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Abstract 

We describe how an agent can dynamically and incrementally determine the structure of a value 

function from background knowledge as a side effect of problem solving. The agent determines 

the value function as it performs the task, using background knowledge in novel situations to 

compute an expected value for decision making. That expected value becomes the initial estimate 

of the value function, and the features tested by the background knowledge form the structure of 

the value function. This approach is implemented in Soar, using its existing mechanisms, relying 

on its preference-based decision-making, impasse-driven subgoaling, explanation-based rule-

learning (chunking), and reinforcement learning. We evaluate this approach on a multiplayer dice 

game in which three different types of background knowledge are used.  

1.  Introduction 

One long-term goal of our research is to build autonomous agents that use a wide range of 

knowledge, including expert background knowledge and knowledge learned from experience. A 

challenge for such agents is how to use both background knowledge and experience to improve 

their behavior in novel problems with large problem spaces. One online learning mechanism that 

is a key learning component of many cognitive architectures, including Soar (Laird, 2012), 

Clarion (Sun, 2006), and ACT-R (Anderson, 2007), is reinforcement learning (RL; Sutton & 

Barto, 1998). In RL, an agent tunes the value function, which is a mapping from state-action pairs 

to an expected value of future reward, using its experience in an environment. In the future, the 

value function is then used to select actions so that the agent maximizes its expected reward. 

Although RL has been studied extensively, there has been little research on how it is integrated in 

a cognitive system, and more specifically, how the value function and its initialization are 

determined by an agent during execution in a novel task using background knowledge. Usually, 

the structure of the value function is determined by a human, with all entries initialized randomly 

or to a baseline value (such as 0.0). However, if our cognitive agents are to be truly autonomous, 

they need to have the ability to define and initialize their value functions on their own.  

In this paper, we present an approach in which the value function is incrementally determined 

and initialized as the agent uses background knowledge to make decisions in novel situations. 

Once the value function’s structure is determined and initialized for a given situation, the agent 

uses reinforcement learning to dynamically update and improve the value function. The potential 
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advantage of using background knowledge to initialize the value function is that initial 

performance is not random, but instead can be near expert level. The potential advantage of using 

background knowledge to determine the structure of the value function is that irrelevant features 

of the environment are ignored and relevant features are included, potentially leading to faster 

learning and higher asymptotic performance. The potential advantage of converting the 

background knowledge into a value function is that reinforcement learning can improve upon the 

original background knowledge, incorporating statistical regularities that it did not include.  

This work extends the original Universal Weak Method (UWM; Laird & Newell, 1983), 

where the structure of a cognitive architecture makes it possible for available background 

knowledge to determine the weak method used in problem solving. Here we build on the 

problem-space formulation of behavior, the preference-based decision making, and the impasse-

driven subgoaling of the Soar cognitive architecture that supported the original UWM, and add 

chunking and reinforcement learning, which together lead to the learning and decision-making 

methods described here (Laird, 2012). In large part, this paper is a recognition, explication, and 

demonstration of emergent behavior that is implicit in those mechanisms and their interaction. 

Although the steps in the approach we described above are relatively straightforward, there 

are challenges in building a task-independent approach that can be used by a persistent agent for 

wide varieties of background knowledge:  

C1. Knowledge General. The approach should work with different types of background 

knowledge.  

C2. Task General. The approach should work with any task in which the agent has appropriate 

background knowledge and reward. 

C3. Minimally Disruptive. The approach should not disrupt agent task processing nor require 

restructuring of agent processing or knowledge structures.  

One ramification of challenges C1 and C2 is that this approach should not be restricted to 

propositional representations – it should support relational representations of task knowledge and 

environmental features.  

Previous approaches have examined learning using specific types of background knowledge 

including pre-existing action models (Shapiro, Langley, & Shachter, 2001), hand-crafted state 

features (Korf & Taylor, 1996; Ng, Harada, & Russell, 1999), initial value functions (Maire & 

Bulitko, 2005; Von Hessling & Goel, 2005), as well as state-feature/structure utility advice from 

other knowledge sources (Shapiro, Langley, & Shachter, 2001; Dixon, Malak, & Khosla, 2000; 

Moreno et al., 2004). Shavlik and Towell (1989) describe KBANN, which uses a specific type of 

symbolic background knowledge to determine the structure and initialize the weights of a neural 

network (but do not apply it to reinforcement learning). One system that incorporates both 

analytic and inductive mechanisms in a similar manner to what we propose is EBNN (Mitchell & 

Thrun, 1993), which uses explanation-based learning to convert symbolic action models into 

neural networks, which are used as value functions for reinforcement learning. The EBNN 

algorithm is restricted to using action models as background knowledge and it is not incorporated 

into a general cognitive architecture, so it can be disruptive to how agent knowledge is formulated 

and used. Moreover, the analytic component does not determine the structure of the value 

function. Mitchell and Thrun (1996) speculate as to how a scheme such as EBNN could be 

incorporated into Soar, and one view of this research is as a long-delayed realization of that 

vision (although our implementation differs significantly from what they propose). ACT-R 
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(Anderson, 2007) and Clarion (Sun, 2006) both incorporate rule learning and rule tuning 

components; however, it is unclear how various types of background knowledge (such as action 

models) can be incorporated into those architectures without requiring significant restructuring of 

the agent processing and knowledge structures.  
 In the rest of this paper, we report our research in this area. In Section 2, we describe Soar 

and how reinforcement learning is integrated in it. Section 3 describes our approach in detail, 

mapping it onto the components of Soar. Section 4 describes examples of the different types of 

background knowledge that can be used for initializing and determining the value function. In 

Section 5, we provide a detailed evaluation of the approach for a multiplayer game (Liar’s Dice). 

