the main rings every four states. For instance, with eight main states on
each ring, two side loops are attached to each ring (only one side loop per ring is shown in the figure
for the sake of clarity). Side loop states are shown as squares whereas main ring states are shown
as circles in the figure. The side loops function as traps because once the agent enters a side loop,
it has to follow it through and will get hit with a large negative reward at the end of the loop as it
returns onto the main ring. The punishing action in each side loop is shown in red in the figure. The
length of a side loop is equal to the ring number i to which it is attached. So, side loops attached to
ring 1 are 1 state long. Side loops attached to ring two are two states long, and so on.

In order for the agent not to fall into a side loop, it needs to know that the usually safe action a1
(black arrows in the figure) leads into a side loop in certain states (shown by darker red circles in
the figure). In such trap-entry states the agent needs to take the action a2 instead (light blue in the
figure) to remain on the main loop. Note that the action a2 is usually a bad action to take since in
all other main ring states it keeps the agent in the same state but penalizes it with the reward of −1.

If the agent could represent returns for each state accurately and independently then it would
learn to take the action a2 at the trap-entry states and the action a1 otherwise. As a result, it would
always stay on a main ring and collect maximum reward. Suppose, however, that the agent’s cog-
nitive ability is limited and it can represent return estimates only at the level of rings and not at

248

FLOW MAXIMIZATION FOR OPTIMIZING PERFORMANCE

the level of individual states on a ring. That means that it cannot distinguish (return-wise) between
a normal main ring state and a trap-entry state. This can happen, for instance, if return estimates
Q(s, a) are represented in a non-tabular way (e.g., as a linear combination of some features of the
state s and the action a).

Our agents compensate for inaccuracies in their return estimates via lookahead. If the agent is
in a trap entry state s, facing the danger of falling into a side loop of i states then it needs to run
a lookahead of at least depth i so that the lookahead-enhanced return Q′(s, a1) is different from
the lookahead-enhanced return Q′(s, a2). In our environment the length of each side loop attached
to ring i is i states. That means that side loops attached to more rewarding rings require deeper
lookahead to avoid. In summary, each ring represents a task. Higher rings are more rewarding when
mastered but require a deeper lookahead to avoid the large punishment at the end of each side loop.
Thus, higher rings, viewed as tasks to master, have a higher cognitive complexity.

4.2 Hypotheses

With the cognitive limitations described in the previous section, the agent must set the probe length
as mt = i where i is the ring number for the current state st to avoid falling into side loops.
Consequently, the amount of lookahead will be ∆(st) = nt = i2. Then the optimal course of action
is to move to the state whose ring number is i∗ = b√tmaxc and stay in that ring. Intuitively, i∗ is the
ring of the appropriate complexity, given the agent’s inability to distinguish between states along a
ring in its representation of return estimates. Indeed, rings above i∗ are too complex for the agent
insomuch as the lookahead required to enhanceQt enough to avoid falling into the side loops would
exceed tmax, causing the agent to incur the punishment φt. Conversely, rings below i∗ can indeed
be mastered by the agent but give less reward than the ring i∗.

On the other hand, if the agent does use a tabular representation of Qt and an ε-greedy action-
selection rule, we expect it to frequently3 converge to the optimal ring i∗ even in its basic version
(i.e., without any flow awareness). This is Hypothesis 1.

Note that main states on the optimal ring i∗ have the highest degree of flow (up to f/ξ). Sub-
sequently, a flow-maximizing agent will be drawn to the states on the optimal ring. As a result,
the agent will spend more time on the optimal ring i∗ and thus collect a higher lifetime reward.
Higher values of the flow-awareness coefficient f should then increase the overall reward collected
(Hypothesis 2). Viewed from another angle, higher values of the flow-awareness coefficient reduce
the number of steps needed to reliably reach the optimal ring (Hypothesis 3a). Or, given a fixed
number of learning steps, higher values of the flow-awareness coefficient will cause the agent to
reach the optimal ring more frequently (Hypothesis 3b).

