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Abstract 
Artificial intelligence started with the goal of understanding minds by attempting to build them.  
This essay discussed how our field’s research has become unbalanced, and what might be done to 
change this situation. Specifically, I argue that more of our efforts should be focused on creating 
integrated cognitive systems. The founding of this journal will hopefully help by promoting such 
research. 

1.  Introduction 
The scientific goal of artificial intelligence is to understand minds by attempting to build them.  Is 
our field doing this as well as it could?  In my view, despite much excellent work and progress, 
our research portfolio, as it were, is unbalanced.  This essay outlines my diagnosis of the problem 
and how we might rebalance our research efforts to be even more productive. I begin by 
examining a common metaphor used to explain our current direction, dissecting it to illustrate the 
problems. Next I argue that we need to spend more of our efforts building integrated cognitive 
systems. Then as an example I describe some specific bets and hypotheses that my group is 
exploring. I close with why this journal will hopefully help the scientific community move 
forward on the goals of artificial intelligence and cognitive science more effectively. 

2. The Cathedral Metaphor 

Understanding minds well enough to create systems that are as intelligent and capable as people 
is not, technological singularity fans aside, around the corner.  On the other hand, a common view 
among AI researchers is that any “real” progress is very far off. A historical analogy is often 
invoked that goes something like this: Building an artificial intelligence is like building a 
cathedral. The first cathedrals took generations, so most working on them would never see the 
final outcome.  Those working on it took pride in their craft, building bricks and chiseling stones 
that would be placed into the Great Edifice. So, as AI researchers, we should think of ourselves as 
humble brick makers, whose job it is to study how to build components (e.g. parsers, planners, 
learning algorithms) that someday someone, somewhere, will integrate into intelligent systems. 

I think this metaphor is inappropriate and counterproductive. First, that is not how humanity 
learned to build cathedrals. We learned how to build cathedrals by constructing buildings, albeit 
simpler ones. First huts and shacks, then houses, warehouses, and ever larger and more complex 
buildings. For any new type of building, there were initially many failures, but as understanding 
grew, the failures dropped off, or at least were more predictable. Many attempts to build 
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cathedrals failed because the properties of materials were not sufficiently well understood at the 
time. As J.E. Gordon (2003) puts it, 

“On the face of it it would seem obvious that the medieval masons knew a great deal 
about how to build churches and cathedrals, and of course they were often highly 
successful and superbly good at it. However, if you had had the chance to ask the 
Master Mason how it was really done and why the thing stood up at all, I think he might 
have said something like ‘The building is kept up by the hand of God – always provided 
that, when we built it, we duly followed the traditional rules and mysteries of our craft. 

Naturally, the buildings we see and admire are those which have survived: in spite 
of their ‘mysteries’ and their skill and experience, the medieval masons were by no 
means always successful. A fair proportion of their more ambitious efforts fell down 
soon after they were built, or sometimes during construction.”  

And as we moved on from cathedrals, and learned to build skyscrapers and bridges and the vast 
kinds of physical infrastructure that underlies our technological civilization, new problems arose 
that then needed to be studied (e.g., why cracks caused ships to catastrophically fail), some of 
which we are still trying to figure out today (e.g., how to rescue people from buildings taller than 
ladders can reach).   

This history also illustrates why the cathedral metaphor is counterproductive.  No amount of 
studying bricks in isolation will tell you the problems involved in constructing cathedrals.  Only 
by using components to build integrated cognitive systems can we start to understand the range of 
problems that are involved in constructing minds. And yet, today, almost all work in artificial 
intelligence falls into the brick-making mold. 

Unfortunately, work in other areas of cognitive science is mostly in a similar state.  Cognitive 
simulations, also called computational models, are computer-based accounts of psychological 
phenomena. A cognitive simulation can show that a particular combination of representations and 
processes provides an explanation of a phenomenon, by reproducing aspects of people’s behavior 
(answers given, reaction times, error patterns) and by successfully predicting aspects of behavior 
not previously observed (Cassimatis et al., 2009). Most researchers focus on models that emulate 
one process or even one step in a process. Such models can indeed be useful. On the other hand, 
Newell (1973) argued eloquently that playing 20 questions with Nature would never converge, 
and that we should build larger-scale models. I agree, adding that, when building models of 
particular processes, we should satisfy the integration constraint (Forbus, 2001): a cognitive 
simulation of a psychological process should be able to serve as a component in simulations of 
larger-scale cognitive processes. Alas, in my experience, cognitive simulation research rarely 
satisfies this constraint. 

