
Advances in Cognitive Systems 2 (2012) 149-166 Submitted 9/2012; published 12/2012

Efficient Complex Skill Acquisition
Through Representation Learning

Nan Li NLI1@CS.CMU.EDU

Abraham J. Schreiber ABRAHAMJSCHREIBER@GMAIL.COM

William W. Cohen WCOHEN@CS.CMU.EDU

Kenneth R. Koedinger KOEDINGER@CMU.EDU

School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA 15213
USA

Abstract
One of the fundamental goals of artificial intelligence is to understand and develop intelligent agents
that simulate human-level intelligence. A lot of effort has been made to develop intelligent agents
that simulate human learning of math and science, e.g., for use in cognitive tutors. However, con-
structing such a learning agent currently requires manual encoding of prior domain knowledge for
each domain and even for each level of problem difficulty, which hurts the generality of the learning
agent and is less cognitively plausible. Li et al. (2012) recently proposed an efficient algorithm that
acquires representation knowledge in the form of “deep features,” and use the acquired representa-
tion to automatically generate feature predicates to assist future learning. The authors demonstrated
the generality of the proposed approach across multiple domains. The results showed that by inte-
grating this algorithm into a simulated student, SimStudent, the extended agent achieves efficient
skill acquisition, while requiring less prior knowledge engineering effort, and being a more realistic
model of the state of prior knowledge of novice algebra students. In this work, we further explore
the generality of the proposed approach within one domain, but across multiple difficulty levels.
The results indicates that the new, extended SimStudent is able to acquire skill knowledge of harder
problems using only its learned problem representations, while the original SimStudent requires
its domain-specific prior knowledge to be engineered explicitly to handle these harder problems.
The extended SimStudent’s performance is shown to match and even exceed the original as the
complexity of problems increases.

1. Introduction

One of the fundamental goals of artificial intelligence is to understand and develop intelligent agents
that simulate human-like intelligence. A large amount of effort (e.g., Laird, Newell, & Rosenbloom,
1987; Anderson, 1993; Langley & Choi, 2006) has been put toward this challenging task. Further,
education in the 21st century will be increasingly about helping students not just to learn content,
but also to become better learners. Thus, we have a second goal of improving our understanding
of how humans acquire knowledge and how students vary in their abilities to learn. These goals
are inherently interrelated. Our understanding of the way real students learn informs our design
of intelligent learning agents, and intelligent agents help improve our teaching methodology by
allowing us to examine models of student learning in a controlled setting.

c© 2012 Cognitive Systems Foundation. All rights reserved.

N. LI, A. SCHREIBER, W. COHEN, AND K. KOEDINGER

To contribute to both goals, considerable efforts (e.g., Neves, 1985; Anzai & Simon, 1979;
Matsuda et al., 2009; Vanlehn, Ohlsson, & Nason, 1994; Langley & Choi, 2006) have been made
to develop intelligent agents that model human learning of math, science, or a second language.
Although such agents produce intelligent behavior with less human knowledge engineering than
before, there remains a non-trivial element of knowledge engineering in the encoding of the prior
domain knowledge. Such prior knowledge includes encoding how to extract a coefficient from an
expression, how to correctly parse a given equation (e.g., −3x = 6), and so on. Giving imperfect or
insufficient prior knowledge often leads to unsuccessful learning. Having to hard code prior knowl-
edge increases the difficulty of constructing an intelligent agent, since manual encoding of prior
knowledge is often time-consuming, error-prone, and not reusable across learning tasks and across
domains. It also reduces the cognitive plausibility of the constructed agent, as human students en-
tering a course do not necessarily have substantial domain-specific or domain-relevant prior knowl-
edge. An intelligent agent that requires only domain-independent prior knowledge (across learning
tasks, and across domains) would be a great improvement.

Li et al. (2010) have recently reported a learning algorithm that acquires world state represen-
tations automatically with only domain-independent knowledge (e.g., what is an integer) as input.
Previous work in cognitive science (Chi, Feltovich, & Glaser, 1981; Chase & Simon, 1973) showed
that different prior knowledge of world state representation is one of the key factors that differenti-
ates experts and novices in a field. Experts view the world in terms of deep functional features (e.g.,
coefficient and constant in algebra), while novices only view it in terms of shallow perceptual fea-
tures (e.g., integer in an expression). While deep features can take many different forms, they often
act as hidden layers between the raw input and the solution. More specifically, deep features are de-
rived from raw input or shallower features by a non-trivial computational process (e.g., non-linear
functions, complex logic functions), and are then used to calculate the solution through another
non-trivial process. They ease the learning task of the system by serving as the bridge between the
raw input and the solution. Ideally, deep features are general across problems, and are associated
with some interpretable meaning. In contrast, shallow features can often be derived from the raw
input relatively easy, but may make the learning process from shallow features to the solution much
harder than the deep features do.

Therefore, learning and effectively using such “deep features” are essential in modeling human-
like intelligence. Li et al. (2012) made use of the acquired representation knowledge to automatically
generate feature predicates, and integrated this deep feature learner into a learning agent, SimStu-
dent (Matsuda et al., 2009). The authors evaluated the “breadth” of the proposed approach in three
domains: fraction addition, equation solving, and stoichiometry. Results show that the new SimStu-
dent requires a much smaller amount of prior knowledge encoding effort than the old SimStudent,
while maintaining as good or better performance. Moreover, the extended SimStudent can be used
to discover student models that fit with human student data better than the ones found by experts (Li
et al., 2011).

In this paper, we further evaluate the “depth” of the proposed approach, by training SimStudent
on sequences of problems of increasing difficulty. The main claim of the paper is that by integrating
representation learning into skill learning, we are able to develop intelligent agents that learn to
solve both easy and hard problems, which (1) require less knowledge engineering effort, and (2)

150

SKILL ACQUISITION THROUGH REPRESENTATION LEARNING

Figure 1. The interface through which SimStudent is tutored in an equation solving domain.

maintain equally good performance, compared with human-engineered intelligent agents. Problem
representations/eatures are used to learn skill knowledge for simpler problems. This skill knowledge
is then automatically built upon to develop a SimStudent capable of representing and solving much
more complicated problems. This process is performed without manually constructed extensions to
prior domain knowledge as required by the original SimStudent. The results further indicate that
while the original SimStudent given human-engineered prior domain knowledge performed better
than the extended SimStudent without prior domain knowledge on easier problems, it performs
worse on the harder problems, due to the fact that the human-engineered prior domain knowledge
was built for easier problems, and is not easily extensible to harder ones.