In Section 6, we review the challenges and how our approach meets them. We also relate our 

approach to other cognitive architectures and conclude with a discussion of future research. 

2.  Reinforcement Learning in Soar 

In this section, we describe reinforcement learning and then map its components onto the 

corresponding representations, memories, and processes in Soar, focusing on Soar’s 

representation of the value function. In Section 3, we build on this foundation and describe how 

background knowledge combines with Soar’s impasse-driven subgoaling and chunking to 

incrementally determine and initialize the value function. 

In reinforcement learning, an agent is in a state and selects between alternative actions, trying 

to maximize it expected future reward. The value function is a mapping from states and actions to 

the expected reward. Thus, to make a decision, the agent uses the value function to determine the 

expected value for every possible action in the current state. An action is then probabilistically 

selected to balance the benefit of exploitation versus exploration. Learning occurs by updating the 

value function for a state-action pair based on the reward received from executing the action, 

combined with the discounted expectation of future reward. For temporal-difference (TD) 

learning, this expectation is derived from the actions available in the next state. For example, the 

on-policy SARSA algorithm (Rummery & Niranjan, 1994) utilizes the value of the next selected 

action, whereas the off-policy Q-learning algorithm (Watkins, 1989) uses the greatest value of the 

next available actions. The value function is the locus of task-dependent knowledge. In its 

simplest formulation, the value function is tabular – a list with an expected value for each 

state/action pair.  

In 2005, Soar was extended to include RL, building on the existing formulation of tasks as 

search through problem spaces (Nason & Laird, 2005). Soar has a working memory that is 

hierarchically organized in terms of states, and its processing cycle is to propose, evaluate, select, 

and apply operators that make changes to the state. These changes can initiate motor actions in an 

external environment, but they can also be internal, such as initiating retrievals from Soar’s long-

term declarative memories (semantic and episodic). The knowledge to propose, evaluate, and 

apply operators is encoded as production rules in Soar’s long-term procedural memory. When the 

conditions of a rule successfully match structures in a state, it fires. The actions of a rule can 

propose an operator, evaluate an operator, apply an operator, or elaborate the state. All rules that 

match fire in parallel, so that the locus of decision making is operator selection not on 

determining which rule to fire. Soar supports relational representations of states and operators.  
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To select between operators, the operator-evaluation rules test aspects of the state and the 

proposed operators and create preferences. A fixed decision procedure interprets the preferences 

and selects an operator, unless the preferences are incomplete or inconsistent, in which case an 

impasse arises. The preferences can be either symbolic or numeric. The numeric preferences 

specify an operator’s expected value for the state. Thus, the rules that create the numeric 

preferences (which we call RL-rules) provide a piece-wise (and potentially overlapping) encoding 

of the value function. If all aspects of the state and operators are tested and the rules are mutually 

exclusive, the RL-rules encode a purely tabular value function. If a common subset of the state 

and operators are tested by multiple rules, they provide a tile-coding. If there are multiple sets of 

RL-rules for different subsets of the state and operator, they encode a hierarchical tile-coding, and 

the preferences from multiple rules of different levels of specificity are added together to select 

an operator. Rules that test different aspects of the state and operator encode a coarse coding.  

An operator is selected based on the preferences that have been created. The symbolic 

preferences filter out proposed operators, and if those preferences are sufficient to determine a 

single choice, then that operator is selected. Otherwise, if there are numeric preferences for the 

remaining operators, a probabilistic selection is made using the preference values according to a 

Boltzmann distribution. If some of the remaining operators do not have numeric preferences, an 

impasse arises and a substate is created, which leads to further problem solving (see below). After 

an operator is selected, rules apply it by changing the state. After application, and selection of the 

next operator, the numeric preferences of RL-rules for the last selected operator are updated.  

3.  Our Approach 

In our approach, there are two different ways background knowledge can influence RL. The first 

is in determining the structure of the value function: which aspects of the state and operators are 

mapped to an expected value? If relevant features are not included, the entries in the value 

function will cover multiple states with different expected values, potentially making it 

impossible to achieve optimal performance. If irrelevant features are included, then states that 

should have the same expected value are treated independently, each receiving fewer updates, 

thereby slowing learning. Thus, selecting the right features for the value function is critical to 

both the speed of learning and the final asymptotic performance.  

 The second way background knowledge can influence RL is in initializing an entry in the 

value function. It is typical to initialize value functions randomly or with some baseline value. 

However, by initializing the value function using prior knowledge, it may be possible to greatly 

speed learning, reducing the need for potentially costly experience with the task.  

 Our claim is that the approach described below enables dynamic determination of an agent’s 

value function, while providing initial values and meeting the challenges (C1-C3) set forth above. 