4.3 Results

We ran the agent in an environment consisting of I = 10 stacked rings, each with N = 8 main ring
states along with side loops as described in Section 4.1. The total number of states on the main rings
and the side loops was 190. The action, transition and reward structure was set as per Section 4.1.

3. The ε-greedy learning process is stochastic and convergence to i∗ is not guaranteed.

249

V. BULITKO AND M. BROWN

The agent was run with the values {0, 200, 400, 600, 800, 1000} for the flow-awareness coeffi-
cient f . For each value of f we ran the agent for 10, 000 steps and measured the total non-discounted
non-flow reward it collected from the environment. The discount factor used by the agent to learn
its return estimates was fixed at 0.99. The learning rate was “cooled” as αt = 0.9/ 10

√
t. The explo-

ration rate started at 0.8 and was linearly brought to zero in approximately half the life time of the
agent. It was 0 for the second half of the agent’s life. Since the learning process is stochastic, we
repeated each experiment 3600 times. The constant ξ used to compute F was set to 1. The agent
started in a main ring state on the lowest ring. The start state was not a trap entry.

We repeated each of the 3600 trials for three different values of the maximum amount of de-
liberation per action, tmax ∈ {1.5, 25.5, 100.5}. The agent’s amount of deliberation in state s was
set to i2 where i is the ring number of the state s: nt = ∆(st) = i2. If, at time step t, the agent’s
deliberation amount nt exceeded tmax, it received a negative reward of φt = −0.25bnt/tmaxc.

−200 0 200 400 600 800 1000 1200
−8000

−6000

−4000

−2000

0

2000

4000

6000

Flow−awareness coefficient

Li
fe
−t

im
e

re
w

ar
d

−200 0 200 400 600 800 1000 1200

1

2

3

4

5

6

7

8

9

10

Flow−awareness coefficient

C
on

ve
rg

ed
 ri

ng

1.5
25.5
100.5

Figure 4. Agent performance for different values of the flow-awareness coefficient f and the per-action delib-
eration limit tmax. The error bars show the standard error of the mean. Different lines correspond to different
values of tmax as shown in the legend. The agent life time was 10, 000 steps and we ran 3600 trials.

The results of 3600 trials for each combination of the flow-awareness coefficient f and the
maximum amount of per-action deliberation tmax are shown in Figure 4. Each point is an average
over 3600 trials. The error bars show the standard error of the mean. As the graph on the left shows,
higher values of the flow-awareness coefficient allowed the agent to collect higher lifetime reward.
One-way ANOVAs revealed that for tmax = 1.5, there was a significant main effect of the flow-
awareness coefficient f : p < ω where ω is the smallest positive floating-point number MATLAB
can represent, F = 4680, df = 5, 21594. There was also a significant effect of f for tmax = 25.5
(p < ω, F = 2509, df = 5, 21594) and for tmax = 100.5 (p < ω, F = 840, df = 5, 21594). The
data thus supports Hypothesis 2.

250

FLOW MAXIMIZATION FOR OPTIMIZING PERFORMANCE

We also analyzed the ring number the agent converged to at the end of its life time, averaged
over 3600 trials.4 These values are plotted in the right graph of Figure 4. For tmax = 1.5, the agent
always converged to ring 1. For tmax = 25.5, flow-awareness coefficient had a significant effect
on converged ring (one-way ANOVA, p < ω, F = 74, df = 5, 21594). For tmax = 100.5, flow-
awareness coefficient also had a significant effect on converged ring (one-way ANOVA, p < ω,
F = 945, df = 5, 21594). The data support Hypothesis 3b.

