04/27/11
01:35:28

Notes for Meeting 4
Synbol ic Patterns and Pattern Matching

A Revi ew of Synbol Structures

Newel | and Sinmon (1976) introduce sone key concepts that they claim
underlie intelligent behavior:

- Synbol s are physical patterns that remain stable unless nodified.

- Synbol structures (expressions) are organi zed sets of synbols.

- A physical synbol systemincludes processes for creating, nodifying,
copyi ng, and destroying synbol structures that let it:
- Maintain structures that designate other objects or processes.
- Interpret expressions that designate such processes.

Li st structures, |ike those supported by Lisp, have becone a standard
neans to encode synbol s and synbol structures.

However, functional or procedural schenmes are not the only approach
to interpreting such structures.

Synbolic Patterns and Pattern Matching

Most human know edge is generic, in the sense that it applies to
different instances of the same general situation.

We can state such generic know edge as synbolic PATTERNS t hat:

- Describe the structures held in common by these instances.

- Designate the specified class of situations with these structures.

- Omit structures not held in commpn and use VARI ABLES to indicate
subel enments that vary.

A synbol systeminterprets a pattern by MATCHI NG it agai nst one
or nore synbol structures that describe a situation.

This opens the door to declarative representations of know edge
that support nonprocedural varieties of processing.

Synbolic Patterns as List Structures

We can represent synbolic patterns as lists or list structures that
contain pattern-match variables in place of constants. E. g.,

(taller-than ?personl ?person2)
and
(on ?bl ockl ?bl ock2)

contain the variabl es ?personl and ?person2, and the variabl es ?bl ockl
and ?bl ock2, respectively.

We can encode conplex patterns as lists (sets) of sinple patterns
that may share pattern-match variables. E. g.,

((taller-than ?personl ?person2) (taller-than ?person2 ?person3))
and

((on ?bl ockl ?bl ock2) (w der-than ?bl ock2 ?bl ockl)

(on ?bl ock2 ?bl ock3) (wi der-than ?bl ock3 ?bl ock2))

are two conplex patterns with two and four patterns, respectively.

match_small.txt

Si npl e Mat ches and Bi ndi ngs

We can attenpt to MATCH a sinple pattern against a ground literal (a
list or list structure with no variables).

A match succeeds if there is a consistent set bindings (substitution of
constants for variables in the pattern) that gives the ground literal.

- The pattern (taller-than ?personl ?person2) matches against literal
(taller-than Abe Bob) with the bindings

((?personl . Abe) (?person2 . Bob))

- The pattern (on ?bl ockl ?bl ock2) matches against literal (on A B)
wi th the bindings

((?blockl . A) (?block2 . B))

Different variables can bind to the sane constant, but each variable
must map to a single constant.

List Structures in Wrking Menory

Synbol i c patterns require content against which to match. W will
refer to this set of candidate literals as a working nmenory.

Here are two working nmenories that contain two and three el enents,
respectively:

((taller-than Bob Cal) (taller-than Abe Bob))
((on B C (on CD) (on AB))

Al t hough one typically encode working nenories as list structures,
the order of elenents does not matter.

Finding Al Sinple Mtches

G ven a sinple pattern and the contents of working nmenory, we can
find all natches of the pattern against its el enents.

For the sinple pattern (on ?blockl ?block2) and the working nenory
((on B C) (on CD) (on AB)), there are three matches:

(on A B) with bindings ((?blockl . A) (?block2 . B))
(on B C) with bindings ((?blockl . B) (?block2 . Q)
(on CD) with bindings ((?blockl . C (?block2 . D))

Not e that many ot her possible substitutions or bindings, such as
((?blockl . A) (?block2 . C)) are not legitimte nmatches.

04/27/11
01:35:28

Conpl ex Matches and Bi ndi ngs

We can also attenpt to nmatch a conplex pattern against the el enents
in working nmenory.

- The pattern ((taller-than ?pl ?p2) (taller-than ?p2 ?p3)) matches the
literals (taller-than Abe Bob) and (taller-than Bob Cal) wi th bindings

((?p1 . Abe) (?p2 . Bob) (?p3 . Cal))
- The pattern ((on ?blockl ?bl ock2) (on ?block2 ?block3)) matches the
literals (on A B) and (on B C) with the bindings
((?blockl . A) (?block2 . B) (?block3 . Q)

A successful match nmust bind variabl es consistently agai nst each of
the pattern’s sinple subpatterns.