In our approach, an agent dynamically computes an estimate of the expected value for a novel 

situation using deliberate reasoning and background knowledge. The deliberation is compiled 

using an explanation-based generalization technique (chunking in Soar), which produces a 

mapping from a subset of the current state and action to the computed value, simultaneously 

defining and initializing a component of the value function. The value function replaces future 

deliberate calculations for the same situation and is then tuned by RL. In more detail:  
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1. The first time the agent encounters a state, it does not have a value function for evaluating 

each state/operator pair, leading Soar to detect an impasse in decision making.  

2. In response to the impasse, Soar creates a substate in which the goal is to generate 

preferences so that an operator can be selected. This involves computing expected values 

for the proposed operators for which there is not an existing numeric preference (and thus, 

not a corresponding RL-rule), or performing some other analysis that results in the creation 

of sufficient symbolic preferences. 

3. In the substate, a general task-independent operator (called evaluate-operator) is proposed 

and selected for each task operator. The purpose of evaluate-operator is to compute the 

expected value of each competing task operator. Once evaluate-operator is selected for a 

task operator, another impasse arises because there is no rule knowledge to apply it. In the 

ensuing substate, background knowledge is used to evaluate the task operator and compute 

an initial expected value for it. The types of background knowledge that can be used are 

quite broad, and discussed below.  

4. Once the background knowledge has created an expected value, a numeric preference is 

created for the task operator being evaluated. This is a critical step because it converts a 

declarative structure (the expected value) into a preference that influences decision making.  

5. As a side effect of the substate computation that generates the numeric preference, a new 

rule is automatically created by chunking. Chunking is a form of explanation-based learning 

(EBL; DeJong & Mooney, 1986), and creates rules in exactly the same format as all other 

rules in Soar. The action of the new rule is the numeric preference produced in the substate, 

while the conditions are determined by a causal analysis of the productions that fired along 

the path to creating the preference. The aspects of the task state and operator that were 

required to produce that preference become the conditions. Thus, the new rule (which is an 

RL-rule) tests those aspects of the task state and operator that were relevant for computing 

the estimated expected value and the action is the numeric preference.  

6. When a similar situation (as determined by the conditions of the new rule) is encountered in 

the future, the rule will fire, create a numeric preference for a proposed operator, and 

eliminate the need to perform the deliberate reasoning. The rule is then updated by RL 

when the proposed operator is selected and applied. Thus, as a learning mechanism, 

chunking leads to more than just knowledge compilation, because it creates a representation 

that another learning mechanism can modify. By creating a direct mapping from the 

state/operator to the expected value, it produces a representation that is amenable to being 

updated by RL, so that the statistical regularities of the task can be captured.  

4.  Types of Background Knowledge 

In our approach, background knowledge is used to deliberately evaluate proposed operators in 
substates, generating an initial estimate of the expected value, as well as indirectly determining 

which features of the task state and operator map the value function to the expected value. Given 
the generality of the problem space paradigm on which Soar is modeled (Newell, 1991); there are 
few limits on the types of knowledge that can be used for this purpose. The important restrictions 
are that the knowledge must be in some way dependent on the current situation and it must create 
some value that can be used as an estimate of expected future reward. Our approach by itself does 
not make any guarantees as to the quality of the agent’s behavior. It is a conduit for converting 
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background knowledge into a form that can control behavior and be tuned by experience. If the 
estimated expected values are poor and based on irrelevant features, we expect poor performance 
and learning. If the expected value are accurate and based on relevant features we expect good 

performance and learning.  
Below we provide examples of types of background knowledge that can be used with our 

approach. Soar agents have been developed that make use of all of these with our approach, with 
the exception of item 4.  

1. Heuristic Evaluation Functions: A heuristic evaluation function is a mapping from a state to 
an estimate of expected value. Combined with an action model (see below) it allows the agent 

to predict the future reward that an operator could achieve. In Soar, the evaluation function can 
be encoded in rules or in semantic memory as a mapping between state descriptions and 
expected values.  

2. Action Models: An action model allows the agent to predict the results of external actions on 
an internal representation of the task, thus allowing the agent to perform an internal look-
ahead search, explicitly predicting future states. A heuristic evaluation function can be used to 

predict the expected reward that operator will achieve, or the agent can search until it reaches 
terminal states, such as in a game-playing program where it could detect win, lose, or draw. 
Soar supports a wide variety of approaches for encoding action models, including rules, 
semantic memory, episodic memory, and mental imagery (Laird, Xu, & Wintermute, 2010).  

3. Reasoning: In some cases, an estimate of the expected value can be computed directly using 
features of the state and proposed operator without explicitly modeling operator actions.  

4. Analogy: The agent can use the current state and proposed operators to retrieve a memory of a 
similar situation and then use historical information of the expected value of that situation as 
an estimate of the current situation.  

With our approach, we have developed three agents, two that use a combination of action models 
and heuristic evaluation, and one that uses reasoning and is described in detail in the next section. 
The first two use one-step look-ahead hill climbing. One of these finds paths through graphs 

embedded in 2D space. It uses the reciprocal of Euclidian distance as an estimate of expected 
value. The second agent parses English sentences. It estimates the expected value of a parsing 
operator by applying the operator, and then retrieving from semantic memory the reciprocal of 
the estimated distance required to achieve a successful parse. The distance metric is computed 
based on an offline analysis of the Brown corpus. As expected, in both cases, the initial search 
depends on the quality of the distance estimates, and performance improves as reinforcement 

learning refines the initial approximate expected values.  