2. A Brief Review of SimStudent

Before detailing how the learned deep feature representation is incorporated into SimStudent, let’s
first review SimStudent’s basic architecture. SimStudent is an intelligent agent that inductively
learns skills to solve problems from demonstrated solutions and problem solving experience. It is
an extension of programming by demonstration (Lau & Weld, 1999) using inductive logic program-
ming (Muggleton & de Raedt, 1994) as underlying learning techniques. Figure 1 shows a screenshot
of the interface used to tutor SimStudent to solve algebra equations.

2.1 Knowledge Representation

Skill knowledge in SimStudent is represented as a set of production rules. Figure 2 shows an ex-
ample of a production rule learned by SimStudent in a readable format.1 There are three parts in a
production rule: the perceptual information part (where to obtain the data needed), the precondition
part (when to apply the skill), and the operator sequence part (how to perform the skill). The rule to
“divide both sides of −3x = 6 by −3,” shown at the left side of Figure 2, would be read as “given
a left-hand side (i.e., −3x) and a right-hand side (6) of the equation, when the left-hand side does

1. Actual production rules are implemented using Jess, a rule engine for Java.

151

N. LI, A. SCHREIBER, W. COHEN, AND K. KOEDINGER

•  Original:
•  Skill divide (e.g. -3x = 6)
•  Perceptual information:

•  Left side (-3x)
•  Right side (6)

•  Precondition:
•  Not has-constant-term

(-3x)
•  Operator sequence:

•  Get coefficient (-3) of left
side (-3x)

•  Divide both sides with
the coefficient (-3)

•  Extended:
•  Skill divide (e.g. -3x = 6)
•  Perceptual information:

•  Left side (-3, -3x)
•  Right side (6)

•  Precondition:
•  Not has-constant-term (-3x)
•  Is-2nd-tree-level-1st-descendent-of

(-3, -3x) [is-left-child-of (-3,-3x)]
•  Is-symbol-SignedNumber (-3, -3x)

[is-signed-number (-3, -3x)]
•  Operator sequence:

•  Get coefficient (-3) of left side (-3x)
•  Divide both sides with the coefficient (-3)

Figure 2. Original and extended production rules for the divide operation.

not have a constant term, get the coefficient of the term at the left-hand side and divide both sides
by the coefficient.” The where and when portions of a rule, taken together, make up the if-part of
the rule, while the how portion makes up the then-part. On the right in Figure 2 is a functionally
similar production rule acquired with the addition of perceptual representation learning (described
in Section 4.1), and feature predicate learning (in Section 4.2).

2.2 Learning by Tutoring

SimStudent learns its production rules in much the same way a human student learns to solve prob-
lems along side a tutor who assists them. Table 1 describes SimStudent’s algorithm for learning by
tutoring in this fashion.

For each problem step (e.g., −3x = 6), SimStudent first tries the problem step itself as a real
student would, before requesting assistance. Based on the skill knowledge it has acquired so far, it
proposes a next step if possible. If SimStudent finds a next action and the tutor gives positive feed-
back that it is correct, SimStudent’s existing skill knowledge is reinforced using this new example
and SimStudent continues on with the problem. If the proposed next action is not correct and the
tutor gives negative feedback, SimStudent integrates this negative example into it’s knowledge of
the skill which it applied incorrectly. If all SimStudent’s attempts are wrong or it cannot find any
applicable skill and it doesn’t know what to do, it enlists help from a tutor.2 The tutor demonstrates
how to apply a skill by providing the correct next action and indicating where SimStudent should
focus its attention for information relevant to this skill. SimStudent then updates its skill knowledge
to incorporate this new training example, which may be a new example of a skill SimStudent has
already begun learning or a new skill entirely.

2. Although other feedback mechanisms are also possible, in our case, the feedback is given by automatic tutors, that
have been used to teach real students.

152

SKILL ACQUISITION THROUGH REPRESENTATION LEARNING

Table 1. SimStudent’s algorithm for learning by tutoring.

1. Let R be the existing set of rules. Let R′ ⊆ R be the set of rules which are applicable to the current
problem state.

2. Until a correct rule application is found or we have run out of rule applications, attempt an application
of a rule r ∈ R′.

2.1 Let V be the set of values in the focus of attention in the current application of rule r.
2.2 If the current application of rule r produces a correct next step, add V as a positive example of

a tuple used in applying rule r. For each r∗ ∈ R s.t. r∗ 6= r, add V as a negative example of a
tuple used in applying rule r∗, iff |V | is the same as the cardinality of example tuples of r∗.

2.3 If r produces an incorrect next step, add V as a negative example of a tuple used in rule r.
2.4 Update the if-part of rules with new positive or negative examples.

3. If a rule is correct, proceed to the next problem step by applying the correct rule.
4. If a rule is incorrect, request and input an example of a correct next step.

4.1 Let I be the demonstrated correct step. Let S be the name of the problem-solving skill demon-
strated in I . Let V be the set of values from the focus of attention in I .

4.2 Let Rs ⊆ R be existing rules for skill S. Until a rule is successfully updated or the agent runs
out of rules for skill S, attempt to update both the if-part and then-part of rsi ∈ Rs so that it is
applicable to the current problem state and when applied, produces the result demonstrated in I .

4.2.1 If rule rsi is updated successfully, add V as a positive example of a tuple used in applying
rule rsi . For each r∗ ∈ R s.t. r∗ 6= rsi , add V as a negative example of a tuple used in
applying rule r∗, iff |V | is the same as the cardinality of example tuples of r∗.