Is the Cathedral metaphor simply an unrealistic caricature of thinking in the field?  
Unfortunately, it is not.  For example, consider the following quote from Russell (1997, p. 68): 

“By analyzing and solving each subcase and producing calculatively rational 
mechanisms with the required properties, theoreticians can produce the AI equivalent of 
bricks, beams, and mortar with which AI architects can build the equivalent of 
cathedrals. Unfortunately, many of the basic components are currently missing.  Others 
are so fragile and non-scalable as to be barely able to support their own weight.  This 
presents many opportunities for research of far-reaching impact.” 
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It is important to note that Russell himself is not advocating working only on the bricks: His own 
work includes “an attempt to combine all these new bricks to solve an interesting application 
problem, namely driving a car on a freeway.” Similarly, in Koller’s (2001) Computers and 
Thought lecture, she argued that the right approach to AI is to: 

• Divide the problem into well-defined pieces 
• Make progress on each one 
• Build bridges to create a unified whole 

The problem with this model is that the individual solutions may be too far apart (as Koller 
herself points out), and not stable enough, to support bridges.  For example, most work in 
computational linguistics and machine learning, when it looks at semantics or knowledge at all, 
uses shallow stand-ins, such as WordNet synsets or Wikipedia identifiers.  There is currently little 
evidence that such representations can support the range of reasoning that people exhibit using 
knowledge gleaned from language. As another example, competitions involving SAT solving 
have led to optimizations such as re-organizing the working set of constraints so that it remains in 
CPU’s L2 cache as much as possible (Moskewicz et al., 2001). Such optimizations might be 
valuable for scaling up to large, practical problems, but they seem less likely to be relevant for 
understanding human reasoning.   

Let us imagine a different model. Suppose that the brick-makers are working closely with 
those trying to construct buildings. Furthermore, suppose that many people are trying to construct 
buildings, not just a few. Constructing buildings is hard work: It is expensive, time consuming, 
and requires a wide range of skills and engineering craft.  But I believe that spending more of our 
energies this way would pay off. The feedback cycle would become much faster, becoming 
months or years, instead of “some day”. There is already evidence of the productivity of this 
approach, as illustrated in the next section.  

3.  Rebalancing our Research Portfolio 
I believe that our field needs to put more effort into building integrated cognitive systems that 
attempt to capture larger collections of cognitive abilities. We may not be comfortable calling 
them minds, even very simple minds, but they should be clear steps in that direction. This is 
crucial for scientific progress, since many issues will only arise at broader scales of operation.   

The best examples of this kind of integrated cognitive system are cognitive architectures.  
Most cognitive models, as noted above, focus in on only one process and use approximations for 
the rest of the system that provides their inputs and uses their outputs. Cognitive architectures 
invert this, focusing on how all the pieces might fit together. They explore hypotheses about the 
nature of intelligence via their assumptions about what kinds of components, and what 
interactions among them, are central. Components not covered by the theory are approximated, 
such as sensory-motor systems.   

For example, ACT-R (Anderson & Lebiere, 1998) focuses on modeling skill performance 
and learning, with production rules as its representation for mental procedures, chunks as its 
representation of declarative knowledge, and a compilation process as its main learning process.  
In addition to modeling behavioral data on a wide range of tasks, it has been used to make 
successful predictions about brain activity as measured via fMRI (Anderson, 2007).  Another 
classic cognitive architecture is SOAR (Laird, 2012), which shares the idea of production rules 
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(although the specifics differ significantly from ACT-R) and adds the idea of universal 
subgoaling (Laird & Newell, 1983). SOAR, too, has been used to model a wide variety of 
psychological findings, but it has also been used in a variety of practical applications.  For 
example, SOAR pilots have flown missions in large-scale simulated military exercises side by 
side with human pilots, dealing with many issues, including radio “chatter” (Laird et al., 1998).   