5.  The Dice Game 

To provide an in-depth empirical demonstration and evaluation of this approach, we use a 

multiplayer dice game. The dice game goes by many names, including Perudo, Dudo, and Liar’s 

Dice. The game has sufficient structure such that multiple types of background knowledge are 

easy to identify and useful for improving performance. Moreover, there is sufficient complexity 

such that the obvious types of background knowledge are incomplete, making further learning 

useful. This work extends previous research that focused on the integration of probabilistic 

background knowledge into a cognitive architecture, and only briefly touched on learning (Laird, 

Derbinsky, & Tinkerhess, 2011). 
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A game begins with the players sitting around a table, with each player having five dice and a 

cup. Play consists of multiple rounds. At the beginning of each round, all players roll their dice, 

hiding them under their cup. Players can view their own dice, but not the dice of others. The first 

player of a round is chosen at random. After a player’s turn, play continues to the next player.  

During a player’s turn, an action must be taken, with the two most important types of action 

being bids and challenges. A bid is a claim that there is at least the specified number of dice of a 

specific face in play, such as six 4’s. Following the first bid, a player’s bid must increase the 

previous bid. If the dice face does not increase, the number of dice must increase. Thus, legal bids 

following six 4’s include six 5’s, six 6’s, seven 2’s, and so on. If a player challenges the most 

recent bid, all dice are revealed and counted. If the number of dice of the bid face equals or 

exceeds the bid, the challenger loses a die. Otherwise, the player who made the bid loses a die. A 

player who loses all dice is out of the game. The last remaining player is the winner.  

There are additional rules that enrich the game. A die with a face of 1 is wild, and contributes 

to making any bid. Given the special status of 1’s, all 1 bids are higher than twice the number of 

other bids. For example, three 1’s is higher than six 6’s and the next bid after three 1’s is seven 

2’s. When a player makes a bid, they can “push” out any proper subset of their dice (usually 1’s 

and those with the same face as the bid), exposing them to all players, and reroll the remaining 

dice. A push and reroll increases the likelihood of a bid being successful, and provides 

information to other players that might dissuade them from challenging a bid. A player can also 

bid “exact” once per game. An exact bid succeeds if the number of dice claimed by the most 

recent bid is accurate, otherwise the bid fails. If the exact bid succeeds, the player gets back a lost 

die; otherwise the player loses a die. Finally, a player with more than one die can “pass,” which is 

a claim that all of the player’s dice have the same face. A pass can be challenged, as can the bid 

before a pass. A player can pass only once with a given roll of dice.  

5.1  Dice Game Agents 

Our agents play using a game server that simulates random dice rolls, enforces the rules of the 

game, advances play to the next player, provides data on the game state, and randomly selects the 

first player. The agents can play against either human or other Soar agents; however, all the 

experiments below use only Soar agents. When it is the agent’s turn, it receives information about 

the game that is equivalent to the information that is available to human players. This includes the 

number of dice under each player’s cup, players’ exposed dice, the dice under the agent’s cup, 

and the history of bids. The agents are implemented in Soar 9.3.2 using approximately 340 hand-

written rules. 79 of those rules are “default” rules that are used in many Soar agents and provide a 

general method for handling tie impasses and deliberate operator evaluation. The other rules 

encode task-specific knowledge about playing the game and performing the calculations 

described in the following paragraphs. The only additional source of knowledge is a function for 

calculating the probability of a configuration of dice, such as the probability that when there are 

eight dice, four of them have a specific face. Everything else is encoded in rules.  

When it is an agent’s turn, the agent first computes the number of dice of each face that it 

knows (those exposed from pushes plus those under its cup) and the number of unknown dice. It 

then determines a base bid. If the agent is first to bid or if the previous player made a low bid, the 

count for the base bid is one less than the expected number of faces given the total number of dice 

in play, and the face is 2. Otherwise the last bid is used as the base bid. 
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 The agent then proposes operators for all bids that are up to one number higher than the base 

bid. Thus, if the base bid is six 4’s, the agent proposes six 5’s, six 6’s, three 1’s, seven 2’s, seven 

3’s, and seven 4’s. If there are dice under its cup that have the same face as the bid or are 1’s, the 

agent also proposes bids with pushes for those dice. The agent also proposes all legal challenge, 

pass, and exact actions. These bids and actions are the task operators in this domain and we refer 

to them as dice-game-action operators.  

The agent then selects a dice-game-action operator and sends the action to the game server. If 

the action is a challenge or exact, the game server determines whether it is successful, updates the 

number of dice for the players as appropriate, and provides feedback. The game server also 

provides feedback when the agent is challenged.  

 To select between the dice-game-action operators, the agent uses the approach described 
earlier. If there are sufficient preferences to select an operator, one is selected. Otherwise, a tie 
impasse results and those operators without numeric preferences are evaluated, which eventually 

leads to the creation of preferences and the selection of an operator.  
 To deliberately evaluate a bid, the agent can use three different types of background 

knowledge. The most obvious type is knowledge about the probabilities of unknown dice. Those 
probabilities are used to compute the likelihood that each dice-game-action will be successful. 
For challenges and exact bids, this is the probability that the bid will succeed, while for other 
bids, it is the probability that the bid will succeed if challenged. These probabilities are later used 

as an estimate of the expected value of the bids. Especially in games with more than two players, 
the probabilities for bids that are not challenges or exacts are only rough approximations because 
the expected value of a bid (such as three 4’s) does not exactly correspond to whether it will 
succeed if challenged. A bid has significant value if the next player does not challenge the bid, 
but instead makes some other bid that ultimately results in some player besides the agent losing a 
die. Thus there is some positive value in making low bids because it lowers the likelihood that the 

next player will challenge the bid, but there is a negative value if it is so low that the player must 
bid again later in the round. Striking the right balance between high and low bids appears to us to 
be one of the types of knowledge that is hard for an expert to extract and encode, but might be 
possible to learn through reinforcement learning.  