−200 0 200 400 600 800 1000 1200
−2

−1

0

1

2

3

4

5

6
x 104

Flow−awareness coefficient

Li
fe
−t

im
e

re
w

ar
d

−200 0 200 400 600 800 1000 1200

1

2

3

4

5

6

7

8

9

10

Flow−awareness coefficient

C
on

ve
rg

ed
 ri

ng

1.5
25.5
100.5

Figure 5. Agent performance for different values of the flow-awareness coefficient f and the per-action delib-
eration limit tmax. The error bars show the standard error of the mean. Different lines correspond to different
values of tmax as shown in the legend. The agent life time was 100, 000 steps and we ran 360 trials.

Both hypotheses continue to be supported by empirical data when we increase the number of
learning steps from 10 to 100, 000 (Figure 5). One-way ANOVAs revealed that for tmax = 1.5,
there was a significant main effect of the flow-awareness coefficient f on lifetime reward (p < ω,
F = 763, df = 5, 2154). There was also a significant effect of f for tmax = 25.5 (p < ω, F = 472,
df = 5, 2154) and for tmax = 100.5 (p < 10−11 , F = 12.26, df = 5, 2154). For tmax = 1.5, the
agent always converged to ring 1. One-way ANOVAs revealed a significant main effect of the flow-
awareness coefficient f on the converged ring for tmax = 25.5 (p < 10−74, F = 78, df = 5, 2154)
and for tmax = 100.5 (p < 10−17 , F = 19, df = 5, 2154).

To investigate Hypothesis 3a we designed the following experiment. Instead of setting the
agent’s life time a priori, we started with only 200 steps. We then checked if the 200 steps are
enough to reach the optimal ring i∗ in each of 50 consecutive trials. If in one of the trials the agent
failed to converge to the optimal ring at the end of its life time, we increased the life time of the
agent by 40% and ran 50 more trials of 200× 1.4 = 280 steps each. This process of incrementally
increasing the agent’s life time was carried out until either the agent was able to reach the optimal
ring on each of 50 consecutive trials or a lifetime limit of 250, 000 steps was reached.

4. The agent is said to converge to ring x if x is the ring number on the very last time step of agent’s life.

251

V. BULITKO AND M. BROWN

−500 0 500 1000 1500
0

1000

2000

3000

4000

5000

6000

7000

8000

St
ep

s
ne

ed
ed

Flow−awareness coefficient

ring 1, tmax = 1.5

−500 0 500 1000 1500
900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

St
ep

s
ne

ed
ed

Flow−awareness coefficient

ring 5, tmax = 25.5

−500 0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 105

St
ep

s
ne

ed
ed

Flow−awareness coefficient

ring 10, tmax = 100.5

Figure 6. Lifetime steps needed to converge to the optimal ring for 50 trials in a row. Missing plot points
indicate exceeding the limit of 250, 000 steps.

We repeated the entire process 18 times for six values of the flow-awareness coefficient
f ∈ {0, 200, 400, 600, 800, 1000} and three values of tmax ∈ {1.5, 25.5, 100.5} which induced the
optimal ring i∗ ∈ {1, 5, 10} respectively. We then averaged the results over five independent runs.
The means and the standard errors of the mean are plotted in Figure 6 where missing data points
represent exceeding the limit of 250, 000 lifetime steps on at least one of the five runs. Higher values
of the flow-awareness coefficient appear to reduce the number of steps necessary to reliably reach
the optimal ring thereby supporting Hypothesis 3a.

Looking at the right side of Figure 4, the agent without flow awareness (f = 0) does not appear
to converge reliably to the optimal ring i∗ = 10 for tmax = 100.5. Indeed, the mean value of the
converged ring over the 3600 trials is approximately 5.6± 0.05. We trust it is due to the insufficient
amount of exploration over the short life time of the agent. Increasing the agent’s life time by an
order of magnitude (i.e., from 10, 000 to 100, 000 steps) improves the mean value of the converged
ring to approximately 9.4± 0.1 as seen in Figure 5.5 This supports Hypothesis 1.