ACT-R and SOAR have been worked on for decades.  Cognitive architecture research is not a 
game for the fickle or faint of heart.  But the benefits are so valuable that a variety of other 
architectures have sprung up, including Clarion (Sun, 2001), ICARUS (Langley & Choi, 2006), 
Polyscheme (Cassimatis, 2006), and our own Companion architecture (Forbus et al., 2009).  As 
Newell (1994) noted, for a long time there will need to be many attempts at building unified 
theories of cognition.  The best way to achieve our goals is to establish a community making 
different bets, so that we collectively explore all of the promising parts of the space. 

There have also been a number of attempts at building intelligent architectures from a purely 
AI perspective, i.e., unfettered by the constraint of handling particular psychological predictions, 
and focusing instead on raw ability in one or more areas.  In reasoning, examples include 
PRODIGY (Veloso et al., 1995), Cyc (Lenat & Guha, 1990), and SNePS (Shapiro, 2000).  Cyc, 
after a quarter-century of development, is now being used in a variety of applications and the 
focus has shifted from hand generation of knowledge to using the knowledge base as a foundation 
for learning systems (Panton et al., 2006).  Several interesting efforts are underway to combine 
deeper reasoning with perception and robotics, often under the rubrics of cognitive vision and/or 
cognitive robotics (e.g. Needham et al., 2005).   

I believe the field needs many more such efforts.  Not everyone needs to work on everything: 
Many important lessons will be learned from architectures whose view on the world is shaped 
only by texts, and by robot architectures that reason little but can survive in the physical world.  
The important thing is that all of them are exploring broader swaths of cognitive processing, 
instead of only studying a single component or process in isolation. 

An extremely interesting example of the importance of integration comes from IBM’s 
Watson effort.  This system is based on their Deep QA hypothesis, which they describe in their 
FAQ  as: “…by complementing classic knowledge-based approaches with recent advances in 
NLP, Information Retrieval, and Machine Learning to interpret and reason over huge volumes of 
widely accessible naturally encoded knowledge (or “unstructured knowledge”) we can build 
effective and adaptable open-domain QA systems.”  

Watson’s performance on the television game Jeopardy! surpassed by far anything else in the 
field of question answering.  The full scientific story behind Watson will be coming out in the 
next few years, as the team publishes papers on its findings, but what is already available 
provides some interesting lessons.  First, learning by reading can indeed be used to bootstrap 
knowledge bases at scale (Fan et al., 2010).  Second, pervasive confidence estimation was an 
essential component of success (Ferrucci et al., 2010).  Neither of these lessons could have been 
learned without actually building Watson.  Third, the Watson effort provides evidence of the 
value of focusing on building integrated systems in improving components. At one point during 
its development, the team’s focus shifted to only evaluating improvements in the system as a 
whole, instead of focusing on individual components in isolation (Baker, 2011).  The components 
now perform better than they did before the start of the effort (Ferrucci, 2012). This suggests that 
the acid test of operating in an integrated environment strengthened their development.   
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To be sure, building integrated systems is not easy.  But it is getting easier, especially as the 
number of architectures under active development grows. More reasonable components are 
becoming available off the shelf, and more architectures available to which component makers 
can add their components. Architecture research can, of course, be done badly. Most architectures 
developed specifically for particular funding programs, for example, tend to vanish when the 
program is over. At best this leaves behind a residue of improved components, albeit with 
substantial resources wasted on engineering. The best architecture efforts arise from scientific 
efforts to explore particular hypotheses, and re-using architectures honed through substantial 
experience seems wiser. 

Other voices in the field have argued for reapportioning our efforts, so as to spend more 
energy building integrated systems. For example, Peter Stone (2007) eloquently argued against 
the cathedral metaphor in his 2007 Computers and Thought talk, giving examples of how 
building task–oriented systems had enriched research on reinforcement learning. That is one 
approach.  In the next section I describe another. 

4.  My Bets 
In science one makes bets about what problems and approaches are the most productive to work 
on. I believe that there are a number of interesting bets that might pay off about constructing 
minds. In this section, I review the bets that our group is making. 