4.3 If no rule has been successfully updated, create a new rule rsn+1
using the information from

instruction I , where n is the number of existing rules for skill S. For each r∗ ∈ R, add V as
a negative example of a tuple used in applying rule r∗, iff |V | is the same as the cardinality of
example tuples of r∗.

4.4 Add rsn+1 to the set of of rules R and proceed to the next problem step as shown by instruction
I and as results by applying the new rule rsn+1

.

2.3 Learning Mechanisms

Each of the three portions of SimStudent’s rules have their own learning mechanisms, which are
used together to create and update rules. Though the algorithms themselves operate independently,
their effectiveness is bolstered by their use together, as detailed within their respective sections.

2.3.1 Perceptual Learning

The “where” learner acquires the perceptual information portion of a rule by finding paths which
identify useful information in the GUI. These pieces of useful information, percepts, are observed
within the GUI elements, such as cells/textboxes. Elements of a problem, and its associated user-
interface, of which the system is aware, are called working memory elements. These elements are
organized in a hierarchical, tree structure with the problem at the root. Within the hierarchy, there
reside more specific elements of the user interface used in the problem domain. For example, the

153

N. LI, A. SCHREIBER, W. COHEN, AND K. KOEDINGER

table node has columns as children, and each column has multiple cells as children. Each element
is covered by a set of paths ranging from specific to general. For instance, consider a cell in the
second row of the first column, Cell 21. The possible paths to Cell 21 are: (1) the exact path to the
cell, PCell21, (2) the generalized path to any cell in row 2 or column 1, PCell2? or PCell?1, and (3)
the most general path to any cell in the table, PCell??.

Because working memory elements are organized in a tree format, for all working memory
elements there exists a single, specific path from the root to that element. Any such path can then be
obtained via a straight-forward search procedure. A generalized path to multiple working memory
elements can be expressed using multivariables whose names are prefixed by a ‘$’. For example,
“?var1 <- (table (columns $?m1 ?var2 $?))” denotes that ?var1 may be any column in the table.
This is accomplished using the named multivariable $?m1 and anonymous multivariable $?, each
of which may match any number of columns, including none at all. So to describe that ?var2 is any
column in the table, we say that ?var2 is a column that is preceded by any number of columns and
followed by any number of columns.

Each training example provides a list of GUI elements that are useful in generating the next
action. For example, (Cell 21, Cell 22) is a list of cells from one training example for the skill
“divide”. The learning process for locating working memory elements proceeds from specific to
general. The learner uses a brute-force depth-first search algorithm to find the most specific paths
that cover all training examples. If we have received three training examples of skill “divide”, (Cell
21, Cell 22), (Cell 11, Cell 12), and (Cell 51, Cell 52), the most specific paths that cover these
training examples are (PCell?1 and PCell?2). Each exactly specifies one portion of the location, either
the column or the row, while expressing that the other portion of the location could be anywhere.
While the ability to generalize the location of a cell as anywhere within a column or row is powerful,
there are other types of generalizations pertaining to location that are not directly handled using
multivariabes. For instance, expressing that two cells are in different rows is not expressed in this
way. For restrictions such as these, the “when” portion of a rule compliments the “where.”

2.3.2 Precondition Learning

The “when” section of a rule describes a set of preconditions to be met indicating that this is an
appropriate time to apply the rule. Conditions for applying a rule are expressed in terms of feature
predicates. Each feature predicate is a boolean function that describes relations among objects in
the domain or among elements of the GUI. For example, (has-coefficient −3x) means −3x has
a coefficient. Similarly, (same-row ?var1 ?var2) means that ?var1 and ?var2 are cells in the table
which occur in the same row, without requiring them to be in any specific row. If the paths to cells
?var1 and ?var2 are PCell?2 and PCell?3, as found by the perceptual learner, then ?var1 and ?var2
must be in the second and third columns and in the same row. This is an example in which the
“when” learner strengthens the “where” learner.

The precondition learner employs an inductive logic programming system, FOIL (Quinlan,
1990) to acquire a set of features that describe the desired situation in which to fire the produc-
tion rule. FOIL is a concept learner that acquires Horn clauses that separate positive examples from
negative examples. For instance, (precondition-divide ?percept1 ?percept2) is the precondition pred-
icate to be learned for the production rule named “divide.” (precondition-divide -3x 6) is a positive

154

SKILL ACQUISITION THROUGH REPRESENTATION LEARNING

example since when we have −3x on one side of the equation and 6 on the other side, we would
like to divide both sides by −3. (precondition-divide 2x + 4 6) is a negative example since when
we have 2x + 4 on one side of the equation and 6 on the other, we would like to subtract 4. For
all values that have appeared in the training examples (e.g., −3x, 6, 2x + 4), we test the truthful-
ness of the feature predicates given all possible permutations of the observed values. For the feature
predicate (has-coefficient ?val0), (has-coefficient −3x) is true, and (has-coefficient 2x+ 4) is false.
Given these inputs, FOIL will acquire a set of clauses formed by feature predicates describing the
precondition. In the case of skill “divide,” the feature test learned is (not (has-constant-term ?val0)).
The “when” learning process proceeds from general to specific. FOIL starts from an empty feature
test set, and grows the test set gradually until all of the training examples have been covered.

2.3.3 Operator Sequence Learning

The “how” learner is given a set of basic transformations (e.g., add two numbers) called operator
functions that can be applied to the problem. If the conditions of the “when” part are met by the
percepts identified in the “where” part, the “how” part seeks to find a sequence of operator functions
that generates the correct next step. For each training example Ti, the learner takes the percepts,
perceptsi, as the input, and the step, stepi, as the output. We say an operator function sequence
explains a percepts-step pair, 〈perceptsi, stepi〉, if the system takes perceptsi as input and yields
stepi after applying the operator function sequence. The operator function sequence (coefficient
−3x ?coef) (divide ?coef) is a possible explanation for 〈(−3x, 6), (divide −3)〉. Given all training
examples for some skill, the learner attempts to find a shortest operator function sequence that
explains all of the 〈percepts, step〉 pairs using iterative-deepening depth-first search.