4.4 Discussion

All three hypotheses are supported by the experimental data. This is expected as, mathematically,
the punishment for exceeding the maximum amount of deliberation per action was set as φ =
−0.25bnt/tmaxc. Since our agent’s amount of deliberation per action was set as nt = i2 where
i is the agent’s ring number, the negative reward becomes φ = −0.25bi2/tmaxc. The negative
reward is thus least punishing when i = i∗ = b√tmaxc. Hence, effectively, the returns of states on
rings different from the optimal ring i∗ are diminished. The flow of state on ring i is computed as

5. The standard error of the mean is higher due to the smaller number of trials: 360 instead of 3600.

252

FLOW MAXIMIZATION FOR OPTIMIZING PERFORMANCE

F = f/(|i2−tmax|+1) which is maximized when i = i∗. Thus, flow drives the agent towards states
on the optimal ring, and the drive is stronger for higher values of the flow-awareness coefficient f .

To illustrate, if tmax = 25.5, the optimal ring i∗ = b
√

25.5c = 5. Avoiding the side loops,
the per-step reward on that ring is 5/10 = 0.5 for the action a1 and 1 for the action a2. Without a
time limit, ring 6 would yield a higher per-step reward of 6/10 = 0.6 (a1) or 1 (a2). However, the
punishment for being on ring 6 is φ = −0.25b62/25.5c = −0.25, which brings the best possible
per-step reward to 0.6−0.25 = 0.35 or 1−0.25 = 0.75. This makes staying on ring 6 less rewarding
than staying on ring 5. Thus, even without the flow the agent would prefer ring 5 to ring 6. With
the flow-awareness coefficient f = 100, the degree of flow for states on ring 5 is F = 100/(|25 −
25.5| + 1) ≈ 66.7. The degree of flow for states on ring 6 is F = 100/(|36 − 25.5| + 1) ≈ 8.7.
Thus, the flow further encourages the agent to stay on ring 5 as opposed to moving up to ring 6.

This analysis illustrates how flow-seeking agents are drawn to master the tasks with post-
learning complexity that matches their cognitive abilities. Mathematically, the additional flow re-
wards re-shape the reward stream of the environment perceived by the agent, making it easier for a
reward-maximizing agent to converge to the optimal ring.

Connecting the results to human cognition, we speculate that the ability of our flow-aware agents
to collect higher lifetime reward by more quickly and reliably converging to the task of matching
complexity may be paralleled in people. Specifically, individuals with a highly developed sense
of flow may behave similarly to flow-maximizing agents with a higher flow-awareness coefficient.
That is, they are able to identify their “calling” more reliably and faster and, therefore, enjoy their
life more. Similar phenomena may take place at shorter temporal scales (e.g., finding the hobby of
a matching complexity or even locating a matchingly stressful route for one’s commute to work).
We would like to investigate this hypothesis via a user study as a part of future work.

5. Generality of the Model

The flow model presented in this paper is not limited to reinforcement learning. Indeed, the key
idea lies with giving an agent an ability to sense and a desire to maximize the degree of flow. Doing
so will guide the agent to select a task of the “right” cognitive complexity.

We believe this meta-cognition mechanism is valuable in two ways. First, it may give an insight
into human/animal selection of cognitive tasks. It may well be that evolution equipped humans with
a “flow meter” (e.g., in the form of happiness) and a desire to maximize the perceived flow. Sensing
and maximizing the flow would be an evolutionary adaptation as it would allow humans/animals to
select the most appropriate tasks faster and more reliably. Second, our model should be applicable
to a wide variety of cognitive architectures, including those that reason over structured symbolic
representations (as opposed to the flat numeric model of the basic value iteration).

To illustrate, consider PRODIGY — a domain-independent search-based planner that uses dif-
ferent learning modules to become more efficient in its search (Carbonell et al., 1991). Given
a domain description expressed in predicate logic, the cognitive skill of PRODIGY is related to
the collective power of search control rules it has previously learned. As PRODIGY solves more
problems, it automatically extends its control knowledge. The cognitive complexity of a planning
problem is related to the collective power of control rules that would be needed to restrict the search

253

V. BULITKO AND M. BROWN

tree enough to make the search tractable. PRODIGY’s control rules learned from solving one prob-
lem can be then used to help solve another problem. So it may be a good strategy to take on less
complex planning problems first and derive additional control rules in the process of solving them.