4.1 Build Minds, Not Brains 

Cognitive science is a multidisciplinary effort that combines artificial intelligence, psychology, 
linguistics, philosophy, neuroscience, and anthropology. Its original inspiration was AI’s use of 
computation as a theoretical model: the idea was that computation could serve as a theoretical 
language for bringing these groups together to productively understand minds. I believe these 
other disciplines have a lot to offer us, and I believe we have a lot to offer them in return. 

Marr’s (1982) articulation of levels of explanation provides a valuable methodological lens.  
He described three different levels of cognitive models: 

• Information-level models focus on understanding what needs to be computed and why.  These 
models are often formulated as the constraints that a system ought to satisfy (e.g., Bayesian 
models). 

• Process-level models focus on understanding how to compute things, including both 
representations and the algorithms that operate over them (e.g., ACT-R models of solving 
equations). 

• Implementation-level models focus on how processes are implemented within particular 
substrates (e.g., biological systems). 

Cognitive science seeks models at all three levels, and different methods are better for tackling 
problems at different levels.  For example, Bayesian models in cognitive science typically focus 
on the information level, most symbolic models focus on a combination of the information and 
process levels, and most connectionist models focus on the process and implementation levels.   

While others make different bets, my group focuses on the information and process levels, 
and tends to avoid research at the implementation level.  One reason we avoid this level is that 
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computational modeling of neural systems relies on a scientific understanding of the biology of 
neural systems, an area that is currently in flux.  For example, there is now considerable evidence 
that glial cells, whose total volume in the human brain is equal to that of neurons, play an 
important role in how synapses function (Eroglu & Barres, 2010).   No current connectionist 
modeling system that I am aware of includes glial cells, so these models are at best seriously 
incomplete, and at worst completely wrong.  Computational modeling at this level is an important 
and essential activity, but is best done by those trying to unravel how neural systems work per se.   

An analogy between artificial intelligence and “artificial flight” (Ford & Hayes, 1998) is 
illuminating.  The Wright brothers did not start by trying to understand feathers. Instead, they 
sought the principles underlying flight, what we now call aerodynamics.  As aerodynamics and 
materials became better understood, how feathers worked was ultimately uncovered.  Even so, 
only now are people are starting to build successful flying machines whose wings are, at the 
implementation level, the same as biological systems. I believe the same will be true with 
understanding minds.  That is, we will achieve human-level artificial intelligences first, and this 
will help us understand how brains work, rather than the other way around.  Others are making 
different bets, of course.   

4.2 Sources of Evidence 

One of the strengths of cognitive science research is that many types of evidence can be brought 
to bear to achieve insights.  For example, laboratory studies use instruments as simple as surveys 
and interviews or as complex as eye trackers, EEG, and neural imaging (e.g. fMRI and MEG).  
Field studies, in classrooms and across cultures, yield other kinds of data.   

The popularity of neuroscience today tempts many AI researchers, and cognitive scientists 
more broadly, into over-interpreting imaging results. There is evidence that people are more 
likely to believe a study when there is neuroscience information involved, even when it is 
irrelevant, and that such information can mask logical flaws in the study, especially for non-
experts (Weisberg et al., 2008). There are many excellent scientific uses of neural imaging (e.g., 
Bowden et al., 2005; Chang et al., 2011; Kuhl & Rivera-Gaxiola, 2008 ).  Alas, not all 
practitioners are so careful.  For example, a survey examining methods used in social 
neuroscience studies concluded that as many as half have serious methodological flaws (Vul et 
al., 2009).1 So while imaging studies are already a valuable source of data, we must be careful 
consumers of their results, as with any experimental method. 

Generally the phenomenon under study determines the appropriate kind of evidence.  Newell 
(1990) proposed a decomposition of cognitive phenomena based on time scale: 

• Biological band: 10-4 to 10-2 seconds: organelles to neural circuits 
• Cognitive band: 10-1 to 101 seconds: deliberate acts, basic problem-solving operations 
• Rational band: 102 to 104 seconds (i.e. minutes to hours) 
• Social band: 105 to 107 seconds (i.e. days to months) 

While incomplete in some ways (e.g., development takes far longer and involves biology as well 
as social aspects), the basic point is that different tools are appropriate for studying phenomenon 
                                                