Should the operator sequence learner fail to find a single operator sequence which explains all
examples, a new rule is created to handle those examples not explained by the operator sequence
used previously. Not all operator functions can be usefully applied to all inputs. Consider an op-
erator get-variable which returns the variable within the equation provided as input. Applying this
variable to an input which does not contain a variable, such as (get-variable 12) makes little sense.
Restrictions placed on the types of inputs to which operators can be applied to limit the space of
operator sequences which must be searched. These restrictions also augment both the “where” and
“when” learners because although a particular set of precepts may be located by the “where” portion
of a rule and meet the conditions of the “when” portions, the precepts may not be applicable to a
given operator sequence.

Note that operator functions can be divided into two groups, domain-independent operator
functions and domain-specific operator functions. Domain-independent operator functions are ba-
sic skills used across multiple domains (e.g., adding two numbers, (add 1 2), copying a string,
(copy−3x)). Human students usually have knowledge of these simple skills prior to class. Domain-
specific operator functions, on the other hand, are more complicated skills, such as getting the coef-
ficient of a term, (coefficient−3x) and adding two terms, (add-term 5x−5 5). Human students may
not have enough domain expertise to perform these operations prior to taking a class in the domain.
As we will see later, by integrating deep feature learning into SimStudent, the learning agent is able
to achieve comparable performance without domain-specific operator functions.

155

N. LI, A. SCHREIBER, W. COHEN, AND K. KOEDINGER

3 x

MinusSign Number

SignedNumber

Expression

Variable

3 x

MinusSign

Number

S
1

Expression

Variable

Figure 3. Correct (left) and incorrect (right) parse trees for the expression −3x.

3. Deep Feature Learning as Grammar Induction

Li et al. (2010) analyzed the nature of deep feature learning in algebra equation solving, and found
that it could be modeled as a problem of inducing a grammar from a set of observed data (e.g.
equations in algebra). As shown at the left side of Figure 3, the coefficient of −3x can be identified
by extracting the signed number before a variable in the parse tree. Table 2 shows a context-free
grammar that generates the parse tree.3 The deep feature “coefficient” then becomes a non-terminal
symbol in the grammar rule used to produce this parse. Viewing feature learning tasks as a grammar
induction problem also explains many of the causes of student errors. For example, if the learning
algorithm incorrectly learned the parse tree shown the right side of Figure 3, it will consider 3 as
the coefficient, which is one of the most frequently observed errors in human student data.

To support deep feature learning, Li et al. extended an existing probabilistic context-free gram-
mar (pCFG) learner (Li, Kambhampati, & Yoon, 2009). Specifically, this learner implemented a
variant of the inside-outside algorithm (Lari & Young, 1990). The input to the pCFG learner is a
set of observation sequences. Each sequence is a string of characters obtained directly from user
input (e.g.,−3x). The output is a pCFG that can generate all observation sequences with high prob-
abilities. The system consists of two parts, a greedy structure hypothesizer (GSH), which creates
non-terminal symbols and associated grammar rules as needed to cover all the training examples,
and a Viterbi training step, which iteratively refines the probabilities of the grammar rules.

For example, as shown in Figure 4, the pCFG learner is given three examples, 2, −5, and −3x,
and it knows that 2, 3, and 5 are numbers. In the first step, the structure hypothesizer finds that
the 〈MinusSign, Number〉 pair appears more often than the 〈Number, Variable〉 pair. It creates a
rule that reduces an automatically-generated non-terminal symbol, SignedNumber, into MinusSign
and Number. This procedure continues until every training example has at least one parse tree,
as shown in Figure 4. The hypothesized grammar rules as presented in Figure 5 are then sent to
the Viterbi training step, where the probabilities associated with grammar rules are refined, and
redundant grammar rules are removed.

Learning the pCFG alone is not enough, however. Deep features must be associated with symbol-
rule pairs in a learned grammar, which upon initial construction contains only arbitrary symbols. In
order to accurately associate deep features, the system is given pairs of values, such as 〈−3x, −3〉,

3. The nonterminal names were manually added here to make the discussion more readable. These would normally be
arbitrary identifiers generated by the grammar induction algorithm until assigned a deep feature label later.

156

SKILL ACQUISITION THROUGH REPRESENTATION LEARNING

3 x

MinusSign Number

SignedNumber

Expression

Variable

5

MinusSign Number

SignedNumber

2

Number

SignedNumber

ExpressionExpression

Figure 4. Candidate parse trees constructed during learning in algebra.

which are examples of a particular deep feature. Here we are considering the deep feature coefficient.
The first element is an example sequence in which the second element should be considered a coef-
ficient. Parse trees of the observation sequences used to produce the grammar are examined to locate
the symbol most often associated with the deep feature and the rule in which the symbol occurs. For
instance, if the most input records match with SignedNumber in Expression → 0.33, SignedNum-
ber Variable, this symbol-rule pair will be considered as the target feature pattern.

... x

MinusSign Number

SignedNumber

Expression

Variable

Number

...

Figure 5. Example context free grammar constructed during learning in algebra.

Simple grammars incorporating deep features, constructed in this way, can be used as building
blocks in the creation of more complex grammars, transferring the knowledge of the simpler gram-
mar to the more complex one. Given a previously constructed grammar for signed numbers, we
construct a grammar for simple algebra problems in the following manner. First, partial parses of
the set of observation sequences for algebra are produced using the grammar for signed numbers. If
−3x were one of our observation sequences for algebra, we would be able to obtain a partial parse in
(SignedNumber x) as shown in red in Figure 4. The existing grammar for signed numbers success-
fully parses −3. Each observation sequence for simple algebra is processed this way. The original
algorithm used in producing the pCFG is then run on the new sequences after having been reduced
by the partial parse. The result of this subsequent pCFG construction is a grammar for simple alge-
bra problems that includes our previously acquired grammar for signed numbers as a subgrammar
as shown in Table 2. Analogously, a grammar for complex algebra problems is produced from one
for simple problems. In this way, a grammar for complex algebra problems is incrementally built up
from one for numbers and simpler problems.