Our model of flow can guide PRODIGY through a hierarchy of problems of increasing com-
plexity as follows. Given a planning problem to solve (i.e., the domain theory, the initial state and
the goal expression), we can define the degree of flow as the match between the size of the maximum
tractable search tree that contains a solution and the size of the search tree that PRODIGY would
expand with its current body of control rules. The closer the match, the higher the amount of flow it
would experience while solving the problem. Having equipped PRODIGY with such a “flow meter”
and a desire to maximize flow, we would then give the system a choice to take on any planning task
from a large body of problems of various complexities. We would expect PRODIGY to progress
through problems of increasing cognitive complexity, efficiently building up its control rule base in
the process. Its flow meter will effectively serve as a meta-cognition mechanism, determining its
choice of the problems.

6. Current Shortcomings and Future Work

In this preliminary study we made a number of simplifying assumptions. First and foremost, we
used tabular learning for the return estimates while forcing the amount of lookahead that would be
necessary for an agent estimating returns on a per-ring basis. We believe this approximates the more
realistic case of the agent using a function approximation for its return estimates, based on features
of states. Future work will test this belief by actually using function approximation to learn returns
as well as considering a more flexible schema for lookahead selection.

Second, we used a single simple, small and deterministic environment where the punishment
for missing a real-time deadline was in the form of a negative reward. While we feel this ap-
proach shares some important properties of large-scale real-world environments, future work will
test it empirically, using varied penalties for missing a deliberation deadline. This will be done in
the context of more realistic and complex environments. One possibility is to use a competitive
real-time environment such as the one used for the international Ms. Pac-Man versus Ghosts com-
petition (Rohlfshagen, 2012). We speculate that the Pac-Man environment contains a hierarchy of
tasks of different complexity and rewards. For instance, the task of merely collecting the pellets is
simple and somewhat rewarding. The task of collecting the pellets while staying away from ghosts
is more complex and more rewarding. The task of seeking the power pellets and subsequently
hunting then-vulnerable ghosts may be more complex and rewarding still.

Third, if an agent takes on a novel complex task, its lookahead may need to be high, leading to
low degrees of flow. This may “discourage” the agent and drive it back to the task it has already
mastered. We believe this can be mitigated with cross-task portability of skills in real life, making
learning a more complex task easier once the agent masters a relevant simpler task. In our frame-
work, such skill portability will reduce the required lookahead on a novel task by re-using some of
the learned knowledge for a simpler task. This appears applicable to the task hierarchy of Pac-Man
where more complex and rewarding tasks may include easier tasks as subtasks.

254

FLOW MAXIMIZATION FOR OPTIMIZING PERFORMANCE

Fourth, we connected the cognitive complexity of tasks to the cognitive skill level of an agent
via the amount of planning time the agent needs to spend per action in order to handle the task.
Other cognitive resources need to be considered. For instance, the degree to which an agent is able
to map low-level sensory inputs to higher-level abstract symbols, as well as reason in the space of
such abstract representations, is a cognitive skill. The skill can determine which tasks the agents
can take on successfully as well as the degree of flow the agent experiences when it takes on tasks
with a certain amount of abstract reasoning required. The amount of short and long-term memory
available to the agent is another measure of the agent’s cognitive skill level which can be used for
matching tasks to the agent’s skills as well as determining the degree of flow.

Finally, the flow-awareness coefficient, the exploration coefficient schedule and the learning
step size are agent-specific. While in this study we chose them manually via trial and error, future
work will investigate the extent to which such parameters can be selected automatically. We plan
to encode the parameters in the agent’s genome in simulated evolution and then show that flow-
maximizing agents have greater evolutionary fitness. We further speculate that maximization of
flow can emerge as an evolutionary adaptation in a framework similar to evolutionary reinforcement
learning (Ackley & Littman, 1991).