1 Indeed, Bennett et al. (2009) showed that, using the same method as in some prior imaging studies, fMRI 

data could be used to argue that a dead Atlantic salmon can determine what emotion a person in a 
photograph is experiencing. 
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at different time scales.  Neural models tend to focus on the biological and cognitive bands, while 
traditional cognitive architectures focus on the cognitive and rational bands. (Indeed, the 
divergence between work on ACT-R and SOAR can be seen as the former pushing into the 
biological band and the latter pushing into the social band.) Our Companions architecture is 
focused on the rational and social bands, because of our interest in higher-order cognition, 
learning, and conceptual change.  In testing models of conceptual change, for example, interview 
data (Friedman et al., 2011), laboratory data (Friedman & Forbus, 2011) and classroom data 
(Friedman & Forbus, 2010) can all be useful. 

4.3 Kinds of Minds 

Our group is interested in both building models of minds and building useful cognitive systems.  
Our working hypothesis, shared by many others, is that creating cognitive systems that are also 
accurate cognitive models will result in smarter systems.  However, at this point it is very much 
an empirical question: there could be entirely different architectures and methods that lead to 
equal or better flexibility, learning, and performance than anything biology has produced.  
Evolution, after all, does not optimize, and the particular solutions used in biological organisms 
may not be the most efficacious for software organisms.  Even those of us who take clues from 
other fields in cognitive science are generally open to the possibility of deliberately sacrificing 
aspects of psychological plausibility when thinking about applications.  A cognitive system that is 
superhuman in terms of, for example, working memory limitations or accuracy of memory 
retrieval might be less good as a cognitive model, but better as a partner working jointly with 
people.  Building systems that complement our strengths and weaknesses could lead to new kinds 
of cognitive prostheses (Ford et al., 1997). 

Progress in comparative cognition – the comparison of human cognition with that of other 
animals – provides a source of optimism.  In light of this literature, phrases like “the mind” seem 
rather quaint: There are many kinds of minds across the animal kingdom. This suggests that, as 
we continue to attempt to build minds, there will be interesting intermediate points along the way 
to full human capabilities. Human-level AI is a goal, but often phenomena are best understood by 
contrasts. As we get better at building software organisms, comparisons between them and 
biological intelligences will very likely become a productive source of insights, just as 
comparative cognition studies are today.   

4.4 Analogy, Logic, and Statistics: The Three Pillars of Intelligence 

It seems clear that human-level intelligence relies on extremely expressive knowledge 
representations.  (If you doubt this, try to model what it took for you to read and understand this 
sentence and the previous one.) The study of logic began as an attempt to formalize human 
reasoning, and it morphed over the centuries into an unparalleled tool for studying and expressing 
formal arguments.  What kind of logic(s) are needed to capture the range of human reasoning is, 
of course, very much an open question. The statistical revolution in AI brought probabilistic 
methods for inference and learning that provide ways to handle uncertain information.  As the 
IBM Watson effort illustrates, such information is crucial in building complex systems: knowing 
what sources of evidence matter in particular contexts, what methods might be best, how likely is 
an answer produced by a particular method given its inputs.  There are a number of attempts to 
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bring together these two pillars of human intelligence, to bring back our construction metaphor 
(e.g., Domingos et al., 2006; Milch et al., 2007; Rosenbloom 2010).   

I believe these two approaches are incomplete by themselves.  There is a substantial body of 
psychological evidence that analogy is central to human cognition (Gentner, 2003).  By analogy, I 
mean a process of alignment over structured, relational representations, as defined by structure-
mapping theory (Gentner, 1983). Such processes also provide a good model for similarity 
(Gentner & Markman, 1995). Why might analogy be so central?  There are functional properties 
of analogical processing that make it particularly appropriate for intelligent systems.  First, since 
it relies on structured, relational representations, it can handle the expressiveness needed for 
human cognition. Unlike, say, feature vectors or multidimensional spaces, structure-mapping can 
(and has) handled causal models, proofs, explanations, plans, stories, and other rich, complex 
descriptions (e.g., Ouyang & Forbus 2006; Dehghani et al., 2008).  Second, it allows examples to 
be immediately reused, via within-domain analogies.  This by itself is sufficient to achieve near 
transfer over a variety of conditions (Klenk & Forbus, 2009). It can also support deductive and 
abductive reasoning, by importing an entire proof or argument, without extensive chaining.  
Third, it supports incremental generalization, which enables relational abstractions to be learned 
at a faster rate than connectionist or statistical models.  So far, our models learn within the same 
number of examples as required for human learning (e.g. Kuehne et al., 2000, Lockwood et al., 
2008). Moreover, analogy solves one of the core problems implicit in probabilistic models, 
namely determining which aspects of complex stimuli go together (Halstead & Forbus, 2005). As 
analogical generalizations are built up, the frequencies for each statement occurring in it are 
derived, thus grounding priors in experience.   