 The second type of knowledge is a simple model of the previous player’s bidding strategy, 

which is used to infer what dice are likely to be under the player’s cup given their bid. The 

inferred dice are used in a second round of probability calculations, but only if non-model-based 

probability calculations do not identify a safe bid. The model will be incorrect when the player is 

bluffing, and it is an empirical question as to whether this knowledge is useful.  

 The third type of knowledge consists of heuristics that attempt to capture additional structure 

of the game that is not included in the probability of success of individual actions. For example, if 

a player has a valid pass, making that bid is guaranteed to avoid losing a die when it is bid. 

However, it is probably best to save that pass until later when the player has no other safe bids. 

Similarly, it is better not to push and reroll if there is another bid without a push that is unlikely to 

be challenged by the next player. A push reveals information to the other players and decreases 

the agent’s options in the future.  

 All of these forms of knowledge (probability, model, and heuristics) are encoded as operators 

that are used in the deliberate evaluation of a dice-game-action operator. Their calculations are 

combined to create preferences for selecting the operators. The results of the probability and 

model knowledge lead to the creation of numeric preferences (and RL-rules), while the heuristics 
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lead to the creation of symbolic preferences that explicitly prefer one operator to another (and the 

creation of new rules that generate those preferences in the future). The learned rules that include 

symbolic preferences are not updated by RL.  

 Once an RL-rule is learned, it is updated based on reward, and expected future reward. The 

agent uses the obvious reward function: +1 for winning a challenge/exact bid and -1 for losing a 

challenge/exact bid. To align the probabilities with the reward function, the probabilities are 

linearly rescaled to be from [-1.0, +1.0] instead of [0.0, +1.0] when they are created. 

 Table 1 shows textual descriptions of RL-rules learned by an agent. Rule 1 captures the 

probability calculation for an unlikely bid and is typical of many rules that test the bid, the 

relevant known dice, and the number of unknown dice. The bid is five 2’s, with one known 2 and 

four unknown dice, all of which must be 1’s or 2’s for the bid to succeed. Rule 2 is also for the 

selection of an operator that bids five 2’s, but it was created using background knowledge that 

included using a model of the previous player. This operator includes pushing three dice and 

rerolling two, and is proposed when the opponent has only one unknown die. Thus, the agent 

knows there are at least three 2’s and must pick up two more from the two dice it rerolls and the 

one die under the opponent’s cup. This outcome is unlikely as is; however, the rule’s initial value 

was computed using the opponent model. The model led the agent to conclude that in order to 

make the bid of two 1’s, the opponent had one 1. Thus, the agent believed it needed to get only 

one 2 or one 1 out of the two dice it rerolls given that the previous player bid two 1’s.  

One characteristic of the chunks is that they are specific to the dice face being bid and the 

existence of 1’s. Given the special nature of 1’s as wild cards, they must be accounted for. 

Beyond the specificity in testing the dice faces, the rules generalize over other aspects of the 

situation that were not tested when they are learned. For example, Rule 2 does not test which 

other dice are under its cup, except that they are not 1’s or 2’s. Similarly, Rule 1 does not test the 

previous bid, nor does it test which other non-1 or non-2 dice are known to the agent, as they are 

irrelevant to computing the bid’s probability.  

Because the determination of the conditions of a new rule is dependent on the knowledge 

used in the subgoal, we expect that the value functions learned from different initial knowledge to 

be different. If the model is used, the learned rules will test features of the previous bid, whereas 

if neither the model nor the heuristics are used, the learned rules will test only the player’s dice, 

the number of dice under cups, and the exposed dice. When more features are tested, those rules 

will be more specific, and more rules will be learned. We expect these factors to influence the 

speed and quality of learning, as well as the number of rules that are learned.  

 

Rule 1: If the operator is to bid five 2’s with no push and  

           there are zero 1’s and one 2 dice and  

           there are four unknown dice 

        then create an operator preference of -0.8754  

 

Rule 2: If the operator is to bid five 2’s pushing one 1 and two 2’s and  

           the previous bid was two 1’s and  

           there are five dice under my cup, with one 1 and two 2’s and  

           the other player has only a single unknown die 

        then create an operator preference of 0.12  

Table 1. Example RL-rules learned by chunking. 
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5.2  Evaluation 

To evaluate the performance of agents using learning, we used three-player games. Such games 

take significantly less time to play than games with more players and have significantly smaller 

state spaces than four-player games (~200K-2M RL-rules versus ~800K-8M RL-rules). We used 

Q-learning with a Boltzmann distribution for selection between operators with numeric 

preferences. The learning parameters were learning rate = 0.3; discount rate = 0.9; and 

temperature = 0.008. The first two are the default values in Soar (and verified by parameter 

sweeps). The temperature was determined by a parameter sweep. The agents play against the best 

non-learning agent, which includes all the background knowledge: probability, opponent model, 

and heuristics. The agents play 1,000 games of testing (learning disabled) alternated with 1,000 

games of training (learning enabled), for a total of 20 trials of training and testing, resulting in 

20,000 total games of training. Each trial (2,000 games) takes between 70-90 minutes real time, 

with each game taking 2-3 seconds. Each game takes 10 to 20 rounds of play (players can win 

back a die with an exact). All data are the average of four independent runs.  