Finding Al Conplex Matches

G ven a conplex pattern and the contents of working nenory, we can
find all matches of the pattern against its elenents.

For exanple, for the conplex pattern

((on ?bl ockl ?bl ock2) (w der-than ?bl ock2 ?bl ockl)
(on ?bl ock2 ?bl ock3) (wi der-than ?bl ock3 ?bl ock2))

and the worki ng nmenory

((on B C (on AB) (on CD) (wder-than B A)
(wider-than C B) (wider-than D C))

there are two matches:
(((on AB) (on BC (wider-than B A) (wider-than C B)) =>
((?blockl . A) (?block2 . B) (?block3 . Q)))

and
(((on BC (on CD) (wider-than CB) (wider-than D Q) =>
((?blockl . B) (?block2 . C (?block3 . D)))

O her bindings are possible, but they do not |ead to consistent
mat ches agai nst el enents in working nenory.

Conpl ex Patterns with Negations

One can al so specify NEGATED patterns that designate literals that
shoul d NOT be natch.

Consi der the conplex pattern ((on ?X ?Y) (not (on ?any ?X)) and
t he wor ki ng nenory

((on B C (on AB) (on CD))
This pattern produces only one match:
((on AB) => ((?X. A (?Y. B)))

since (on ?any ?X) would match (on A B) if ?X were bound to B and
it would match (on B C) if ?X were bound to C.

Patterns that include negations add representational power, but
they should be used careful ly.

match_small.txt

Types of Conpl ex Synbolic Patterns

Conpl ex synbolic patterns are used widely within the Al community;
they appear in:

the conditions of production rules
the bodi es of Horn clauses

the structure of schenas

the structure of franes

the conditions of planning operators

i
i
i
i
i
in the content of unification grammars

5 3333535

These differ in their syntax and semantics, but they share the use
of generalized list structures for pattern matching.

Conceptual Clauses in |carus

lcarus is a cognitive architecture that encodes conceptual know edge
as rel ational patterns such as:

((left-of ?blockl ?bl ock2)
:percepts ((block ?blockl xpos ?xposl)
(bl ock ?bl ock2 xpos ?xpos2))
itests ((< ?xposl ?xpos2)))
and
((between ?bl ockl ?bl ock2 ?bl ock3)
:percepts ((block ?blockl) (block ?block2) (block ?block3))
:relations ((left-of ?blockl ?block2)
(left-of ?blockl ?block2)))
Such conceptual clauses nmay agai nst PERCEPTS of objects |ike:
(bl ock A xpos 2 ypos 0 width 2 height 2)
and against inferred BELIEFS |ike:
(left-of AB) and (left-of B C
Patterns in lcarus may al so have negations |like (not (on ?any ?block)).
Pattern Matching and Unification

Unification is an extension of pattern matching but supports napping
of two patterns, each of which may contain variables.

For exanple, the sinple patterns (on A ?blockl) and (on ?bl ock2 B)
uni fy to produce the bindings

((?blockl . A) (?block2 . B)

whereas the sinple patterns (on A ?block) and (on ?block B) do not
uni fy because ?bl ock cannot bind both A and B.

However, the patterns (on A ?blockl) and (on ?block2 ?block3) unify
wi th the bindings

((?blockl . A) (?block2 . A) (?block3 . A))

because different variables can bind to the same constant term

04/27/11
01:35:28

Conpl ex Unification

One can also apply unification to conplex patterns, but it behaves
sonewhat differently from pattern matching.

For exanpl e, consider the two conplex patterns:

((on A ?block2) (on ?blockl B) (on ?blockl ?bl ock2))
and

((on ?block3 B) (on ?bl ock3 ?bl ock2))

We can unify these two structures, even though they have different
nunbers of elenments, to produce the bindings:

((?blockl . A) (?block2 . B) (?block3 . ?blockl))
((?blockl . A) (?block2 . B) (?block3 . A))
dependi ng on which of the two fornmats we prefer for bindings.

Assi gnnents for Meeting 5
Deducti ve Reasoni ng

Read the article:

- Genesereth, M R, & Gnsberg, M L. (1985). Logic progranm ng.
Comuni cations of the ACM 28, 933-941.

- This paper shows how | ogi c programm ng franeworks |ike Prolog
conbi ne unification with chaining to carry out deductive inference.

- Review notes on pattern matching in preparation for the second
exerci se.

match_small.txt