157

N. LI, A. SCHREIBER, W. COHEN, AND K. KOEDINGER

Table 2. Probabilistic context-free grammar for coefficients in algebraic equations.

Terminal symbols: −, x, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
Non-terminal symbols: Expression, SignedNumber,

V ariable,MinusSign,Number;
Expression→ 0.33, [SignedNumber] V ariable
Expression→ 0.67, SignedNumber
V ariable→ 1.0, x
SignedNumber → 0.5, MinusSign Number
SignedNumber → 0.5, Number
Number → 0.091, Number Number
Number → 0.091, 0
Number → 0.091, 1
Number → 0.091, 2
Number → 0.091, 3
Number → 0.091, 4
Number → 0.091, 5
Number → 0.091, 6
Number → 0.091, 7
Number → 0.091, 8
Number → 0.091, 9
MinusSign→ 1.0, −

4. SimStudent with Integrated Deep Features

Having built the deep feature learner and used it to acquire a grammar for algebra problems, we
now have a means of extending greatly the problem representations available to SimStudent. Al-
gebra problems, and portions thereof, may be converted from string representations to parse tree
representations using a parser and our learned grammar. These parse trees provide a “problem topol-
ogy” which can be incorporated into SimStudent’s perceptual learner, as we will explain later. The
problem topology can be further used to automatically generate feature predicates. This automatic
generation could eliminate the need for authors/developers to hand code complex domain-specific
predicates like (has-constant-term ?var0) (see precondition in Figure 2).When parse trees produced
by the grammar are incorporated into SimStudent, previous work has shown that the number and
complexity of operators necessary for skill acquisition is greatly reduced (Li, Cohen, & Koedinger,
2012). Integrating the feature learner into SimStudent reduces the amount of prior knowledge engi-
neering needed and results in a more psychologically plausible model of human students.

4.1 Extended Perceptual Learning

As mentioned in the perceptual learning section of the description of the original SimStudent, GUI
elements are organized into a tree structure with individual cells or textboxes at the leaf nodes. The
entire contents of a cell at a leaf node is the smallest grained working memory element of the orig-
inal SimStudent. Interaction with the contents of an individual cell occurs only within hand-coded,

158

SKILL ACQUISITION THROUGH REPRESENTATION LEARNING

predefined operators or feature predicates. To incorporate the problem representations acquired by
the deep feature learner into SimStudent, we extended the memory element hierarchy. The parse
trees for each cell’s contents are attached to the working memory element of the leaf nodes (cells).

This augmentation of SimStudent’s working memory brings with it some design challenges. In
the original SimStudent, the number and location of working memory elements are fixed throughout
an individual problem and even across multiple problems in the same domain. That is, the textboxes
are in the same location regardless of where you are within a problem or of the problem on which
you are working. In extended SimStudent, working memory elements are added dynamically during
the problem solving process and their locations may vary. The path to an individual node in a parse
tree is of variable length, for example, while the path to a textbox is fixed. SimStudent’s perceptual
learner, which generalizes paths to working memory elements, is extended to generalize paths to
individual nodes within a parse tree.

Figure 2 shows a comparison between production rules acquired by the original SimStudent and
the extended SimStudent. As we can see, the coefficient of the left-hand side (i.e.,−3) is included in
the perceptual information portion of the extended production rule. This reflects the way someone
familiar with algebra is able to identify a coefficient by evaluating where it is in the problem.

4.2 Extended Precondition Learning

The structure and labels provided by a deep-feature problem representation provide a wealth of
information about the state of the problem. Further, this information is abstract in that the type of
information (the tree structure and nonterminal symbols corresponding to features) is applicable to
any domain which we can accurately model using a context free grammar. It is natural to think that
these deep features can be used in describing desired situations to fire a production rule, the feature
predicates. In a classroom setting, it is exactly because these deep features are useful in the problem
solving process that they are taught to the students initially. Deep features are thus used to learn the
“when” part of a rule as well. More specifically, using domain-specific information encapsulated
in the deep features of the grammar, we automatically generate a set of predicates that can be used
by the inductive logic programming component. These automatically generated feature predicates
replace manually constructed ones.

There are two main categories of the automatically generated feature predicates: topological
feature predicates, and nonterminal symbol feature predicates. A third category, parse tree relation
feature predicates, considers a combination of the information used in the first two and assists the
inductive logic subcomponent by explicitly providing these combinations. Each of these types of
predicates are applicable to a general context-free grammar and the parse trees it generates.

4.2.1 Topological Feature Predicates

Topological feature predicates examine the location of nodes in a parse tree. To an extent, these loca-
tions are learned by the perceptual learner, but as in the case of the (same-row ?var1 ?var2) predicate
in original SimStudent, these predicates compliment the perceptual leaner by covering topological
conditions not directly handled. Topological feature predicates evaluate whether a node with the
value of its first arguments exists at some location in the parse tree generated from the second ar-
gument (e.g., (is-left-child-of −3 − 3x)). There are four generic topological feature predicates:

159

N. LI, A. SCHREIBER, W. COHEN, AND K. KOEDINGER

(is-descendent-of ?val0 ?val1), (is-nth-descendent-of ?val0 ?val1), (is-tree-level-m-descendent-of
?val0 ?val1) and (is-nth-tree-level-m-descendent-of ?val0 ?val1). These four generic feature predi-
cates are used to generate a wide variety of useful topological constraints based on different n and
m values. A separate, automatically-generated predicate is created for each m between 0 and m-
1 where m is the maximum number of non-terminal symbols on the right side of the rules in the
grammar and for each n, where n is the maximum height of the parse trees encountered.

4.2.2 Nonterminal Symbol Feature Predicates

The second set of automatically generated feature predicates are defined based on the nonterminal
symbols used in the grammar rules. For example, −3 is associated with the nonterminal symbol
SignedNumber based in the grammar shown in Table 2. There are three generic nonterminal sym-
bol feature predicates: (is-symbol-x ?val0 ?val1), (has-symbol-x ?val0 ?val1), and (has-multiple-
symbol-x ?val0 ?val1) where x can be instantiated to any nonterminal symbol in the grammar.