We evaluate four agents with different combinations of background knowledge. These 

include probabilities [P], probabilities and model [PM], probabilities and heuristics [PH], and all 

three [PMH]. Probability knowledge is included in all agents because without it there are 

situations in which the agents cannot make decisions. The need for probability knowledge is 

because the other forms of knowledge do not provide a policy for all states and operators – they 

only cover a subset of the space so that there are many situations in which the heuristic and model 

do not apply. This is a feature of the task and types of knowledge and is independent of are 

approach or our implementation in Soar. The opponent agents are the PMH agent but without 

learning. Thus, given that there are three players, a non-learning PMH agent is expected to win 

333 (33%) of the games because it is playing against two copies of itself. 

To verify that the background knowledge is useful, we played an agent that randomly 

selected from among the legal operators against two PMH agents. The random agent won 0.6% of 

the games. For more analysis of the value of the different types of background knowledge in non-

learning experiments, see Laird, Derbinsky, and Tinkerhess (2011). 

The first question we consider is whether this approach to learning leads to improvements in 

performance. Figure 1 shows the performance of the four agents over 20 trials. As expected, the 

PMH agent starts out best, winning ~33% of its games, while the other agents, with less 

background knowledge, do not perform as well. However, they all significantly improve 

performance in the first training trial so that in the following testing trial they are all performing 

better than the non-learning PMH agent. These results substantiate the claim that RL can improve 

on the original background knowledge for this task. This is a function of the fact that our 

background knowledge is only approximately correct. For a task in which the background 

knowledge correctly estimates the expected value of every operator in every situation, we expect 

no improvement.  

The second question we consider is what effect different types of background knowledge 

have on learning. Background knowledge can influence learning in three different ways: 

1. It provides initial estimates of expected values; 

2. It eliminates poor choices from consideration; and 

3. It determines the structure of the value function based on what aspects of the state are tested. 



 

 

ONLINE VALUE-FUNCTION DETERMINATION FOR REINFORCEMENT LEARNING 

 

231 

 
 

 

Figure 2. Learning curves for agents with learned rules initialized to zero. 

 

We consider each of these in turn, and we return later to other features of Figure 1, such as that 

PH learns faster and has better performance than the other agents.  

 To evaluate whether the initial estimates created by the background knowledge are useful, 

we created variants of the agents (labeled with -0), where the probability calculation is still 

performed (so that the same aspects of the state are tested), but the computed estimated expected 

value is 0.0. These values are then tuned by RL, but since these agents do not use the probability 

calculations as initial estimates of expected value, we can discover if those estimates are useful by 

comparing their performance to the agents in Figure 1. For these agents, a temperature of .08 was 

used, which led to faster learning by encouraging more exploration.  
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Figure 1. Learning curves for agents with learned rules initialized by internal deliberation in subgoals. 
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Figure 2 shows that the agents whose expected values were initially set to 0.0 perform worse 

than the agents using the probability calculations (Figure 1), verifying our claim. The agents in 

Figure 2 show only gradual learning, whereas the agents in Figure 1 initially learn quickly, as the 

initial expected values focus exploration on the best actions. Figure 3 shows the difference in 

performance between the corresponding agents in Figure 1 and 2, so that a higher value in the 

figure means better performance with initialization. As expected, the initialization has its biggest 

impact during the first trial. The difference lessens over time, but even after 20,000 games, there 

is still a significant advantage to starting with good estimates of the expected values. 

We next consider how the background knowledge eliminates poor choices from 

consideration. By eliminating poor choices, an agent will not waste time exploring operators that 

are obviously bad, which will focus both performance and learning on the best operators. This is 

the main role of heuristics and to a lesser extent the initial value estimates, leading us to expect 

that the agents with heuristics will outperform those without. This is confirmed in Figures 1 and 

2, where PH dominates P and to a lesser extent, PMH dominates PM, suggesting that in this 

domain, the heuristics help the agents avoid bad choices. It also suggests that the knowledge in 

the heuristics is difficult to learn using RL, at least given the number of trials in our experiments. 

Thus, our hypothesis is that the heuristics we implemented test combinations of features that are 

not captured in the other types of background knowledge we evaluated. For example, the 

heuristics for avoiding an operator that rerolls dice test that there is a safe bid so that there is no 

need to reroll. The rules that avoid using a valid pass include similar conditions. This type of 

knowledge is not included in the learned RL-rules because they only include conditions that are 

specific to the value of a single bid, independent of all of the other bids. Thus, they are unable to 

distinguish between situations in which there is a safe bid (so that the push or pass bid should be 

avoided) and those in which there is no safe bid (so that the bid or pass bid should be used).  