4.5 Building Social Organisms 

Our current goal for the Companion cognitive architecture is to create software social organisms.  
Why organisms?  One amazing property of minds is their stability. Today’s AI systems tend to 
tread a thin line between catatonia and attention-deficit disorder. They generally cannot survive 
extended bouts of learning, falling prey to either crippling losses of accuracy (Carlson et al., 
2010) or to filling up their memories with useless material. Thinking of software as an organism 
brings such issues to the forefront.  For example, I suspect that the substrate we share with other 
mammals - e.g., emotions and mechanisms for sensing cognitive state - are part of the solution to 
the stability problem. Importantly, smarter organisms also tend to be social organisms 
(Tomasello, 1999). Perhaps this should not be surprising, since much of our knowledge is learned 
via cultural transmission (Vygotsky, 1962). This suggests that the organisms we build should be 
social ones.  Sociality may offer a robust solution to the accuracy degradation problem, it might 
accelerate the bootstrapping of intelligent systems, and it could make them more effective 
collaborators. Hence it seems very important to explore. 

5.  Conclusions 
I have argued that that more of the field’s efforts should be spent on attempting to build minds.  
These will be very simple minds at first, to be sure, just as the first buildings were shacks and 
lean-tos. Research on particular areas and problems must continue, but with an increased 
awareness of where their solutions might fit in some broader cognitive system. A thriving 
relationship between the brick builders and the building crews will benefit both. 
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The founding of this journal is part of an ongoing attempt to rebalance the field.  It is 
intended to serve as a complement to existing venues, focusing on the issues that arise when 
building cognitive systems, i.e. minds, even if simple minds, or at least capabilities that are 
closely tied to what will be needed to understand minds.  

We have an unprecedented historical opportunity to make significant progress towards the 
goal of artificial intelligence – we have made useful progress in many sub-areas, and the 
resources available (both intellectual and computational) have radically improved (Forbus, 2010).  
Let us take advantage of it. 

Acknowledgements 
This essay has benefited from discussions with Dedre Gentner, John Laird, Paul Rosenbloom, 
Paul Bello, Pat Langley, David Ferrucci, Tom Hinrichs, Andrew Lovett, and Johan de Kleer.  The 
errors remain mine. This essay was written while a Fellow at the Hanse Wissenschaftskolleg, 
with additional support from the Alexander von Humboldt Foundation. 

References 
Anderson, J. R. & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum. 
Anderson, J. R. (2007). Using brain imaging to guide the development of a cognitive architecture. 

In W. D. Gray (Ed.), Integrated models of cognitive systems (pp. 49–62). New York: Oxford 
University Press. 

Baker, S. (2011). Final jeopardy: Man vs. machine and the quest to know everything. Boston: 
Houghton Mifflin Harcourt. 

Carlson, A. Betteridge, J., Kisiel, B., Settles, B., Hruschka, E. R., & Mitchell, T. M. (2010). 
Toward an architecture for never-ending language learning. Proceedings of the Twenty-Fourth 
AAAI Conference on Artificial Intelligence. Atlanta, GA: AAAI Press.  

Cassimatis, N. (2006). A cognitive substrate for human-level intelligence. AI Magazine, 27, 45–
56. 

Cassimatis, N., Bello, P., & Langley, P. (2008). Ability, breadth, and parsimony in computational 
models of higher-order cognition.  Cognitive Science, 32, 1304–1322. 

Chang, K. K., Mitchell, T., & Just, M. A. (2011). Quantitative modeling of the neural 
representation of objects: How semantic feature norms can account for fMRI activation.  
NeuroImage, 56, 716–727. 