4.2.3 Parse-Tree Relation Feature Predicates

The third class of feature predicates, which focus on parse-tree relations, examine both the positions
of nodes in the tree and their associated symbols. These allow SimStudent to examine the nodes
surrounding the focus of attention in the parse tree and determine if they have a particular symbol
from the grammar associated with them. A generic templates of these predicates is (i-j-relation-is-
symbol-x ?val0 ?val1). This indicates that the nodes are reached by moving up i times in the tree and
then down j times from the focus of attention in order to determine whether a node at that location
has a particular symbol.

4.2.4 An Example

The extended SimStudent can make use of such automatically learned feature predicates to acquire
preconditions of the production rules. As shown in Figure 2, the precondition learned by the orig-
inal SimStudent given domain-specific feature predicates is (not (has-constant-term ?var0)). With
the automatically generated feature predicates, the extended SimStudent instead, uses one topolog-
ical feature predicate (i.e., (is-2nd-tree-level-1st-descendent-of ?var0 var1)), and one nonterminal
symbol feature predicates (i.e., (is-symbol-SignedNumber ?var0 ?var 1)), and replaces the origi-
nal precondition with the combination of these two automatically learned feature predicates. This
combination of automatically generated predicates actually represents a more general precondition
for the skill “divide” than not (has-constant-term ?var0). Consider the slightly more complicated
equation −3(x+4) = 6. There are two promising next steps to take given this equation: “distribute
the −3” to obtain −3x− 12 = 6 or “divide by −3” to obtain x+ 4 = −2. (x+ 4) is located in the
same position in the parse tree for −3(x+ 4) as x is in the parse tree for −3x, and −3 is identified
as a signed number in each. Because the automatically generated predicates can identify these simi-
larities, skill knowledge gained from solving simple problems can be generalized and transferred to
more complex problems.

160

SKILL ACQUISITION THROUGH REPRESENTATION LEARNING

4.3 Learning Extended Operator Sequences

With the parse tree representations of the problem inserted into SimStudent’s working memory, we
have more individual elements which may be used in a possible operator sequence. In the original
SimStudent, the values available to the operator sequence search are limited to the set of values
in the cells specified as the focus of attention. In the extended SimStudent, the operator sequence
search has available to it not only the values in the cells, but also all values represented in the parse
trees produced from the values in the cells. This means that there are far more possible combinations
of values to consider in applying operators.

The addition of finer grained values lets the operator sequence learner find shorter and less
domain-specific operator sequences which still produce the desired result. Operator sequences in
extended SimStudent often operate directly on values below the root of the parse tree for the cell in
which they reside. In the original SimStudent, a domain-specific operator is required to obtain this
value. A example would be the (coefficient −3x) operator in Figure 2. It is unnecessary to have an
operator obtain −3 from −3x when −3 is directly represented in working memory. This value also
provides an additional, more specific piece of information about the focus of attention. When the
operator sequence learner identifies a value in the parse tree that is used in the operator sequence for
a rule, the path to this value is also encoded in the “where” portion of the rule, along with the paths
to the cells themselves. The operator sequence learner thus strengthens the perceptual learner.

5. Experimental Study

To determine whether the skill knowledge of a SimStudent incorporating deep features, obtained
from simple problems, can be transferred to problems of greater complexity, we carried out an ex-
periment in algebra equation solving. Original and extended SimStudents were trained on sequences
of increasingly difficult algebra problems and their performance was compared.

5.1 Experimental Design

Two extended versions of SimStudent were tested in this study, one with only an extension to the
memory element hierarchy and one with automatically generated feature predicates as well. Both
used only a set of domain-independent operators. To construct the extended SimStudents, a deep
feature learner was trained on a series of feature learning tasks (i.e. what is a signed number, what is
a term,what is an expression, what is a complex expression). The learned grammar for algebra prob-
lems obtained from this was then incorporated into SimStudent, as described in the section on Sim-
Student with integrated deep features. The two extensions were compared with an original SimStu-
dent which was provided a set of domain-specific operator functions and feature predicates known
to be useful in algebra equations solving and an original SimStudent with the domain-independent
operator functions and a set of domain-independent feature predicates.

All versions were tutored using an automatic tutor, CTAT (Aleven et al., 2009), which was used
by 71 human students in a classroom study. Four training sets, each consisting of 47 problems
were constructed for use in teaching the SimStudents. Each training set consisted of problems in 4
difficulty categories and ordered in increasing difficulty where the fourth category represents a much

161

N. LI, A. SCHREIBER, W. COHEN, AND K. KOEDINGER

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Number of training problems

A
ll

A
tt

e
m

p
t

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

Orig., Hand−Coded Preds., Domain−Specific Ops.

Orig., Hand−Coded Preds., Domain−General Ops.

Ext., Auto−Generated Preds., Domain−General Ops.

Ext., Hand−Coded Preds., Domain−General Ops.

(a)

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Number of training problems

A
ll

A
tt

e
m

p
t

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

Orig., Hand−Coded Preds.,

Domain−Specific Ops.

Orig., Hand−Coded Preds.,

Domain−General Ops.

Ext., Auto−Generated Preds.,

Domain−General Ops.

Ext., Hand−Coded Preds.,

Domain−General Ops.

(b)

Figure 6. Learning curves of SimStudents in equation solving measured by a) all test problems, b) hard prob-
lems (category 4) only, using all attempt accuracy.

more significant increase in problem difficulty. A separate test set consisting of 19 problems, also of
varying difficulty and with a distribution weighted toward more difficult problems, was constructed
for use in evaluation of performance. Problems for both the training and test sets were likewise
obtained from actual classroom studies.

Measurements: We assessed the accuracy of the SimStudents’ skill acquisition by measuring
each SimStudent’s first attempt accuracy and all attempt accuracy for each step in the test problems.
First attempt accuracy is the percentage of the time which the first action proposed by SimStudent
is correct. Since, for a given problem step, there may be multiple correct courses of action and Sim-
Student may propose more than one action at any given step, a more nuanced measure of accuracy is
required to evaluate SimStudent’s overall mastery of the skills represented in the problem domain.
All attempt accuracy is the number of correct steps proposed by SimStudent, divided by the number
of possible correct steps plus the number of proposed steps which were incorrect.