7. Conclusions

In this paper, we presented a simple model of a psychological condition called “flow”. We proposed
that the degree of flow is defined by how well the agent’s cognitive skills match the cognitive com-
plexity of the task: the better the match, the higher the degree of flow the agent experiences. If the
environment contains a hierarchy of tasks of increasing cognitive complexity and reward, then the
agent can optimize its performance by taking on a task of matching cognitive complexity. This will
also increase the degree of flow it perceives. The converse also holds: flow-maximizing agents will
take on tasks of matching complexity for the sake of flow, incidentally improving their performance.

Exploiting this bi-directional connection, we equipped our agents with an explicit sense of the
degree of flow they experience, making them flow-aware. Such flow-aware agents can excel over
their non-flow aware counterparts in their cognitive performance, by choosing the right task. We
implemented these ideas in the standard reinforcement learning framework by expressing the flow
awareness as an additional stream of rewards. We then showed that agents equipped with such a
reward stream collect more of the environmental (non-flow) reward.

Acknowledgements

We appreciate the support of the National Science and Engineering Research Council. We are
grateful for discussions with the members of the Making Minds Reading Group at the University of
Alberta, Valeriy and Ina Bulitko, Pat Langley and Thórey Maríusdóttir. We also appreciate feedback
from the anonymous reviewers.

255

V. BULITKO AND M. BROWN

References

Ackley, D. H., & Littman, M. L. (1991). Interactions between learning and evolution. In C. Langton,
C. Taylor, J. D. Farmer, & S. Ramussen (Eds.), Artificial Life II, Vol. 10, 487–509. Redwood City,
CA: Addison-Wesley.

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time dynamic pro-
gramming. Artificial Intelligence, 72, 81–138.

Bulitko, V., Li, L., Greiner, R., & Levner, I. (2003). Lookahead pathologies for single agent search.
Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (pp. 1531–
1533). Acapulco, Mexico: Morgan Kaufmann.

Bulitko, V., Luštrek, M., Schaeffer, J., Björnsson, Y., & Sigmundarson, S. (2008). Dynamic control
in real-time heuristic search. Journal of Artificial Intelligence Research, 32, 419–452.

Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., & Veloso, M. (1991).
PRODIGY: An integrated architecture for planning and learning. ACM SIGART Bulletin, 2, 51–
55.

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper and
Row. First edition.

Jin, S.-A. A. (2012). Toward integrative models of flow: Effects of performance, skill, challenge,
playfulness, and presence on flow in video games. Journal of Broadcasting & Electronic Media,
56, 169–186.

Korf, R. (1990). Real-time heuristic search. Artificial Intelligence, 42, 189–211.
Lim, S. H., & Auer, P. (2012). Autonomous exploration for navigating in MDPs. Proceedings

of the Journal of Machine Learning Research 25th Annual Conference on Learning Theory (pp.
40.1–40.24). Edinburgh, Scotland.

Luštrek, M., & Bulitko, V. (2006). Lookahead pathology in real-time path-finding. Proceedings of
the National Conference on Artificial Intelligence, Workshop on Learning For Search (pp. 108–
114). Boston, MA: AAAI Press.

Rohlfshagen, P. (2012). The Ms. Pac-man versus Ghosts Competition. Retrieved November 27,
2012, from http://www.pacman-vs-ghosts.net.

Sutton, R. (1990). Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. Proceedings of the Seventh International Conference on Machine
Learning (pp. 216–224). Austin, TX: Morgan Kaufmann.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA:
MIT Press.

Weber, R., Tamborini, R., Westcott-Baker, A., & Kantor, B. (2009). Theorizing flow and media en-
joyment as cognitive synchronization of attentional and regard networks. Communication Theory,
19, 397–422.

Whitehead, A. N. (1911). An introduction to mathematics. London: Williams & Northgate.

256