Dehghani, M., Tomai, E., Forbus, K., & Klenk, M. (2008). An integrated reasoning approach to 
moral decision-making. Proceedings of the Twenty-Third AAAI Conference on Artificial Intel-
ligence. Chicago: AAAI Press.  

Domingos, P., Kok, S., Poon, H., Richardson, M., & Singla, P. (2006). Unifying logical and 
statistical AI. Proceedings of the Twenty-First National Conference on Artificial Intelligence 
Boston: AAAI Press. 

Eroglu, C., & Barres, B. (2010). Regulation of synaptic connectivity by glia. Nature, 468, 223–
231. 



K. FORBUS 

56 

Fan, J., Ferrucci, D., Gondek, D., & Kalyanpur, A. (2010). PRISMATIC: Inducing knowledge 
from a large scale lexicalized relation resource. NAACL Workshop on Formalisms and 
Methodology for Learning by Reading. Los Angeles, CA. 

Ferrucci, D. (2012). Introduction to “This is Watson”. IBM Journal of Research and 
Development, 54, 1–15. 

Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, J., Murdock, 
W., Nyberg, E., Prager, J., Schlaefer, N., & Welty, C. (2010). Building Watson: An overview 
of the Deep QA project. AI Magazine, 31, 59–79.  

Forbus, K. (2010). AI and cognitive science: The past and next 30 years.  Topics in Cognitive 
Science, 2, 345–356 

Forbus, K., Klenk, M., & Hinrichs, T. , (2009). Companion cognitive systems: Design goals and 
lessons learned so far. IEEE Intelligent Systems, 24, 36–46. 

Ford, K. and Hayes, P. (1998). On computational wings: Rethinking the goals of artificial 
intelligence. Scientific American Presents, 9, 78–83. 

Ford, K., Glymour, C., & Hayes, P. (1997). Cognitive prostheses.  AI Magazine, 18, 104. 
Friedman, S. E., & Forbus, K. (2010). An integrated systems approach to explanation-based 

conceptual change. Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence. Atlanta, GA: AAAI Press.  

Friedman, S., & Forbus, K. (2011). Repairing incorrect knowledge with model formulation and 
metareasoning. Proceedings of the Twenty-Second International Joint Conference on Artificial 
Intelligence. Barcelona, Spain. 

Friedman, S. E., Forbus, K. D., & Sherin, B. (2011). Constructing and revising commonsense 
science explanations: A metareasoning approach. Proceedings of the AAAI Fall Symposium on 
Advances in Cognitive Systems. Arlington, VA: AAAI Press. 

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 
7, 155–170. 

Gentner, D. (2003). Why we’re so smart. In D. Gentner & S. Goldin-Meadow (Eds.), Language 
in mind: Advances in the study of language and thought (pp. 195–235). Cambridge, MA: MIT 
Press. 

Gentner, D., & Markman, A. B. (1995). Similarity is like analogy: Structural alignment in 
comparison. In C. Cacciari (Ed.), Similarity in language, thought and perception (pp.111–147). 
Brussels: BREPOLS. 

Gordon, J. (2003). Structures: Or why things don’t fall down. New York: Da Capo Press. 
Halstead, D., & Forbus, K. (2005). Transforming between propositions and features: Bridging the 

gap. Proceedings of the Twentieth AAAI Conference on Artificial Intelligence. Pittsburgh, PA: 
AAAI Press. 

Klenk, M., & Forbus, K. (2009). Analogical model formulation for AP physics problems. Artifi-
cial Intelligence, 173, 1615–1638. 

Koller, D. (2001). Representation, reasoning, and learning. Computers and Thought talk from 
IJCAI 2001. http://robotics.stanford.edu/~koller/CnT-web.htm 

Kuehne, S., Gentner, D., & Forbus, K. (2000). Modeling infant learning via symbolic structural 
alignment. Proceedings of the Twenty-Second Annual Meeting of the Cognitive Science Society. 
Philadelphia, PA. 



 HOW MINDS WILL BE BUILT  

57 

Kuhl, P. K., & Rivera-Gaxiola, M. (2008). Neural substrates of language acquisition. Annual 
Review of Neuroscience, 31, 511–534.  