Last, to measure the amount of domain-specific prior knowledge encoding required for Sim-
Student, we counted the number of lines of Java code used in the implementation.4 There are two
locations where this information is used, the operators and the feature predicates. Each were mea-
sured separately and reported as such.

5.2 Learning Curves

Average learning curves for all attempt accuracy are shown in Figure 6(a). Both extended SimStu-
dents perform similarly to the original SimStudent with domain-specific operators and feature pred-
icates. This is the case in both first attempt and all attempt accuracy. The extended SimStudent with
representation learning and automatically generated predicates achieved a final all attempt accuracy
of 0.81 and first attempt accuracy of 0.83 after all 47 problems, while the extended SimStudent with

4. Although the line of code is not the ideal measurement of knowledge engineering effort due to individual differences
among agent developers, this still serves as a good indication.

162

SKILL ACQUISITION THROUGH REPRESENTATION LEARNING

representation learning and hand-coded domain-specific predicates achieved scores of 0.82 and 0.80
respectively. These are comparable to the original SimStudent with both domain-specific operators
and feature predicates whose accuracy was 0.80 and 0.82. We see that the original SimStudent
when given only the weak operators, as supplied to the extensions, and domain-independent feature
predicates fails to produce any significant level of skill mastery.

5.3 Extensibility to Harder Problems

Through the first three categories of problems, the original SimStudent generally performs better
than the extended versions (0.96 vs. 0.90/0.91 on all attempt accuracy), but it is overtaken by the
extended SimStudents when trained on the hardest problems (0.66 vs. 0.78/0.78 on all attempt ac-
curacy). The learning curves for only hard problems measured by all attempt accuracy are shown in
Figure 6(b). There are two reasons for this disparity. First, the hand-coded, domain-specific opera-
tors were originally designed for the first three categories of problems. Hence, they are not readily
extensible to the harder problems, which causes difficulty during the training process for the origi-
nal SimStudent. The extended SimStudents, on the other hand, are unaffected by errors in the more
complex operators since they use only simple domain-independent operators. Second, as in the case
of the equations −3x = 6 and −3(x+ 4) = 6 in Section 4.2.4, automatically generated predicates
identify abstract similarities in more complex examples. This allows the extended SimStudents to
more easily transfer their previously acquired skill knowledge from simple problems to harder ones.

5.4 Knowledge Engineering Effort

We also compared the lines of code needed to encode the operator functions and feature predicates.
The addition of representation learning reduces the effort in coding operator functions from 2287
lines to only 247 lines. (This replicates results from Li et al. (2012) but with a larger training set that
indicates more difficult problems.) The addition of predicate learning reduces the effort in coding
feature predicates from 1981 lines of code to zero lines. We found that this approach completely
remove the prior need to author feature predicates. Since one of the important applications of Sim-
Student is to enable end-users to create intelligent tutoring systems without heavy programming,
this reduction of programming effort makes SimStudent a better authoring tool for intelligent tutor-
ing system. Moreover, by requiring less prior knowledge engineering, SimStudent becomes a more
complete model of human skill acquisition.

6. Related Work

The primary contribution of this paper is that the representation learning and integration procedure
reduces the amount of knowledge engineering required in constructing such human-like intelligent
agents, and can be extended to harder problems without extra knowledge engineering. Previous work
has shown that “chunking” is an important component of human knowledge acquisition. Theories
of the chunking mechanisms (e.g., Richman, Staszewski, & Simon, 1995; Gobet & Simon, 2000)
have been constructed. Our work is similar, as we also model the acquisition of perceptual chunks
through a kind of deep feature learning, but it differs since the earlier models do not reuse chunks
in later learning.

163

N. LI, A. SCHREIBER, W. COHEN, AND K. KOEDINGER

There has been considerable research on learning within agent architectures, such as Soar (Laird,
Rosenbloom, & Newell, 1986), ACT-R (Taatgen & Lee, 2003), and ICARUS (Langley & Choi,
2006). SimStudent is similar to these architectures in that it also models aspects of the learning pro-
cess in intelligent agents. Unlike those theories, SimStudent puts more emphasis on knowledge-level
learning (cf., Dietterich, 1986) achieved through induction from positive and negative examples. It
is inspired by theories of perceptual chunking and uses grammar induction techniques to improve
knowledge representations that, in turn, facilitate better learning of problem-solving skills.

Another closely related research area is learning procedural knowledge by observing others’ be-
havior. Classical approaches include some algorithms for explanation-based learning (Segre, 1987;
Nejati, Langley, & Konik, 2006; Li et al., 2009), learning apprentices (Mitchell, Mahadevan, &
Steinberg, 1985) and programming by demonstration (Cypher et al., 1993; Lau & Weld, 1999).
Most of these approaches used analytic methods to acquire candidate procedures. However, to the
best of our knowledge, none of them uses a transfer learner to acquire a better representation that
reveals essential perceptual features and to integrate it into an intelligent agent. Ohlsson (2008) re-
views how different learning models are employed during different learning phases in intelligent
systems. Our work on integrating representation learning and skill learning demonstrates how one
learning mechanism can aid other learning processes in an intelligent system. In summary, our re-
search incorporates ideas from a number of earlier lines of research and combines them in a novel
way that produces more effective learning in procedural domains.

7. Concluding Remarks
To sum up, building an intelligent agent that simulates human-level learning is an essential task
in AI and education, but building such systems often requires manual encoding of prior domain
knowledge. Previous effort has shown that by integrating a deep feature learning algorithm into an
intelligent agent, SimStudent, as an extension of the perception module, the extended SimStudent
is able to achieve comparable performance without requiring any domain-specific operator function
as input. In this paper, we further evaluated the “depth” of the proposed approach by training Sim-
Student with problems of increasing complexity. Results show that given a reasonable number (e.g.,
50) of training examples, the extended SimStudent learns as well as the original SimStudent while
not requiring any human-engineered domain-specific prior knowledge.