 To further explore this hypothesis, we did a small study in which we disabled the learning of 

chunks in the PH agent for the heuristic-based evaluations. For this agent, heuristic reasoning is 

used initially, but it is eventually replaced by RL-tuned knowledge (whereas in the original PH 

agent, rules are learned that include the heuristic knowledge that continues to be used through all 
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trials). As shown in Figure 4, the modified agent initially learns as quickly as the PH agent does 

because the heuristics are initially being used to focus the exploration away for poor choices. 

However, as the heuristics are replaced by the purely RL-tuned knowledge, the RL knowledge is 

unable to capture the co-occurrence of features encoded in the heuristics. This in part provides 

some insight into Soar’s policy of considering numeric preferences only for those operators that 

are not filtered out by symbolic preferences. The symbolic preferences limit the branching factor 

so that reinforcement learning need only learn to distinguish between “good” choices. Although 

these results are not directly related to the core claims of the paper, they demonstrate that there 

can be positive interactions between knowledge that is tuned by RL and other knowledge (the 

heuristics) that is not tuned by RL. 

 The final way in which background knowledge in our agents can influence learning is by 

determining the features that are tested by the value function. Including the heuristics (H) does 

not change the structure of the value function (although it leads to more rules being learned), so 

that the P and PH agents have the same value function structure for updating by RL (but get 

different experiences because of the effect of the heuristics), as do the PM and PMH agents. The 

PM and PMH agents test more features, specifically some related to the bid of the previous 

player, which greatly increase the size of the state space and the number of RL-rules they learn. 

As originally shown in Figures 1 and 2, the types of background knowledge influence the speed 

of learning. In this task, adding the tests related to the bid of the previous player slows learning. 

Our hypothesis is that this is because there are many more rules learned when those features are 

included so that the PM and PMH agents do not get as many updates from RL for their rules. The 

results suggest that the extra advantages of having a fine-grained value functions are outweighed 

by the lack of updates. This could be because the finer-grained value functions really do not 

capture any important distinctions so that the PM and PMH agents are over fitting the problem, or  

it could be because the state space is so large that the PM and PMH agents are not getting 

sufficient updates.  
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We first verify that the PM and PMH agents learn significantly more RL rules than the non- 

M agents do. Figure 5 shows the number of rules learned for the agents from Figure 1  

(approximately an equal number of additional non-RL rules are learned for the PH and PMH 

agents). As expected, the P and PH agents learn the same number of RL rules, as do PM and 

PMH agents, but many more than P and PH. Moreover, the PM and PMH agents are continuing 

to add more rules at a high rate, giving them the potential of continuing to improve and possibly 

achieving better long-term performance, although they would probably require hundreds of 

thousands of more trials.  

To further explore these agents, we examine the number of times the RL-rules are updated. 

One might expect that all rules are equally likely to be updated, because any part of the state 

space is equally likely to be visited. This is not true for two reasons. First, once the agent knows 

that there are actions to avoid, it rarely if ever selects those actions. Both the heuristics and the 

initial expected value estimate provide strong biases away from many actions, restricting which 

ones are updated. Second, every game begins with every player having five dice, where there are 

a huge number of possible states, but every game ends with two players facing off with at least 

one player having a single die, so that at that point, there are only a limited number of states. 

Thus, over the life of the agent, it will experience states with only two players many more times 

than other states, and in terms of states with two players, it will also experience the states where 

each player has only a few dice, both because there are many fewer of them, and because every 

game must end with one player have no dice.  

The combination of these task characteristics lead to an extremely skewed distribution of 

updates across rules as illustrated in Figure 6. The data for this figure are from a short run of the P 

agent, but they are representative of the data from other agents. The figure shows the number of 

updates per rule sorted by number of updates from left to right. The y-axis is logarithmic and 

shows the extreme distribution of updates, which is found in all agents. The total number of rules 

in this example is about 30,000 with the majority of them having no updates. (The rules with no 

updates are not displayed in the graph given the logarithmic scale.) An examination of the learned 

rules confirms that the rules with the most updates are for the end game, when there are two 
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agents and one has a single die. These data help explain the fast initial learning in Figure 1 – there 

are a few situations that occur frequently, so learning how to respond in them can significantly 

improve performance; however, beyond those situations, the state space grows rapidly so that 

even though there can be continued improvement for all agents (including P and PH), it will be 

very slow. This also explains why the more detailed state space available in the PM and PMH 

agents does not significantly help them in our experiments. They do improve initially, but given 

their huge state spaces their improvement is very slow because they are rarely returning to a state 

they have experienced in the past.  

6.  Discussion 

The agents in the previous section demonstrate that our approach is effective at incrementally 

determining both the value-function structure and initial values for reinforcement learning. The 

agents demonstrate that computing the estimate for the expected value using background 

knowledge is useful in the dice domain and that knowledge is converted into a form that is then 

usefully updated by RL through experience. The effectiveness of using background knowledge to 

determine the structure of the value function is less clear. All agents do learn quickly with the 

defined value functions, but there are clearly tradeoffs between the specificity of the value 

function and the speed of learning. We will return to this issue later.  