Laird, J. & Newell, A. (1983). A universal weak method: Summary of results.  Proceedings of 
Eighth International Joint Conference on Artificial Intelligence (pp. 771–773). Karlsruhe.  

Laird, J. E., Jones, R. M., & Nielsen, P. E. (1998). Lessons learned from TacAir-Soar in STOW-
97. Proceedings of the Seventh Conference on Computer Generated Forces and Behavioral 
Representation. Orlando, FL 

Laird, J. (2012). The Soar cognitive architecture. Cambridge, MA: MIT Press 
Lenat, D., & Guha, R. 1990. Building large knowledge-based systems. Boston: Addison-Wesley. 
Langley, P., & Choi, D. (2006). A unified cognitive architecture for physical agents.  Proceedings 

of the Twenty-First AAAI Conference on Artificial Intelligence. Pittsburgh, PA: AAAI Press. 
Lockwood, K., Lovett, A., & Forbus, K. (2008). Automatic classification of containment and 

support spatial relations in English and Dutch. Proceedings of the International Conference on 
Spatial Cognition VI: Learning, Reasoning, and Talking about Space (pp. 283–294). Freiburg, 
Germany 

Marr, D. (1982). Vision. New York: W. H. Freeman & Co.  
Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering an 

efficient SAT Solver. Proceedings of the 39th Design Automation Conference. Las Vegas. 
Needham, C. J., Santos, P. E., Magee, D. R., Devin, V., Hogg, D. C., & Cohn, A. G. (2005). 

Protocols from perceptual observations. Artificial Intelligence, 167, 103–136. 
Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D. L., & Kolobov, A. (2007). BLOG: 

Probabilistic models with unknown objects. In L. Getoor & B. Taskar (Eds.), Introduction to 
statistical relational learning. Cambridge, MA: MIT Press. 

Newell, A. (1973). You can’t play 20 questions with nature and win: Projective comments on the 
papers of this symposium. In W. G. Chase (Ed.), Visual information processing. New York: 
Academic Press. 

Newell, A. (1994). Unified theories of cognition. Harvard University Press. 
Ouyang, T., & Forbus, K. (2006). Strategy variations in analogical problem solving. Proceedings 

of the Twenty-First AAAI Conference on Artificial Intelligence. Boston: AAAI Press.  
Panton, K., Matuszek, C., Lenat, D., Schneider, D., Witbrock, M., Siegel, N., & Shepard, B. 

(2006). Common sense reasoning – from Cyc to intelligent assistant.  In Y. Cai & J. Abascal 
(Eds.) Ambient intelligence in everyday life (pp. 1–31). Springer. 

Rosenbloom, P. S. (2010). An architectural approach to statistical relational AI.  Proceedings of 
the AAAI-10 Workshop on Statistical Relational AI. Atlanta, GA: AAAI Press. 

Russell, S. (1997). Rationality and intelligence. Artificial Intelligence, 94, 57–77. 
Shapiro, S. (2000). SNePS: A logic for natural language understanding and commonsense 

reasoning. In L. Iwanska & S. Shapiro (Eds): Natural language processing and knowledge 
representation: Language for knowledge and knowledge for language. Menlo Park, CA: AAAI 
Press. 

Stone, P. (2007). Learning and multiagent reasoning for autonomous agents. Proceedings of the 
Twentieth International Joint Conference on Artificial Intelligence (pp. 13–30). Hyderabad.  



K. FORBUS 

58 

Sun, R. (2001). Duality of the mind: A bottom-up approach toward cognition. New York: Psych-
ology Press. 

Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard 
University Press. 

Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Puzzlingly high correlations in fMRI 
studies of emotion, personality, and social cognition. Perspectives on Psychological Science, 4, 
274–290. 

Weisberg, D., Keil, F., Goodstein, J., Rawson, E., & Gray, J. (2008). The seductive allure of 
neuroscience explanations.  Journal of Cognitive Neuroscience, 20, 470–477. 

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., & Blythe, J. (1995). Integrated 
planning and learning: The PRODIGY architecture. Journal of Theoretical and Experimental 
Artificial Intelligence, 7, 81–120. 

Vygotsky, L. (1962). Thought and language. Cambridge, MA: MIT Press.  
 