Until now, we have mainly evaluated our approach in algebra, but the proposed approach is
not limited to this domain. To further explore how representation learning affects skill learning, we
plan to carry out similar experiments in other domains such as fraction addition, stoichiometry, and
second language learning, and test to see whether the same results occur. Moreover, the precondition
learner of SimStudent now uses two separate strategies, an unsupervised module (i.e., deep feature
learning) and a supervised module (i.e., FOIL). We intend to explore whether a single approach
such as deep belief networks (Hinton, 2007) instead would learn faster than the disjoint strategy.
Finally, since the prior knowledge engineering required is reduced, we potentially have a more
psychologically plausible learning agent. To contribute to learning sciences, we would like to use
the extended SimStudent to help us understand human learning better.

164

SKILL ACQUISITION THROUGH REPRESENTATION LEARNING

References

Aleven, V., Mclaren, B. M., Sewall, J., & Koedinger, K. R. (2009). A new paradigm for intelli-
gent tutoring systems: Example-tracing tutors. International Journal of Artificial Intelligence in
Education, 19, 105–154.

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum.

Anzai, Y., & Simon, H. A. (1979). The theory of learning by doing. Psychological Review, 86,
124–140.

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics
problems by experts and novices. Cognitive Science, 5, 121–152.

Cypher, A., Halbert, D. C., Kurlander, D., Lieberman, H., Maulsby, D., Myers, B. A., & Turransky,
A. (Eds.). (1993). Watch what I do: Programming by demonstration. Cambridge, MA: MIT Press.

Dietterich, T. G. (1986). Learning at the knowledge level. Machine Learning, 1, 287–315.

Gobet, F., & Simon, H. A. (2000). Five seconds or sixty? Presentation time in expert memory.
Cognitive Science, 24, 651–682.

Hinton, G. E. (2007). To recognize shapes, first learn to generate images. Progress in brain research,
165, 535–547.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An architecture for general intelli-
gence. Artificial Intelligence, 33, 1–64.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in Soar: The anatomy of a general
learning mechanism. Machine Learning, 1, 11–46.

Langley, P., & Choi, D. (2006). A unified cognitive architecture for physical agents. Proceedings
of the Twenty-First National Conference on Artificial Intelligence (pp. 1469–1474). Boston, MA:
AAAI Press.

Lari, K., & Young, S. J. (1990). The estimation of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and Language, 4, 35–56.

Lau, T., & Weld, D. S. (1999). Programming by demonstration: An inductive learning formulation.
Proceedings of the 1999 International Conference on Intelligence User Interfaces (pp. 145–152).
New York: ACM.

Li, N., Cohen, W. W., & Koedinger, K. R. (2010). A computational model of accelerated future
learning through feature recognition. Proceedings of the Tenth International Conference on In-
telligent Tutoring Systems (pp. 368–370). Pittsburgh: Springer-Verlag.

Li, N., Cohen, W. W., & Koedinger, K. R. (2012). Efficient cross-domain learning of complex
skills. Proceedings of the Eleventh International Conference on Intelligent Tutoring Systems (pp.
493–498). Berlin: Springer-Verlag.

Li, N., Cohen, W. W., Matsuda, N., & Koedinger, K. R. (2011). A machine learning approach
for automatic student model discovery. Proceedings of the Fourth International Conference on
Educational Data Mining (pp. 31–40). Eindhoven, Netherlands.

165

N. LI, A. SCHREIBER, W. COHEN, AND K. KOEDINGER

Li, N., Kambhampati, S., & Yoon, S. (2009). Learning probabilistic hierarchical task networks
to capture user preferences. Proceedings of the Twenty-First International Joint Conference on
Artificial Intelligence (pp. 1754–1759). Pasadena, CA: Morgan Kaufmann Publishers.

Li, N., Stracuzzi, D. J., Langley, P., & Nejati, N. (2009). Learning hierarchical skills from prob-
lem solutions using means-ends analysis. Proceedings of the Thirty-First Annual Meeting of the
Cognitive Science Society. Amsterdam, Netherlands.

Matsuda, N., Lee, A., Cohen, W. W., & Koedinger, K. R. (2009). A computational model of how
learner errors arise from weak prior knowledge. Proceedings of the Annual Meeting of the Cog-
nitive Science Society (pp. 1288–1293). Austin, TX.

Mitchell, T. M., Mahadevan, S., & Steinberg, L. I. (1985). LEAP: A learning apprentice for VLSI
design. Proceedings of the Ninth International Joint Conference on Artificial Intelligence (pp.
573–580). Los Angeles, CA.

Muggleton, S., & de Raedt, L. (1994). Inductive logic programming: Theory and methods. Journal
of Logic Programming, 19, 629–679.

Nejati, N., Langley, P. W., & Konik, T. (2006). Learning hierarchical task networks by observation.
Proceedings of the Twenty-Third International Conference on Machine Learning. Pittsburgh, PA.

Neves, D. M. (1985). Learning procedures from examples and by doing. Proceedings of the Ninth
International Joint Conference on Artificial Intelligence (pp. 624–630). San Francisco: Morgan
Kaufmann.

Ohlsson, S. (2008). Computational models of skill acquisition. Cambridge, UK: Cambridge Uni-
versity Press.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.
Richman, H., Staszewski, J., & Simon, H. (1995). Simulation of expert memory using EPAM IV.

Psychological Review, 102, 305–330.
Segre, A. (1987). A learning apprentice system for mechanical assembly. Proceedings of the Third

IEEE Conference on AI for Applications (pp. 112–117). Orlando, FL.
Taatgen, N. A., & Lee, F. J. (2003). Production compilation: A simple mechanism to model complex

skill acquisition. Human Factors, 45, 61–75.
Vanlehn, K., Ohlsson, S., & Nason, R. (1994). Applications of simulated students: An exploration.

Journal of Artificial Intelligence in Education, 5, 135–175.

166