In terms of the original challenges, our approach meets all of them. The approach is 

knowledge general in that it can use many different forms of background knowledge as described 

in Section 4, with multiple forms of background knowledge demonstrated in Section 5. That 

section also demonstrated that the approach is flexible enough to incorporate heuristic knowledge 

that is not directly related to expected reward, but which can combine with such knowledge, as in 

the PH agent. It is task general. Although we have focused on one task, this approach has been 

used on other tasks with different types of background knowledge. It can be used in any task in 

which there is background knowledge that produces an estimate of future reward, although its 

effectiveness depends on the quality of that background knowledge. Finally, the approach does 

not disrupt agent processing nor require any redesign of the agent’s original knowledge, at least 

within the confines of how agents are developed within the problem-space computational model 

of the Soar architecture. The agents used in Section 5 were originally developed as non-learning 

agents before we conceived of the learning approach described in this paper. With only minimal 

Figure 6. Number of updates for rules during run of the P agent. 

  

1

10

100

1000

10000

0 5000 10000 15000 20000 25000 30000

N
u

m
b

e
r 

o
f 

U
p

d
a

te
s 

Rules Sorted by Number of Updates 



 

 

J. LAIRD, N. DERBINSKY, AND M. TINKERHESS 

 

 

236 

 

 

changes and the enabling of chunking and reinforcement learning, they were used to generate the 

data as reported in the figures.  

This approach did not have any impact on the reactivity of the agents. The inclusion of 

chunking, reinforcement learning, or the addition of hundreds of thousands of rules did not 

significantly increase Soar’s cycle time (which is < 1 msec.). In contrast to other architectures, 

where additional knowledge can slow execution and lead to a utility problem (Minton, 1990), 

Soar’s rule matching scales well, even to millions of rules (Doorenbos, 1994). There is a memory 

cost associated with each new rule (about 1K), and we have developed a forgetting mechanism 

that uses base-level activation to identify rules that can be forgotten, thereby significantly 

decreasing the memory footprint of our agents (Derbinsky & Laird, in press).  

Although we evaluated our agent in three-player games, our agent can play in games with any 

number of players because there is no fixed value function that must be expanded as more players 

are included. The reasoning for making and evaluating bids uses the current number of players 

and their available dice, how many ever there are. However, as in the current agent, the value of 

reinforcement learning will be minimal when there are large numbers of dice in play because the 

state space is so large, so that the agent’s performance will be determined by the probability 

calculations, the heuristics, and the agent model.  

The structure of the Soar architecture was instrumental in realizing this approach. The key 

components are: production rules for preference-based decision making, which support relational 

representations of the value function and a distributed, non-tabular value function; impasse-driven 

subgoaling, so that background knowledge is used only when RL-rules have not yet been learned 

for a situation; the ability to use deliberately computed expected values for operator selection; 

chunking which dynamically compiles the use of background knowledge into the value function; 

and reinforcement learning, which updates the RL-rules.  

Our approach could potentially be used in other architectures, but they must support the 

capabilities described above. For example, they must have a way of deliberately evaluating bids 

using background knowledge and then converting a declarative representation of the value of the 

task operator into a form that can be updated by RL. Clarion does have two levels of reasoning: a 

symbolic level with declarative structures and a lower level neural network. ACT-R has a 

production compilation mechanism that can convert multiple rule firings that process declarative 

structures into a single rule; however, its representation of the expected value is the rule’s 

activation. Our approach requires the conversion of a declarative structure (e.g., the probability 

estimate in the dice game) into the expected value used for decision making. This would involve 

converting the declarative value from the symbolic processing in Clarion into a form where it 

initializes neural connections. In ACT-R, this would involve converting the declarative value 

represented in working memory into a form where it initializes the activation of a new rule. Based 

on our understanding, neither of these conversions is currently possible in these architectures and 

allowing them would require significant changes.   

This work also raises issues for future research. First, incorporating more background 

knowledge can lead to slower learning because it can define a much larger space for learning. 

This was demonstrated in our experiment by the addition of the opponent model, which improved 

initial performance, but by testing additional features, it led to a significant increase in the 

specificity of the rules that represented the value function. The more accurate initial probability 

estimates were offset by slower learning. More broadly, in this approach, an agent is a prisoner to 

the distinctions made by its background knowledge. At one extreme, if the background 
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knowledge incorporates too many features, learning via RL is slowed. At the other extreme, if the 

background knowledge makes insufficient distinctions, performance and learning will be poor. 

Because of these issues, we are actively investigating methods that start with general 

background knowledge, and then incrementally incorporate more detailed knowledge for those 

decisions where the initially learned value function is not sufficiently discriminating. For 

example, an agent might initially use its background knowledge to compute probabilities but 

ignore the previous bid. This will lead to a smaller value function and fast initial learning. 

However, for those decisions where the value function does not converge (the magnitude of 

updates are significantly above average), additional background knowledge (such as the model of 

the previous player) could be used to learn more a specific value function. With this approach, the 

agent could deliberately reason about what features should be added to the value function, thus 

performing automated feature engineering. This would lead to a non-uniform hierarchical tile-

coding, and require changes to how impasses are determined in Soar. This research draws on 

prior work on non-relational hierarchical tile coding (Munos & Moore, 1999; Reynolds, 2000; 

Whiteson, Taylor, & Stone, 2007).  

Another line of research is to explore how the agent can learn (possibly with completely new 

techniques) the types of background knowledge provided to our agents, which in the dice game 

included symbolic heuristics not easily captured by reinforcement learning, the knowledge that 

probability calculations would be useful for this task, and the opponent model knowledge.  
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